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Foreword

Welcome to the sixth installment of the International Conference on Educational Data Mining
(EDM 2013), which will be held in sunny Memphis, Tennessee from the 6th to 9th of July 2013.
Since its inception in 2008, the EDM conference series has featured some of the most innovative
and fascinating basic and applied research centered on data mining, education, and learning
technologies. This tradition of exemplary interdisciplinary research has been kept alive in 2013
as evident through the imaginative, exciting, and diverse set of papers spanning the fields of
Machine Learning, Artificial Intelligence, Learning Technologies, Education, Linguistics, and
Psychology. The EDM 2013 conference program features a rich collection of original research
embodied through oral presentations, posters, invited talks, a young researchers track, tutorials,
interactive demos, and a panel session.

We received 109 submissions for the main track. Each submission was assigned to three
members of the Program Committee based on their areas of expertise. Their reviews were then
examined by the Program Chairs who coordinated discussions among the reviewers in order to
arrive at a decision. Twenty-seven out of the 109 submissions were accepted as full papers (a
25% acceptance rate) and 22 as short papers (a 45% acceptance rate for full and short papers).
An additional 27 were accepted as poster presentations.

In addition to the main track, the conference received 15 submissions to the young re-
searchers track (YRT), 7 to the late-breaking results track, and 9 to the interactive events
track. Six of the YRT submissions were accepted into the YRT with an additional two being
accepted as posters. Five late-breaking results papers were accepted, as were the nine demo
papers.

Each day of the conference will be kick-started by invited talks by three outstanding re-
searchers: Valerie Shute (Florida State University), John Anderson (Carnegie Mellon Univer-
sity), and Ryan Shaun Joazeiro de Baker (Teachers College Columbia University). The main
conference will end with a panel session on the future of EDM with panelists including Tiffany
Barnes, Ed Dieterle, Neil Heffernan, Taylor Martin, and Sebastian Ventura, and moderated by
Sidney DMello and Ryan Baker. The conference will be followed by a series of mini-tutorials
led by Agathe Merceron, David Cooper, and Tristan Nixon.

EDM 2013 has broken a number of
records. As noted in the figure on the left,
we received a record number of 109 submis-
sions this year, a 36% increase from the last
two years and a 140% increase since the first
EDM conference. This allowed us to accept
a larger number of papers for oral presenta-
tion (53% increase from EDM 2012) while still
maintaining the historic acceptance rate (45%
in 2013 compared to average 41% rate from
2008 to 2012). Although EDM has histori-
cally been a single-track conference, the in-
crease in the number of submissions and ac-

cepted papers led us to a blended approach of both single and dual tracks. Another novelty to
EDM is the introduction of short mini-tutorials that will be held on July 9th.

The EDM 2013 conference would not have been possible without the vision and dedicated
effort of a number of people. We are indebted to the Program Committee and the additional
reviewers for their exceptional work in reviewing the submissions and helping us select the best
papers for the conference. We would like to acknowledge Tiffany Barnes and Davide Fossati for
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organizing the YRT. Kristy Boyer and Usef Faghihi conceived the brilliant idea of having EDM
mini-tutorials and we would like to thank them for putting those together. We would also like
to thank Fazel Keshtkar and Sebastian Ventura for organizing the interactive events. A special
thanks to Phil Pavlik for managing the website and for joining us on the awards committee.
Finally, thanks to the authors for sending us their best work and to all the attendees who bring
EDM to life.

Andrew Olney, Phil Pavlik, and Art Graesser would like to thank Ryan Baker for his encour-
agement to host the 2013 conference, John Stamper for his efforts in securing sponsorships, and
Natalie Person for masterminding our incredible banquet. We are indebted to a number of stu-
dents who worked tirelessly in the months leading up to the conference, including Jackie Maas,
Breya Walker, Haiying Li, Nia Dowell, Blair Lehman, Brent Morgan, Carol Forsyth, Patrick
Hays, and Whitney Cade. Additional thanks go to Conference Planning and Operations at the
University of Memphis, especially Courtney Shelton and Holly Stanford. We would also like
to thank our sponsors, The University of Memphis (Office of the Provost), Carney Labs, the
Institute for Intelligent Systems, and Pearson, who generously provided funds to help offset
registration costs for students. Finally, we would like to gratefully acknowledge the National
Science Foundation who provided funds to offset costs for students to attend the YRT and the
conference under grant IIS 1340163.

In summary, 2013 appears to be an excellent year for Educational Data Mining. The
keynotes, oral and poster presentations, live demos, young researchers track, panel session,
mini tutorials, and attendees from all over the world will undoubtedly make the EDM 2013
conference an intellectually stimulating, enjoyable, and memorable event.

Sidney DMello, University of Notre Dame, USA
Rafael Calvo, University of Sydney, Australia
Andrew Olney, University of Memphis, USA
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ABSTRACT 

You can discover more about a person in an hour of play than in a year of conversation (Plato). For the past 6-7 years, I have been 

examining ways to leverage good video games to assess and support important student competencies, especially those that are not 

optimally measured by traditional assessment formats. The term "stealth assessment" refers to the process of embedding assessments deeply 

and invisibly into the gaming environment. Though this approach produces ample real-time data on a player's interactions within the game 

environment and preserves player engagement, a primary challenge for using stealth assessment in games is taking this stream of data and 

making valid inferences about players' competencies that can be examined at various points in time (to see growth), and also at various 

grain sizes (for diagnostic purposes). In this talk, I will present recent work related to creating and embedding three stealth assessments--for 

creativity, conscientiousness, and qualitative physics understanding--into Newton's Playground, a game we developed that emphasizes non-

linear gameplay and puzzle-solving in a 2D physics simulation environment. I will begin by framing the topic in terms of why this type of 

research is sorely needed in education, then generally describe the stealth assessment approach, and finally provide some concrete 

examples of how to do it and how well it works regarding validity issues, learning, and enjoyment from a recent research study.    

 

SHORT BIO 

Valerie Shute is the Mack & Effie Campbell Tyner Endowed Professor in Education in the Department of Educational Psychology and 

Learning Systems at Florida State University. Before coming to FSU in 2007, she was a principal research scientist at Educational Testing 

Service where she was involved with basic and applied research projects related to assessment, cognitive diagnosis, and learning from 

advanced instructional systems. Her general research interests hover around the design, development, and evaluation of advanced systems 

to support learning--particularly related to 21st century competencies. An example of current research involves using immersive games 

with stealth assessment to support learning—of cognitive and non-cognitive knowledge, skills, and dispositions. Her research has resulted 

in numerous grants, journal articles, chapters in edited books, a patent, and several recent books such as Innovative assessment for the 21st 

century: Supporting educational needs (Shute & Becker, 2010) and Measuring and supporting learning in games: Stealth assessment 

(Shute & Ventura, 2013). 
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ABSTRACT 
It is possible to combine multivariate pattern analysis (MVPA) and hidden Markov models (HMM) to discover the major phases that 

students go through in solving complex problems.   I will illustrate this methodology by applying it to the learning of graphical isomorphs 

of algebra problems.  We discovered a sequence of 5 major phases that students went through: An Orient Phase where they identified the 

problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase where they performed the necessary 

arithmetic calculations, a Transform Phase where they performed any mathematical transformations, and a Respond Phase where they 

generated the answer. The duration of the Compute and Transform Phases were they only ones that distinguished different problem types.  

Increased duration in these two phases is also associated with making errors.    Looking at learning, 2 features distinguished the problems 

on which participants came to understand a new problem type.  First, the duration of late phases of the problem solution increased.  

Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and angular gyrus (AG), regions associated with 

metacognition.  We think this indicates the importance of reflection to successful learning. 

 

SHORT BIO 
John Anderson received his B.A. from the University of British Columbia in 1968 and his Ph.D. from Stanford University 1972.  He has 

been at Carnegie Mellon University since 1978 where he is the Richard King Mellon Professor of Psychology and Computer Science. He 

has been served as president of the Cognitive Science Society, and has been elected to the American Academy of Arts and Sciences, the 

National Academy of Sciences, and the American Philosophical Society.  He is the current editor of Psychological Review.  He has 

received numerous scientific awards including the American Psychological Association’s Distinguished Scientific Career Award, the David 

E. Rumelhart Prize for Contributions to the Formal Analysis of Human Cognition, the inaugural Dr A.H. Heineken Prize for Cognitive 

Science, and the Benjamin Franklin Medal in Computer and Cognitive Science.  

 

He is known for developing ACT-R, which is the most widely used cognitive architecture in cognitive science. Anderson was also an early 

leader in research on intelligent tutoring systems.   Computer systems based on his cognitive tutors teach currently mathematics to over 

500,000 children in American schools. He has published a number of books including Human Associative Memory (1973 with Gordon 

Bower), Language, Memory, and Thought (1976), The Architecture of Cognition (1983), The Adaptive Character of Thought (1990), 

Rules of the Mind (1993), and The Atomic Components of Thought (1998 with Christian Lebiere), and How Can the Human Mind Occur 

in the Physical Universe? (2007).   His current research interest is focused on combining cognitive modeling and brain imaging to 

understand the processes of mathematical learning. 
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ABSTRACT 

We've started to answer the questions of what we can model through EDM, and we're getting better and better at modeling each year. We 

publish papers that present solid numbers under reasonably stringent cross-validation, and we find that our models don't just agree with 

training labels, but can predict future performance and engagement as well. We're making progress as a field in figuring out how to use 

these models to drive and support intervention, although there's a whole lot more to learn. 

 

But when and where can we trust our models? One of the greatest powers of EDM models is that we can use them outside the contexts 

in which they were originally developed, but how can we trust that we're doing so wisely and safely? Theory from machine learning 

and statistics can be used to study generalizability, and we know empirically that models developed with explicit attention to 

generalizability and construct validity are more likely to generalize and to be valid. But our conceptions and characterizations of population 

and context remain insufficient to fully answer the question of whether a model will be valid where will apply it. What's worse, the world is 

constantly changing; the model that works today may not work tomorrow, if the context changes in important ways, and we don't know yet 

which changes matter. 

 

In this talk, I will illustrate these issues by discussing our work to develop models that generalize across urban, rural, and suburban 

settings in the United States, and to study model generalizability internationally. I will discuss work from other groups that starts to think 

more carefully about characterizing context and population in a concrete and precise fashion; where this work is successful, and where it 

remains incomplete. By considering these issues more thoroughly, we can become increasingly confident in the applicability, validity, and 

usefulness of our models for broad and general use, a necessity for using EDM in a complex and changing world. 

 

SHORT BIO 

Ryan Shaun Joazeiro de Baker is the Julius and Rosa Sachs Distinguished Lecturer at Teachers College, Columbia University. He earned 

his Ph.D. in Human-Computer Interaction from Carnegie Mellon University. Baker was previously Assistant Professor of Psychology and 

the Learning Sciences at Worcester Polytechnic Institute, and he served as the first Technical Director of the Pittsburgh Science of 

Learning Center DataShop, the largest public repository for data on the interaction between learners and educational software. 

He is currently serving as the founding President of the International Educational Data Mining Society, and as Associate Editor of the 

Journal of Educational Data Mining. His research combines educational data mining and quantitative field observation methods in order to 

better understand how students respond to educational software, and how these responses impact their learning. He studies these issues 

within intelligent tutors, simulations, multi-user virtual environments, and educational games. 
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ABSTRACT 

There has been a large body of work in the field of EDM 

involving predicting whether the student’s next attempt will be 

correct.  Many promising ideas have resulted in negligible gains 

in accuracy, with differences in the thousandths place on RMSE 

or R2.  This paper explores how well we can expect student 

modeling approaches to perform at this task.  We attempt to place 

an upper limit on model accuracy by performing a series of 

cheating experiments.  We investigate how well a student model 

can perform that has: perfect information about a student’s 

incoming knowledge, the ability to detect the exact moment when 

a student learns a skill (binary knowledge), and the ability to 

precisely estimate a student’s level of knowledge (continuous 

knowledge).  We find that binary knowledge model has an AUC 

of 0.804 on our sample data, relative to a baseline PFA model 

with a 0.745.  If we weaken our cheating model slightly, such that 

it no longer knows student incoming knowledge but simply 

assumes students are incorrect on their first attempt, AUC drops 

to 0.747.  Consequently, we argue that many student modeling 

techniques are relatively close to ceiling performance, and there 

are probably not large gains in accuracy to be had.  In addition, 

knowledge tracing and performance factors analysis, two popular 

techniques, correlate with each other at 0.96 indicating few 

differences between them.  We conclude by arguing that there are 

more useful student modeling tasks such as detecting robust 

learning or wheel-spinning, and estimating parameters such as 

optimal spacing that are deserving of attention. 

Keywords 

Cheating experiments, student modeling, limits to accuracy, 

knowledge tracing, performance factors analysis 

1. INTRODUCTION 
The field of educational data mining has seen many papers 

published on the topic of student modeling, frequently predicting 

next item correctness (e.g. [1-6]).  Next item correctness refers to 

the student modeling task where the student’s past performance 

on this skill is known, and the goal is to predict whether the 

student will respond correctly or incorrectly to the current item.  

This task was the topic of the KDD Cup in 2010.  It is typically 

assumed that data from other students are also available to aid in 

fitting modeling parameters.  This research area certainly 

appeared to be ripe grounds for rapid improvement, with reported 

R2 values for Performance Factors Analysis (PFA; [7]) and 

Bayesian knowledge tracing [8] of 0.07 and 0.17, respectively [9].  

PFA and Bayesian knowledge tracing were two better known, 

baseline techniques, and their apparent poor performance left 

tremendous room for improvement by developing more refined 

modeling techniques.   

Researchers tried a variety of approaches to improve accuracy.  

One natural idea was to consider awarding students partial credit 

for their attempts.  Many researchers use a simple, binary scoring 

metric of full points for a student who responds correctly on the 

first attempt with no hints, and zero points for a student who 

makes any mistakes or requests any hints.  Thus, there is no 

distinction between a student who makes a mistake and corrects 

himself 3 seconds later, and a student who asks the system to tell 

him the answer and types it in — both are simply marked as 

“incorrect.”  Work on partial credit decreased the amount of credit 

awarded in proportion to the number of hints requested [3].  By 

accounting for student partial credit, it improved model accuracy 

from an R2 of 0.1903 to 0.19221. 

Another potential weakness in student models is that the domain 

models are developed by human experts, who are often guided by 

intuition.  Perhaps an approach that uses data to automatically 

refine student models will result in a better fit to the data?  Across 

eight datasets where model accuracy was available for the original 

and the data-generated models, the model fit (un-weighted 

average, computed by the authors) improved slightly from 0.4143 

to 0.4020.  However, perhaps the primary outcome of the work 

was better estimates of the rates at which students learn skills, 

which is certainly a useful artifact. 

Some approaches were possibly larger successes.  One underlying 

assumption is that there is one set of model parameters.  For 

example, all students have the same initial knowledge of a 

particular skill; all students learn the skill at the same rate, etc.  

Relaxing that assumption and modeling students as two separate 

distributions improved R2 from 0.162 to 0.205, and AUC from 

0.74 to 0.77[10].  However, to the authors’ knowledge, no one 

has tried to replicate this work on another dataset, so the results 

should be treated with skepticism.   

Many techniques assume that all students have the same initial 

knowledge of a particular skill.  Such an assumption is clearly 

incorrect, as student knowledge typically varies considerably.  So 

why not incorporate such flexibility into our models?  Some 

interesting work on extending knowledge tracing allowed student 

initial knowledge to vary based on initial performance [11].  The 

main finding was that model fit was notably improved, from an R2 

of 0.0374 to 0.1236.  However, on replication, this approach of 

customizing initial student knowledge was found to perform 

worse than the baseline knowledge tracing technique with an R2 

of 0.089 vs. 0.12572[12].  This later study was also interesting in 

that it tested different techniques for estimating model parameters, 

                                                                 

1 Note that RMSE, R2 and AUC values are not comparable across 

studies due to differing datasets.   

2 The R2 statistics for both studies were computed by the authors 

of this paper for consistency. 
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of the three attempts studied, model fit varied from an R2 of 

0.1203 to 0.1257.  There had been prior work experimenting with 

different methods of parameter estimation with conflicting results 

about which approach worked better [9, 13].  We find ourselves 

agreeing with the authors of [12] that “It is not yet clear what 

features of a specific data set (and the tutor it comes from) are 

associated with better or worse performance for specific types of 

student models.”  By creating a machine-learned ensemble of 

student models and features, they managed to improve A’ from 

0.705 to 0.769 [12].  This is a definitely large improvement in 

model accuracy, but raises questions of interpretability, which we 

will discuss later in the paper.   

A fair question is why improvements in student model accuracy 

have been so limited? In general, improvements in model 

accuracy have been minimal, particularly given the relatively low 

baseline performances. Improving a model with an R2 of 0.9 is 

challenging, but improving one that starts at an R2 of 0.17 should 

be simpler.  The ideas listed above were sensible, but 

improvements have generally been modest, and often do not 

replicate across data sets.  The results generate two questions: 

1. What is it about this prediction problem that makes it 

difficult?  

2. Is there perhaps a much lower upper limit on model 

accuracy than might otherwise be suspected?  

The motivation for this paper was to explore potential reasons 

behind the inability to create highly accurate models.   

2. CHEATING EXPERIMENTS WITH 

THEORETIC MODELS 
Our first investigation into the plausible performance ceiling of 

student modeling is done using cheating experiments.  The idea of 

a cheating experiment is to test a methodology, simulating some 

non-existent technology as part of it as a means of discovering 

how well a technique would perform if certain limitations are 

removed. The key element of a cheating experiment is relaxing 

certain limitations in scientific knowledge or methodology, but 

not to create an artifact that is too powerful.  For example, for our 

task of predicting student correct next response, one cheating 

experiment would be an algorithm that simply peeks into the 

future, and predicts whatever the student will do.  While this 

approach would certainly be very powerful, it does not give us 

much guidance about limiting factors on performance as the only 

conclusion one could draw would be “a student modeling 

technique that could see the future with perfect accuracy would do 

a very good job.”  Therefore, we focus on more limited, but still 

currently infeasible, extensions of a student model’s capabilities. 

This paper investigates three aspects of student modeling.  First, 

we explore how a student model would do with a perfect detector 

of learning [14].  Second, we investigate how important 

understanding student incoming knowledge is.  Third, we examine 

how a continuous estimate of knowledge would perform.   

Thus, the goal of our analysis is to estimate how well we could 

perform at student modeling if we had a perfect model of several 

aspects of learner cognition.  However, we first give our baseline 

assumptions, then describe our data, and finally provide baseline 

model performance when trained on those data. 

2.1 UNDERLYING ASSUMPTIONS 
We were interested in understanding what factors limit our ability 

to model the student.  One input, typically implicit in student 

modeling research, is the domain model the maps items to skills 

(sometimes called a “Q-matrix”).  This model enables us to map 

student performance on an item to a particular skill in the domain.  

If this aspect of the system is poorly done, model accuracy can 

suffer.  The authors are unaware of any large gains in accuracy by 

refining a “reasonably constructed” transfer model; we add the 

restriction as we are certain that refining a randomly generated 

transfer model would improve accuracy.  Recent work [6] found a 

slight improvement in accuracy from refining models, but the 

effect was not large.  Therefore, we do not consider improvements 

in the transfer model within this paper.   

Furthermore, we assume that we do not know the underlying 

model generating students’ responses. While it is certainly 

possible to make such an assumption and to use, for example, 

knowledge tracing, to generate student responses, such an 

approach assumes far too much, and is of questionable 

applicability to real-world tutoring scenarios.  Therefore, rather 

than generate hypothetical student responses and estimate our 

ability to recover our initial models, we simply use the student 

performance data as provided and compute our predictive 

accuracy.   

2.2 DATA DESCRIPTION AND BASELINE 

MODEL 
For our analyses, we use two datasets. The first is from the 

ASSISTments (www.assistments.org) web-based tutor. These data 

are from 343 eighth-grade students (approximately 13 years old) 

in four classes in urban school districts in the Northeastern United 

States. There were 86,528 first attempts at responding to a 

mathematics problem, and students were correct 64.5% of the 

time. The domain is represented as 104 mathematics skills.  Our 

second dataset is the 2010 KDD Cup dataset, from the Cognitive 

Algebra Tutor.  We used one of the training datasets, and filtered 

out rows with missing values resulting in 607,026 rows of data 

with students correct 75.5% of the time.  These data are from 574 

students working on 158 skills in mathematics.  Although both 

systems involve math skills, they are actually rather different from 

each other.  ASSISTments serves primarily as computer-assisted 

practice for students’ nightly homework and review lessons, while 

the Cognitive Tutor is part of an integrated curriculum and has 

more support for learners during the problem-solving process. 

For our baseline approach, we have selected the Performance 

Factors Analysis (PFA; [7]) model. A PFA model takes the form 

of a logistic regression model, where the independents are the 

number of correct and incorrect responses, and the difficulty of 

the item the student is attempting.  As PFA estimates the impact 

on performance by weighting types of learning opportunities 

differently (correct vs. incorrect responses), it can be seen as a 

variant of learning decomposition [15]. For our data, we have 

found that PFA typically does a better job at predicting [9] the 

data than Bayesian knowledge tracing [8]. Thus it is more 

appropriate as a baseline metric.  For both our baseline approach 

and our cheating models, we represent data separately for each 

student on each skill. Thus, when we discuss successive student 

attempts, we mean successive attempts on the same skill, and 

ignore intervening problems on other skills.   

For performance metrics, we use the Area Under the Curve 

(AUC) and R2.  AUC is an approximation of A’; it is a commonly 

used metric when comparing student modeling techniques.  The 
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upper limit on AUC is 1.0, and the practical lower limit is 0.53.  

AUC evaluates techniques based on how well they order their 

predictions.  For four problems, if a model predicts that a student 

has a 95%, 90%, 87%, and 86% chance of responding correctly 

and the student gets the first two items correct and the next two 

items incorrect, the AUC will be a perfect 1.0 (assuming a 

threshold of 50% is used, which would be a poor choice in this 

scenario). Even though the model predicts the student is likely to 

get the last two items correct, since those items are relatively less 

likely to be correct than the first two, AUC gives a perfect score.  

R2 is based on the squared error between the predicted and actual 

value, but is normalized relative to the variance in the dataset.  A 

perfect R2 value is 1.0, while 0 is a lower bound for (non-pseudo) 

R2. R2 is similar to Root Mean Squared Error (RMSE), but is 

more interpretable due to the normalization step.  For example, it 

is unclear whether an RMSE of 0.3 is good or bad, perhaps a 

better error could be obtained simply by predicting the mean 

value?  However, an R2 of 0.8 indicates the model is account for 

most of the variability in the data.  For computational simplicity, 

we do not use the pseudo- R2 method such as Nagelkerke in this 

paper. Neither AUC nor R2 is a perfect evaluation metric, but, 

combined; they account for different aspects of model 

performance (relative ordering, and absolute accuracy, 

respectively) and provide us a basis for evaluating our models. 

Table 1 shows performance of the baseline PFA model on both 

the ASSISTments and KDD Cup data.  We can see that the model 

does not fit the KDD Cup data set as well as the ASSISTments 

data. Also, the AUC scores are reasonably high, indicating PFA is 

able to order its predictions relatively well.  However, the lower 

R2 values indicate the magnitude of the errors is still substantial. 

Table 1.  Performance of baseline PFA model 

Data source AUC R2 

ASSISTments 0.745 0.170 

KDD Cup 0.713 0.100 

 

2.3 CHEATING MODEL 1:  A PERFECT 

DETECTOR OF LEARNING AND INITIAL 

KNOWLEDGE 
Our first cheating experiment involves what would be a useful 

piece of technology:  a perfect detector of the moment of student 

learning [14]. When a student is practicing a skill, there is 

hopefully an “aha!” moment where the student has a large jump in 

understanding the skill. This cheating model simulates the ability 

to detect such learning. In addition, the model is also aware of 

whether the students begin using the tutor with knowledge of the 

skill.  Even though it has no data about the student on this skill, it 

can apply its learning detector on the first attempt when the 

student sits down.  This cheating model behaves by examining the 

student’s next response, and if the student will respond correctly, 

this model will mark the student as just learned the skill, and 

predict a correct response.   

However, this model is not permitted to cheat for unlearning or 

forgetting.  For example, if the model believes the student knows 

                                                                 

3 Although technically AUC can be below 0.5, in that case the 

model’s accuracy would be improved, and the resulting AUC 

would be above 0.5, simply by inverting all of its predictions.  

the skill, it will predict a correct response.  If the next response is 

incorrect, it must first make an error on that response by 

predicting correct, and then may reevaluate whether the student 

really knows the skill.  To make this decision, the cheating model 

is permitted to peek ahead at the future student responses and 

decide whether it wants to change its mind about the student’s 

knowledge and mark him as not knowing the skill.   

Although this procedure may sound baroque, there are two 

reasons for it. First, a cheating model that perfectly detected 

learning as well as forgetting would never make a mistake, and 

not produce a useful result. Second, most student modeling 

approaches focus on learning, and ignore the impact of forgetting 

[8] (with a few exceptions, such as [2]).  Since forgetting is often 

caused by interference [16], and it is difficult to know all the 

relevant stimuli to which the student is exposed, this aspect would 

be difficult to model. To be clear, although Cheating Model 1 

(CM1) does not have a perfect detector of forgetting, it is not 

monotonic in its predictions.  That is, when presented with 

evidence the student does not know the skill (i.e., an incorrect 

response), it is permitted to backtrack in its estimate of student 

knowledge.      

For an example of how CM1 performs, see Table 2.  For the first 

item, CM1 is permitted to know whether the student knows the 

skill, and so predicts an incorrect student response. For the second 

item, CM1’s perfect detector of learning enables it to realize the 

student has learned the skill (by peeking ahead at the next 

response), and so it predicts a correct student response. Two items 

later, the student makes a mistake, and as CM1 believes the 

student knows the skill, the model makes an incorrect prediction 

(bold, underlined entry). The model then peeks ahead to 

determine whether it is better to ignore this transient slip, or 

whether it should change its mind about whether the student 

knows the skill.  Since there is a second incorrect response, CM1 

can improve its accuracy by believing the student does not know 

the skill. Thus, CM1 adjusts its predictions to be in best 

accordance with future student data, but is not permitted to predict 

the forgetting before it receives direct evidence. 

Table 2.  Predictions for CM1 and CM2 on sample student 

performance data. Bold underlined entries indicate incorrect 

predictions 

Correct? CM1 CM2i CM2c CM2m 

0 0 0 1 1 

1 1 1 1 1 

1 1 1 1 1 

0 1 1 1 1 

0 0 0 0 0 

1 1 1 1 1 

1 1 1 1 1 

 

For a more formal definition, Figure 1 provides the pseudocode 

for the Cheating Model #1 (CM1). 

On the ASSISTments data, this initial cheating model has an AUC 

of 0.804 and an R2 of 0.50.  On the KDD Cup dataset, it has an 

AUC of 0.762 and R2 of 0.453.  Our cheating model clearly 

outperforms PFA (as it should) on both datasets; AUC is 

increased by 0.5 or 0.6, and R2 by 0.35.   
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Figure 1.  Pseudocode for Cheating Model 1 (CM1) 

2.4 CHEATING MODEL 2:  WHAT IS THE 

IMPACT OF KNOWING STUDENT 

INCOMING KNOWLEDGE? 
The first cheating experiment provided substantial gains in model 

performance.  However, these gains are a result of two pieces of 

non-existent technology: a perfect detector of learning, and a 

perfect detector of incoming knowledge.  What if we ablate the 

model slightly, and remove its ability to know student incoming 

knowledge?  Thus, our model will retain its ability to detect 

“aha!” moments by the learner, but cannot necessarily correctly 

predict the student’s first attempt.   

To handle imperfect first prediction, we consider three baseline 

models: 

1. A model that assumes the student knows all skills so 

will respond Correctly (CM2c) on first attempts. 

2. A model that assumes the student knows nothing, so 

will respond Incorrectly (CM2i) on first attempts. 

3. A model that assumes the student answers correctly on 

easy items, instantiated as those items that are answered 

correctly a Majority (CM2m) of the time across all 

students. 

Table 2 provides an example of how CM2c, CM2i, and CM2m 

perform relative to CM1.  As can be seen, the only difference is 

on how each of these models predicts the first element.  Since 

CM2c predicts the first response will be correct, it makes an error 

in prediction.  For this example, we have arbitrarily assigned the 

first item a difficulty of 0.4, so since the majority of students get 

this item correct, CM2m predicts the current student will.  For a 

more formal definition, the pseudocode for CM2 can be seen in 

Figure 2 

The impact of prior knowledge for the ASSISTments data may be 

seen in Table 4; assuming the student will respond incorrectly on 

the first attempt is the best (simple) approach for prediction.  For 

the ASSISTments dataset, the drop-off in accuracy is noticeable:  

AUC drops from 0.804 to 0.747, just slightly better than the 

baseline PFA model’s 0.745.  Similarly R2 drops from 0.5 to 

0.239—a very substantial drop, and moderately better than PFA’s 

0.17.  For ASSISTments, understanding student initial knowledge 

is important.   

In the KDD Cup dataset, as can be seen in Table 5, the results 

were broadly similar to those for ASSISTments, with one major 

points of divergence: the impact of understanding student first 

problem performance is much less dramatic.  For the KDD Cup 

data, the AUC only drops from 0.762 to 0.754.  One explanation 

is in this dataset there are relatively more problems solved per 

student per skill.  Within ASSISTments, on average each student 

solves 4.7 problems on each skill he works on.  In the Cognitive 

Algebra Tutor, students practice 19 problems per skill.  Thus, 

since more problems are solved by each student in each skill in 

the Cognitive Algebra Tutor, initial knowledge estimation has a 

smaller impact on accuracy.  ASSISTments is probably on the 

lower end of amount of practice per skills; while the Cognitive 

Tutors, due to the integrated curriculum, is probably on the higher 

end.  Here we see another example of the point made in [12] that 

there is often inconsistency in approaches across datasets.  A 

hypothesis consistent with our data is that a good model of 

incoming student knowledge is more useful in scenarios when 

there are fewer data per skill.  We suspect modeling prior 

knowledge is also more effective when students are more 

heterogeneous; if all students (don’t) know a skill, there is little 

point in modeling their incoming knowledge separately. 

 

Figure 2.  Pseudocode for Cheating Model 2 (CM2) 

2.5 CHEATING MODEL 3:  ESTIMATING 

CONTINUOUS KNOWLEDGE AND 

PERFORMANCE 
The final cheating model takes a clue from CM2m, which bases 

its predictions on item difficulty.  Rather than simply assuming 

that a learner knows a skill or does not, CM3 maintains a degree 

of knowledge for each learner.  Our semantics are that knowledge 
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and difficulty are both in the range [0,1].  Larger values represent 

higher degrees of learner knowledge and more difficult items.  If 

item difficulty is less than or equal to knowledge, this model 

maintains the learner will respond correctly.  Otherwise the 

learner will respond incorrectly to the item.  In this manner, it can 

represent a student who can respond correctly to some items 

within a skill, but get other items wrong.  The intuition is that the 

model raises knowledge just high enough to account for student 

correct responses.  On observing an incorrect response, it has the 

option to decrease student knowledge.  The reasoning is similar to 

that for CM1: a model that could increase and decrease 

knowledge estimates at will (before seeing the student’s response) 

would achieve perfect accuracy.  When a student answers an 

incorrect response, it can decrease its knowledge estimate 

arbitrarily low, and will lower it enough to account for later 

incorrect responses.   

Table 3 shows how CM3 performs given the same student 

performance data as before, but also incorporate item difficulty 

information. CM3, like CM1, is permitted to peek ahead on the 

first student performance.  Since the student responds incorrectly, 

the student’s knowledge is set to be just under what is required.  

Since the student responds correctly to the next item, the 

knowledge is increased to 0.7 to be just sufficient.  The student 

responds incorrectly to the next item, but its difficulty is higher 

than the student’s knowledge, so CM3 predicts the student will 

get the item wrong and no update to student knowledge is 

required.  Two items later, the student responds incorrectly to an 

item of difficulty 0.65.  This response causes the model to make a 

mistake as this item is lower than the student’s knowledge of 0.7. 

CM3 responds by decreasing the knowledge, not to .649, but to 

0.599.  The reason is that CM3 looks ahead, and determines what 

level of knowledge will best predict the current streak of incorrect 

responses, and sets knowledge to the maximal level.  Since the 

student gets the next item, with a difficulty of 0.6, incorrect, 

knowledge is set just below that point. A formal definition of 

CM3 is provided in Figure 3. 

Table 3.  Example of predictions and updating knowledge 

estimates for CM3.  Bold underlined entries indicate incorrect 

predictions 

Correct? Item difficulty Prediction Knowledge 

estimate 

0 0.4 0 0.399 

1 0.7 1 0.7 

0 0.8 0 0.7 

1 0.6 1 0.7 

0 0.65 1 0.599 

0 0.6 0 0.599 

1 0.3 1 0.599 

The performance of CM3 on the ASSISTments dataset is seen in 

the first row of Table 4.  CM3, due to its ability to incorporate 

continuous levels of knowledge, is the strongest performer on the 

ASSISTments dataset by a large margin.  Apparently representing 

knowledge as a binary value, even with a model with a perfect 

detector of learning, results in a considerable weakness.  

Representing gradations of student knowledge appears to be much 

more effective.   

The performance of CM3 on the KDD Cup data is seen in the first 

row of Table 5. Again, continuous knowledge resulted in strong 

performance.  For the KDD Cup data, we were a bit stymied as to 

the meaning of “item difficulty”. For these results, we used a 

concatenation of problem name and step name.  However, many 

such pairs were only attempted by 1 student, leading to 

considerable over-fitting. Using just the problem name suffers 

from the problem of underspecificity, and gives an AUC and R2 of 

0.798 and 0.442, respectively. 

Table 4.  Full performance results on ASSISTments data 

 Initial 

knowledge 

Continuous 

knowledge 

AUC R2 

CM3 Known Yes 0.884 0.634 

CM1 Known No 0.804 0.5 

CM2i Assume 

incorrect 

No 0.747 0.239 

PFA   0.745 0.17 

CM2m Based on 

difficulty 

No (except 

first item) 

0.724 0.273 

CM2c Assumed 

correct 

No 0.678 0.266 

 

 

Figure 3.  Pseudocode for Cheating Model 3 (CM3) 

 

 

3. EMPIRICAL CHEATING 

EXPERIMENTS  
In addition to the theoretic cheating experiments, we also examine 

data from recent work [12] on ensembling multiple techniques 

together.  This dataset4 is of interest as it provides the predictions 

of multiple student modeling techniques as a means of estimating 

                                                                 

4 Kindly provided by the paper authors. 
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an upper bound on performance.  For this work we focus on four 

approaches to Bayesian knowledge tracing (BKT), and a PFA 

model.  The first two BKT variants use different search techniques 

to estimate the model parameters; the third approach restricts the 

training data to find more relevant cases; the fourth variant 

extends the BKT model by allowing each student to have a 

different level of initial knowledge: 

1. Brute force (BF): estimates model parameters by 

exhaustively searching the set of initial knowledge, 

learning, guess, and slip parameters. 

2. Expectation maximization (EM): finds the model 

parameters that maximize the data likelihood. 

3. Less data (LD): a variant of knowledge tracing that uses 

fewer training data. 

4. Prior per student (PPS): rather than assuming all 

students have the same prior knowledge for a skill, it 

makes initial knowledge conditional on student 

performance. 

 

Table 5.  Full performance results on KDD Cup data 

 Initial 

knowledge 

Continuous 

knowledge 

AUC R2 

CM3 Known Yes 0.887 0.673 

CM1 Known No 0.762 0.453 

CM2i Assume 

incorrect 

No 0.754 0.353 

CM2m Based on 

difficulty 

No (except 

first item) 

0.713 0.357 

PFA   0.713 0.1 

CM2c Assumed 

correct 

No 0.711 0.356 

 

In the original work on ensembling from which these data derive, 

the authors used machine learning approaches to find the best way 

of combining the models’ predictions to create a more accurate 

model.  Instead of that approach, we will consider how a model 

that managed to always select the best base model would do.  

Specifically, we instantiate our model as follows: 

 If student response is correct 

     then prediction = max(BF, EM, LD, PPS, PFA) 

     else prediction = min(BF, EM, LD, PPS, PFA) 

Table 6 provides some sample predictions for the five algorithms 

and shows how our cheating experiment behaves.  For each 

student response, the model selects whichever prediction is 

closest. Unlike the earlier cheating models, this one does not have 

explicit assumptions about learning or initial knowledge, but 

simply picks whichever prediction is closest.  Thus, for the third 

student response, a (perhaps) unexpected incorrect response, this 

approach simply selects the lowest value. In other words, our 

empirical cheating experiment postulates the existence of a perfect 

ensembling approach that always selects the best of its options.   

We computed our model’s predictions across all 178,000 rows in 

the provided dataset.  The performance of our model and baseline 

techniques PFA and KT-LD (best performing of the KT 

techniques [12]) is shown in Table 7.  The empirical cheating 

technique strongly outperformed the baseline techniques, and 

appears to be somewhat better than the best ensembling technique 

found, which had an A’ (approximately equivalent to AUC) of 

0.769. Therefore, there may be room to develop more refined 

ensembling techniques, and discover additional features in order 

to improve predictive accuracy.  We discuss the utility of this line 

of research in the Future Work section.   

Table 6.  Empirical cheating experiment 

Correct? BF EM LD PPS PFA prediction 

0 0.31 0.31 0.31 0.25 0.34 0.25 

1 0.60 0.60 0.59 0.60 0.60 0.60 

0 0.35 0.37 0.37 0.29 0.38 0.29 

1 0.46 0.47 0.47 0.42 0.47 0.47 

1 0.37 0.37 0.37 0.36 0.39 0.39 

 

Table 7.  Performance in empirical cheating experiments 

 AUC R2 

Empirical cheating 0.831 0.324 

PFA 0.706 0.130 

KT-LD 0.701 0.126 

One suggestive item in Table 6 is that it appears that each of the 

student modeling techniques is making fairly similar predictions 

to its competitors.  This phenomenon was also noted when 

comparing techniques on another data set [17].  To test this idea, 

we looked across all 178,000 data points, and found that the five 

student modeling techniques (BF, EM, LS, PPS, and PFA) 

intercorrelated with each other at 0.92 on average.  The prior per 

student (PPS) model was the most idiosyncratic (and the worst 

performing), with an average correlation of 0.85 with the other 

models.  If PPS is removed, the remaining four techniques 

intercorrelated at 0.96, an astonishingly high value. This high 

number is not an artifact of comparing variants of knowledge 

tracing with each other: PFA’s predictions correlates with KT-

LD’s at 0.95.  It should be noted that each of these techniques has 

typically been the subject of multiple papers investigating its 

strengths and weaknesses, and exploring different variations (e.g. 

item- vs. skill-based PFA [5]). However, it appears the major 

story is that all of the techniques are in large-scale agreement with 

each other.   

4. MAIN RESULTS AND LIMITATIONS  
This paper has estimated likely upper bounds on student modeling 

performance. Our approach was to consider the basic cognitive 

factors influencing student performance, and then construct a 

cheating experiment that perfectly models those factors.  On 

ASSISTments data, we found that the ability to perfectly model 

student learning, but imperfect information about prior 

knowledge, led to a model that performed only slightly better than 

a baseline PFA model.  This result is rather surprising.   

The other striking result is that, in spite of being an active 

research area in the EDM, AIED, and ITS communities, 

competing student modeling approaches make remarkably similar 

predictions.  Given the relative closeness of empirical results to 

our cheating models, and the high intercorrelations, a plausible 

conclusion is that the majority of the work in the field of 
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predicting next item correctness has been done, and there are not 

large gains in performance remaining to be found.     

The cheating models described in this paper are extremely 

powerful, and examine the basic cognitive inputs to student 

performance.  We are unlikely to get perfect detectors of learning 

any time in the near future.  For student modeling approaches that 

rely on determining when a student has learned, trying to infer 

incoming knowledge, and account for item difficulty, these 

cheating models provide a reasonable upper limit on accuracy.  

However, what of approaches those are not based on cognitive 

principles?  For example, student mistakes could be due to lack of 

knowledge, or could be due to a careless error.  Such careless 

errors appear to be non-random, as such mistakes have been found 

to be associated [18]  with gaming the system [19], and there is 

work on contextual detectors of slip and guess [13].  The potential 

improvement from such work is not accounted for by the analyses 

presented in this paper.   

In addition, approaches such as collaborative filtering [20] 

provide an avenue for non-cognitive approaches to improving 

student modeling.  With collaborative filtering approaches, rather 

than modeling student knowledge explicitly, instead the goal is to 

find similar past students and use their performance to make a 

prediction for the current student (e.g., [21]).   

5. FUTURE DIRECTIONS  
It is unclear how much additional gain there is from refining 

student models to achieve ever higher predictive accuracy.  Many 

promising approaches have resulted in little real-world 

improvement in accuracy.  One drawback is the seductive 

combination of statistical hypothesis testing with increasingly-

large datasets.  It is possible to find statistically reliable results 

corresponding to very small effects.  Even with a relatively small 

dataset of 48,000 item responses, a result with a p-value of 0.002 

resulted in an improvement of less than 0.001 in R2 [22].  While 

larger datasets enable us to estimate such miniscule quantities 

quite precisely (thus, the low p-value), it raises the question of 

whether this result useful in any way? 

We should reflect on why so much effort is being devoted to the 

problem of predicting student next response.  Two candidate 

answers are that’s where the data are, and this task was the goal of 

the 2010 KDD Cup.  Certainly, correctness performance on each 

item for each student is a very vast source of data.  Ten years ago 

that argument would have been a strong rationale, but now there 

are large quantities of educational data of all sorts.  As a thought 

experiment, imagine a research result were published in EDM 

2014 with a new student modeling approach that achieved an A’ 

of 0.9 (comparable to an AUC of 0.9, but A’ has simpler 

semantics).  Effectively that would mean that given a correct and 

an incorrect student response, this student model could determine 

which was which 90% of the time. Such an accomplishment 

would be a major step forward in our capabilities.  But, what 

would we actually do with the model? This question is non-

rhetorical, as the authors do not have a good answer.  To be clear, 

there are plenty of useful problems our student models could 

address, such as the probability of a student receiving an “A” in 

the course, or whether he is ready to move and learn subsequent 

material.  

Ironically, as a field we have settled on a common test problem 

that has little impact on tutorial decision making or on informing 

the science of learning.  We got to this point for good reasons.  

Student modeling in ITS is primarily about the estimation of 

student knowledge. In addition to plentiful data at the item 

response level, one natural method of validating [23] an 

instrument is to compute its predictive validity.  That is, how well 

does the measure correlate with things the construct should 

correlate with.  If our model of student knowledge is a good one, 

it should have a high correlation with student performance on 

items.  Thus, from an instrumentation standpoint our scientific 

approach is reasonable.   

However, while showing that a measure has a high correlation is a 

necessary condition in validating a measure, it is never a sufficient 

condition [23].  In other words, constructing a student model with 

a higher predictive accuracy is not sufficient to create a better 

estimate of the student’s knowledge.  As a concrete example, 

consider ensembling methods, which consider the outputs of 

different student modeling approaches, and finds a means to 

combine their predictions with additional features to better predict 

student performance.  Such approaches are in fact successful at 

noticeably raising the bar (e.g. [12]).  However, is there any 

interpretable component relating to student knowledge?  Can we 

use this model to predict whether an intervention will lead to 

more learning?  If not, then what do we do with the model? 

To be clear, this paper does not assert that the field of student 

modeling is completed.  Rather, it makes a more modest claim:  

the research thread of predicting next item correctness is 

approaching limits to accuracy, and has probably progressed 

beyond a useful point.  However, there remain several interesting, 

known problems in student modeling that can inform us about 

student learning, and have a clear correspondence to improving 

tutorial decision making.   

First, consider the robust learning framework of the Pittsburgh 

Science of Learning Center.  The components of robust learning 

are preparation for future learning (of related skills), transfer to 

novel contexts, and retention.  Constructing a detector of the first 

two components of robust learning (e.g., [24]) is a worthwhile 

modeling goal.  Other work has focused on predicting the third 

component, retention (e.g., [25]).   

As a second example, work on the optimal interval to wait before 

presenting an item on the same skill would be useful.  Items 

presented to close together temporally waste time on repetitive 

practice; too far apart risks having the student forget and having to 

relearn [26].  However, such intervals vary by student and skill.  

This problem can be seen as the complement of retention: how 

long can we wait before risking the student will forget the item? 

As a third example, detectors of student behaviors that are out of 

bounds of our simplified model of the learner are a useful avenue 

to explore.  Our model is that students are attempting to solve 

problems, and as a result are learning a little bit each time.  But 

what if the student is bored [27] or frustrated and discouraged 

[28]?  A recent example of such a detector is wheel-spinning [29], 

named after how a student spins his wheels and goes through the 

motions of learning, but learning repeatedly does not occur.  

Detecting and suggesting remediation for, such problems is an 

interesting third avenue to explore.   
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ABSTRACT
We analyze log-data generated by an experiment with Frac-
tions Tutor, an intelligent tutoring system. The experi-
ment compares the educational effectiveness of instruction
with single and multiple graphical representations. We ex-
tract the error-making and hint-seeking behaviors of each
student to characterize their learning strategy. Using an
expectation-maximization approach, we cluster the students
by learning strategy. We find that a) experimental condition
and learning outcome are clearly associated b) experimental
condition and learning strategy are not, and c) almost all of
the association between experimental condition and learn-
ing outcome is found among students implementing just one
of the learning strategies we identify. This class of students
is characterized by relatively high rates of error as well as a
marked reluctance to seek help. They also show the greatest
educational gains from instruction with multiple rather than
single representations. The behaviors that characterize this
group illuminate the mechanism underlying the effectiveness
of multiple representations and suggest strategies for tailor-
ing instruction to individual students. Our methodology can
be implemented in an on-line tutoring system to dynamically
tailor individualized instruction.

1. INTRODUCTION
Multiple graphical representations (MGRs) are ubiquitous
in math and science instruction: they are frequently used
to emphasize complementary conceptual interpretations of
complex learning materials. Fraction instruction is one do-
main in which graphical representations, such as number

lines, pie-charts, and rectangles are used to help students
overcome the difficulty of the material. Although the educa-
tional psychology literature suggests that requiring students
to translate between representations supports the creation
of deep knowledge structures [6], the experimental results
are somewhat ambiguous [1] and the mechanisms underly-
ing these advantages are not well understood [2].

Because student interaction with intelligent tutoring sys-
tems (ITSs) generates very fine-grained behavioral and out-
come data, these systems are well-suited for conducting ex-
periments on the effect of MGRs on learning outcomes [14].
Machine learning methods can be profitably applied to iden-
tify the kinds of students whose learning outcomes are im-
proved by MGRs and the factors mediating their success
[19]. Such insights enable developers of ITSs to design in-
dividualized instructional support that can make learning
with MGRs even more effective. This may involve encourag-
ing students to reflect on the material with self-explanation
prompts [17] or detecting ineffective strategies and imple-
menting interventions on-the-fly. Work in the latter area
ranges from detecting abuse of the ITS hint system and other
“gaming” behaviors [8, 7] to providing spontaneous help to
students lacking the metacognitive skills to know when they
could use a hint [3, 4, 5].

Prior research conducted on elementary-school students work-
ing with a Fractions Tutor suggests that prompting students
to self-explain while working with MGRs improves their ed-
ucational effectiveness [17]. Subsequent studies examining
error-rate, hint-use and time-spent in tutor’s log failed to
identify variables that mediate the effectiveness of MGRs
[16]. The mechanisms by which multiple graphical repre-
sentations improve learning outcomes remain poorly under-
stood.

We conjecture that previous efforts to identify mediating fac-
tors were frustrated by heterogeneity in the problem-solving
habits and behaviors of the student population under inves-
tigation. Using a mixture modeling technique, we cluster
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students by the patterns of interaction with the tutor in the
log-data that characterize their learning strategy. Cluster-
ing based on student characteristics has proved successful
in grouping students into meaningful subpopulations across
both collaborative [15] and individual [9, 13, 20] educational
environments.

Four strategic profiles emerge from our analysis, each with
a natural interpretation. Two of the profiles are character-
ized by a low propensity to seek help from the tutor. In
one of these the students are simply confident: they make
few errors, solicit little help and don’t seem to need any.
In the other the students are reluctant to solicit help even
though they seem like they need it: they make a relatively
large number of mistakes but make little use of the support
mechanisms the tutor provides. We characterize this second
class as “stubborn” without intending any pejorative conno-
tations. A third class is highly interactive: they make many
mistakes, seek assistance readily and frequently exhaust the
hints available in a given problem. Students in the fourth
class occupy a middle ground between the interactive and
the stubborn: they make an average number of mistakes and
will eventually seek help when they are having trouble.

We proceed to explore how the experimental conditions af-
fect post-test outcomes. Confirming previous results [16],
we find that students in the multiple-representation con-
dition had greater learning gains than those in the single-
representation condition. MGRs seem to have a robust and
positive effect on long-term knowledge consolidation. We
then explore the effect of multiple representations in the
sub-populations defined by each strategic profile. We first
establish independence between learning strategy and exper-
imental condition. This suggests that we are detecting pre-
existing strategic profiles, rather than artifacts of the exper-
imental setup. Most interestingly, we discover that learning
gains from MGRs depend heavily on learning strategy. Stu-
dents exhibiting a “stubborn” profile profited substantially
from instruction with multiple rather than single represen-
tations. For the remaining students, experimental condition
and learning gain were independent. We conjecture that
“stubborn” students lack the metacognitive skills to judge
when their learning strategies are failing. These students
are the most sensitive to pedagogical decisions because they
are the least equipped to structure and manage their own
learning.

Section 2 of what follows describes the initial experiment and
elaborates on the differences between the representational
conditions. We describe our feature extraction process and
modeling decisions in Section 3. Section 4 summarizes the
results of the model estimation and statistical analysis of the
effects of multiple representations at the population and sub-
population levels. We suggest profitable future directions in
Section 5.

2. EXPERIMENT
In the Spring of 2010, Rau conducted an experiment wherein
290 4th and 5th grade students worked with a Fractions Tu-
tor for about 5 hours of their mathematics instruction. Stu-
dents were randomly assigned to one of five experimental
conditions, which varied by the frequency with which stu-
dents would be presented with a new fraction representation

(see Figure 1). Students in the Single representation con-
dition worked exclusively with either a number line, a circle
or a rectangle. Students in the Fully Interleaved con-
dition saw a different representation than was used in the
preceding problem. Students in the intermediate conditions
went longer before seeing a different representation.

Figure 1: A partial ordering of experimental condi-
tions by the frequency with which a new represen-
tation is presented.

When interacting with different graphical representations of
fractions, students were able to drag-and-drop slices of a pie
chart, for example, into separate areas. They were also able
to experiment with changing the number of subdivisions in
each graphical representation. Students received a pre-test
on the day before they began working with the tutor and an
immediate post-test on the day after they finished. Students
also took a delayed post-test a week after the first. Previous
investigation found that students in the MGR conditions sig-
nificantly outperformed students in the single representation
condition on the delayed post-test [16, 18].

3. METHOD
We proceed in three stages: (1) we extract features char-
acterizing error and hint-seeking behavior from the data
logs, (2) we transform the longitudinal log data into a cross-
sectional form, with one observation per student, and (3)
we estimate a mixture model to identify sub-populations of
students, using AIC and BIC to select the number of classes.

Once we have clustered our students by their learning strat-
egy, we investigate the interaction between the strategies
and the experimental conditions. We construct a contin-
gency table binning the experimental conditions into the
clusters estimated by the mixture model. We then run a Chi-
squared test for independence between experimental condi-
tion and learning strategy. Chi-squared tests are also run to
investigate dependence between pre-test outcome and strat-
egy, strategy and post-test outcome and the conditional de-
pendence of outcome and experimental condition, given a
strategic profile.

3.1 Extracting Features
The Fractions Tutor captures a detailed log of each stu-
dent’s interactions with the tutor. It stores a time series of
correct and incorrect answers, hint requests, interface selec-
tions and durations between interactions. Previous analysis
[16] extracted the average number of errors made per step,
the average number of hints requested per step, and the
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Figure 2: The x-axis represents the nth interaction with the tutor across all problems. The y-axis is the total
number of hints requested at the nth step.

average time spent per step from the log data. These vari-
ables were used to characterize gross behavioral strategies
and dispositions. Similarly, we include the average num-
ber of hints requested (HintsRequested) and number of
errors (NumErrors) made per problem by each student.
We also extract the average number of bottom-out hints
(NumBOH) per student per problem – this is the average
number of times a student exhausts the available hints in a
given problem. We also note that it is not always the aver-
age of these features that best characterizes a student. For
example, examination of the distribution of hints requested
per step across experimental condition, shows a telling pic-
ture.

Note that students who received only one representation
start out requesting the fewest hints, but students in the
moderate condition eventually need fewer (see Figure 2).
Also, students in the interleaved condition tend to request
many hints in the early steps of a problem, potentially re-
flecting the cognitive load associated with translating be-
tween representations [1]. Such considerations suggested
that exploiting the timing of student interactions within a
problem might expose structural features obscured by step-
wise averages (as used in [16]). We fit geometric distri-
butions to the number of steps taken before the first hint
request (FirstHintGeometric) and to the number of er-
rors before the first hint (StubbornGeometric). The esti-
mated parameter is used to characterize the student’s hint-
seeking propensity in general and hint-seeking propensity
when faced with adversity. For example, students in the
first quintile of StubbornGeometric seek help soon af-
ter making a mistake, whereas students in the fifth quintile
don’t change their hint-seeking behavior even after making
a large number of errors. Students in the first quintile of
FirstHintGeometric are likely to request hints early in a
problem, whereas students in the fifth quintile are unlikely

to request hints at any point.

3.2 Expectation-Maximization Clustering
Expectation-Maximization (EM) clustering is a modeling
technique that determines subtypes based on multinomial
distributions. We use the model to categorize students into
subpopulations using discretized versions of the features de-
scribed above. Table 1 shows summary statistics and cut-off
points for the extracted features. The model maps a set of
observed categorical variables onto a set of inferred classes.

We note that the categorical nature of the model has the
potential to add some noise, since we must select numeric
cutoffs to transform our variables into nominals. However,
categorical models can offer greater interpretability by al-
lowing us to organize our data into a small set of variables,
which forms the basis for categorizing students into a small
set of meaningful, homogenous groups. Furthermore, it is
not unreasonable to suspect that our variables are in some
sense “truly” categorical [10, pp8–9]. EM clustering requires
a relatively small set of variables to train the model. As the
number of training variables increases, the number of model
parameters blows up and the model becomes overspecified.

Unlike some common clustering algorithms (e.g., k-means),
EM produces “fuzzy” clusters (i.e., probability distributions
over features for each class). We use these probability dis-
tributions in our qualitative discussion about the subpopu-
lations (Section 4.1), however we ultimately need to identify
each student’s most likely class. For each student s and class
c we calculate

arg max
c

P (S = s | C = c) (1)

where the probabilities are determined by the EM algorithm.

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 14



www.manaraa.com

Table 1: Summary Statistics for Variables Used in Clustering

mean sd median min max 20% 40% 60% 80% 100%

HintsRequested 0.78 1.27 0.34 0 11.22 0.06 0.19 0.5 1.31 11.22

NumErrors 2.21 1.27 1.92 0.34 8.39 1.15 1.7 2.18 3.19 8.39

FirstHintGeometric 0.35 0.27 0.27 0.04 1 0.13 0.2 0.33 0.57 1

Stubborn Geometric 0.36 0.21 0.31 0.07 1 0.19 0.27 0.38 0.47 1

NumBOH 0.04 0.08 0 0 0.62 0 0 0.01 0.05 0.63

We still need to fix N , the number of classes. We use two
complexity-penalized log-likelihood scores to select an ap-
propriate N : Akaike information criterion (AIC) and Bayesian
information criterion (BIC). Plotting these statistics as we
increment the number of classes, we look for a “knee” where
both statistics either bottom-out or level off to identify the
optimal value of N . To run analysis, we used poLCA, a freely
available R package.1

4. RESULTS
In the sections that follow we analyze the results of our clus-
tering algorithm. We describe the strategic profiles that
were generated and characterize the students fitting each
profile. We then consider the relationships between our vari-
ables of interest: (a) adjusted delayed post-test score, (b) ex-
perimental condition, and (c) learning strategy. Specifically,
we run a series of Chi-squared tests for independence to de-
termine how each variable relates with the others, comment-
ing on the importance of each comparison. Finally, we ex-
plore the stability of these classes, which bears on whether
future systems could detect students’ strategic profiles in
real time.

4.1 Exploring the Learning Strategies
Figure 3 shows the parameter selection process described
in Section 3.2. Note that we chose to model four classes
because BIC bottoms out and AIC levels off at that point.

After selecting the appropriate N parameter, we extract
membership probabilities for the individual students. Given
a strategic profile, we can estimate the probability distribu-
tion over each feature, and use Equation 1 to identify the
most likely profile for each student.

The feature distributions over each profile are represented
graphically in Figure 4. Each feature is listed along the
horizontal x-axis, the value each variable takes is along the
front-to-back y-axis, and the probability that the feature
takes that value is given along the vertical z-axis. For ex-
ample, consider the HintsRequested feature (average hints
requested per problem) in the “interactive” class. In that
class, with high probability, students requested many hints
(i.e., the highest categorical value for hints) per problem on
average. As another example, students in the “moderate”
class are more likely to make a moderate number of errors,

1http://userwww.service.emory.edu/~dlinzer/poLCA/

Figure 3: AIC and BIC over increasing number of
clusters. BIC bottoms out and AIC levels off at four
clusters, so we conclude that four clusters best fits
the data.

though other error levels also occur with nontrivial proba-
bilities. Lower values of FirstHintGeometric and Stub-
bornGeometric indicate a steep geometric slope, corre-
sponding to a higher hint-seeking propensity and stubborn-
ness, respectively.

How do we interpret cluster membership? Students in Class
1 are “Moderate”, they ask for a moderate number of hints,
make a moderate number of errors, and are moderately re-
sponsive to the interface. Students in Class 2 are “Inter-
active”, they make a lot of errors, but respond by request-
ing many hints. These students are proactive in asking for
help and are not shy about using the resources the Frac-
tions Tutor makes available. Students in Class 3 are “Confi-
dent”, they don’t ask for hints, but they don’t seem to need
them (since they make few errors). Finally, we call stu-
dents in Class 4 “Stubborn” because they are fairly mixed in
error-profile but they don’t respond to mistakes with hint-
requests. These students are not using all the resources that
the Fractions Tutor makes available.

4.2 Condition and Outcome
We use normalized learning gain at the delayed post-test as
our measure of student improvement.

Learning Gain = DelayedPostTest−PreTest
1−PreTest
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Figure 4: Visualization of feature distributions for each learning profile. The left-to-right x-axis identifies
each feature, the front-to-back y-axis identifies which value that feature takes, and the top-to-bottom z-axis
describes the probability that the feature takes the value. Thus, given a feature and a class, the z-axis also
describes the probability distribution over that feature in that class.

We then construct terciles of the Adjusted Delayed Post-
Test Score and run a Chi-squared test for independence of
outcome from experimental condition. Confirming previous
results, we reject independence at a p-value of .024 (see Table
2). As expected, students in the multiple representation
conditions were more likely to be in the second or third
tercile of adjusted delayed post-test score, whereas students
in the single representation condition were more likely to be
in the first.

4.3 Learning Strategy and Test Scores
We would expect that a student’s learning strategy would
predict (and perhaps cause) their ultimate educational out-
come. To test this intuition, we calculate a Chi-squared
statistic for independence of learning strategy from normal-
ized delayed post-test gain. We reject independence at a
p-value of .0075 (see Table 3). The behaviors encoded by
strategic profile seem highly relevant to knowledge consoli-
dation in the long run. Students in the moderate class are
found mostly in the second and third tercile. These students
are implementing a subtle but effective strategy. Their mod-
eration in hint-seeking indicates a level of self-reflectiveness

33% 66% 99%

blocked 14 29 20

increased 22 20 20

interleaved 13 21 18

moderate 18 13 22

single 30 13 17

X 2 = 17.65, df = 8, p-value = 0.024

Table 2: Experimental Condition by Tercile of Ad-
justed Delayed Post-Test Score.
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that we would expect from students with highly developed
metacognitive skills. Students in the interactive class are
characterized by a high number of errors, so we are not sur-
prised to find them represented mostly in the first and sec-
ond terciles. These students are the most likely to exhaust
all the hints available in a given problem. If one were look-
ing for students engaging in “gaming” behavior this would
be the class to search, perhaps using techniques from [7]. As
one would expect, the confident students are likely to end
up in the third tercile. The stubborn students are clustered
at the extremes: they are more likely to end up in the first
or third tercile than the second.

Learning Gain Pre-Test

33% 66% 99% 33% 66% 99%

moderate 20 35 29 30 32 22

interactive 33 26 14 37 27 9

confident 13 15 22 5 14 31

stubborn 31 20 32 26 22 35

Learning Gain: X 2 = 17.52, df = 6, p-value = 0.0075
Pre-Test: X 2 = 42.3764, df = 6, p-value = <0.001

Table 3: Learning Strategy by Tercile of Normalized
Delayed Post-Test and Pre-Test Score

Although we implicitly account for the pre-test scores in our
learning gain metric, we also investigate the relationship be-
tween learning strategy and pre-test scores (Table 3). As
expected, we reject independence between strategic profile
and pre-test score, suggesting that these profiles are gen-
uinely meaningful descriptions of student behavior.

Although pre-test score and strategic profile are dependent,
the average pre-test score for the “stubborn” students does
not differ significantly from the rest of the population.2 Pair-
wise t-tests between the four profiles show significant differ-
ences in mean pre-test score for all pairs except stubborn
and moderate. This analysis suggests that the dependence
we detect between experimental condition and outcome for
the “stubborn” students does not hinge essentially on pre-
test score. If pre-test is an accurate proxy for preparedness,
the stubborn students do not occupy a preparedness “sweet-
spot” that makes multiple representations uniquely effective.
Rather, it seems to be their unique strategic profile that ac-
counts for the effectiveness of MGRs.

4.4 Condition and Learning Strategy
We may also worry that experimental condition is inducing
learning strategy. If this were the case, we would suspect
that we were picking up on artifacts of the experimental de-
sign rather than pre-existing student profiles. However, us-
ing the Chi-squared test, condition and cluster membership
appear independent (see Table 4).3 To anticipate Simpson’s
paradox-type worries, we collapse all four multiple represen-
tation conditions (blocked, moderate, increased, interleaved)
into a single “multiple representation” condition, but still

2Student’s T-test: t = 0.9978, df = 139.602, p-value =
0.3201
3We fail to reject independence at a p-value of .38.

find independence.4 These results suggest that our method
is detecting genuine student profiles, independent of experi-
mental condition.

mod. inter. conf. stub.

blocked 13 15 10 25

increased 21 16 10 15

interleaved 17 18 7 10

moderate 18 10 12 13

single 15 14 11 20

X 2 = 12.85, df = 12, p-value = 0.38

Table 4: Experimental Condition by Learning Strat-
egy

4.5 Condition, Outcome and Strategy
Finally, we explore the relationship between learning out-
come and experimental condition for each of the strategic
profiles we have identified. Interestingly, we find that exper-
imental condition has a substantial effect on learning out-
come among the “stubborn” students, but virtually no effect
on learning among the “moderate”, “interactive”, and “con-
fident” (see Table 5). Most students perform in the second
and third tercile when given multiple graphical representa-
tions, but are overwhelmingly in the first tercile when given
a single representation.

Students in the other three classes are not significantly af-
fected by their representation condition. The learning strate-
gies that these students implement seem to make them re-
silient to representational choice, at least in this experimen-
tal regime. Recall that students exhibiting the “stubborn”
profile rarely requested hints, even when they encountered
difficulty. We speculate that they lack the metacognitive
skills to judge when their learning strategies are failing, and
thus are not seeking help at appropriate times [4]. They
are the most sensitive to pedagogical decisions because they
are the least equipped to structure and manage their own
learning.

An ITS ought to ensure that these students are targeted
with multiple representations, and perhaps other forms of
metacognitive support. While not all “stubborn” students
improve when given MGRs, the vast majority of them do.
An ITS might help scaffold effective learning behaviors by
spontaneously offering hints to these students when they
appear to need them the most. A teacher informed that
a student exhibits this learning profile may try to encour-
age the student to ask for help and target their metacog-
nitive skills more generally. Moreover, studying this sub-
population seems to be a promising avenue for illuminating
the mechanism by which MGRs improve learning outcomes.
Future experiments could test the effect of offering sponta-
neous hint-support to students that fit the “stubborn” pro-
file.

4X 2 = 1.1517, df = 3, p-value = 0.7646
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moderate 33% 66% 99%

blocked 2 8 3

increased 4 9 8

interleaved 4 9 4

moderate 4 5 9

single 6 4 5

interactive 33% 66% 99%

blocked 7 6 2

increased 9 5 2

interleaved 5 8 5

moderate 7 2 1

single 5 5 4

X 2 = 8.08, df = 8, p-value = 0.43 X 2 = 6.95, df = 8, p-value = 0.54

confident 33% 66% 99%

blocked 0 5 5

increased 3 3 4

interleaved 2 2 3

moderate 3 4 5

single 5 1 5

stubborn 33% 66% 99%

blocked 5 10 10

increased 6 3 6

interleaved 2 2 6

moderate 4 2 7

single 14 3 3

X 2 = 7.41, df = 8, p-value = 0.49 X 2 = 17.4837, df = 8, p-value = 0.025

Table 5: Condition and Tercile of Adjusted Delayed Post-Test Score, by Learning Strategy

We note that there are competing interpretations of our re-
sults that also suggest interesting future experiments. Stud-
ies have found that well-designed feedback from errors may
be very effective for improving learning outcomes [12]. It
may be that “stubborn” students, by not shying away from
mistakes, are taking advantage of a more effective support
system than students who avoid mistakes by soliciting hints.
Since instruction with multiple representations is generally
more difficult, stubborn students in a multiple representa-
tion condition would get more of this kind of feedback on
average. This interpretation would predict that students
in the “interactive” profile would benefit if some hints were
withheld [11]. However, this hypothesis could only be tested
by subsequent experiments.

4.6 Profile Stability
If an intelligent tutoring system could implement our classi-
fication methodology on-the-fly, it could tailor its pedagog-
ical interventions to the needs of the individual student. To
substantiate the promise of the methodology we investigate
how efficiently the algorithm stabilizes to the final classifica-
tion. To measure this, we first cluster on the entire corpus
and assign each student to their most likely profile. We
then artificially subset the data by restricting the number
of problems seen by the clustering algorithm, compute the
proportion of students who are in their “final” profile, and
then iteratively increase the size of the subset. This sim-
ulates how well our algorithm identifies student profiles as
they make their way through the material.

Figure 5 shows the percentage of total data used to esti-
mate the model plotted against the proportion of students
assigned to their final strategic profile. At each iteration, we
look at an additional 10 problems from each student and re-
estimate the cluster assignments. The regression estimates
that 63% of the data is sufficient to classify three quarters of

Figure 5: We measure the number of students who
were classified into their ultimate strategic profile
as the amount of data available to EM is increased.
We see that at about 60% of the data we can classify
about 75% of the students into their ultimate profile.
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the students into their ultimate cluster. Thus, after seeing
about 60 problems – about two days of classroom instruc-
tion – a dynamic intelligent tutoring system might intervene
on students who fit the “stubborn” profile by ensuring that
they are presented with multiple graphical representations,
offering them spontaneous hints or targeting them with some
other form of metacognitive support.

5. CONCLUSION & FUTURE WORK
We estimated an expectation maximization clustering model
to classify students into four strategic profiles based on their
error-rates and hint-seeking behaviors. We detected an ef-
fect of experimental condition on post-test outcome only in
the class of students characterized by high-error rate and
low hint-seeking propensity. That is, students who did not
seem to take full advantage of the resources that the Frac-
tions Tutor offered were the ones most strongly affected by
experimental condition. These students may not have the
metacognitive skills required to know when to seek hints.

Our methods could be used by ITS designers to detect stu-
dents with this profile in real time. Tutoring systems could
then intervene to target these students with MGRs, scaffold
their hint-seeking behaviors or target them with other forms
of metacognitive support. Future research into the mediat-
ing mechanisms of multiple representations could leverage
our results to identify the relevant student sub-populations
to investigate. Our post-hoc analysis is not designed to iden-
tify the cognitive processes underlying the student’s prob-
lem solving behavior, so interviews or a cognitive task anal-
ysis with students who fit the “stubborn” profile could re-
veal more details about their experience than we can detect
from the log data. Additional investigation into different
features may help further characterize student behavior and
could help us more accurately group students into relevant
subpopulations. Although our analysis seems to have re-
vealed interesting differences in student learning strategies,
more informative features constructed from log data may do
better. Constructing more informative features, for exam-
ple, might allow us to separate the “stubborn” students into
those who did and did not benefit from multiple graphical
representations.
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ABSTRACT 
Dialogue acts model the intent underlying dialogue moves. In 
natural language tutorial dialogue, student dialogue moves hold 
important information about knowledge and goals, and are 
therefore an integral part of providing adaptive tutoring. 
Automatically classifying these dialogue acts is a challenging 
task, traditionally addressed with supervised classification 
techniques requiring substantial manual time and effort. There is 
growing interest in unsupervised dialogue act classification to 
address this limitation. This paper presents a novel unsupervised 
framework, query-likelihood clustering, for classifying student 
dialogue acts. This framework combines automated natural 
language processing with clustering and a novel adaptation of an 
information retrieval technique. Evaluation against manually 
labeled dialogue acts on a tutorial dialogue corpus in the domain 
of introductory computer science demonstrates that the proposed 
technique outperforms existing approaches. The results indicate 
that this technique holds promise for automatically understanding 
corpora of tutorial dialogue and for building adaptive dialogue 
systems. 

Keywords 

Tutorial dialogue, dialogue act modeling, unsupervised machine 
learning 

1. INTRODUCTION 
Tutorial dialogue systems are highly effective at supporting 
student learning [1, 8, 9, 11, 13, 14, 20]. However, these systems 
are time-consuming to build because of the substantial 
engineering effort required within their various components. For 
example, understanding and responding to the rich variety of 
student natural language input has been the focus of great 
attention, addressed by a variety of techniques including latent 
semantic analysis [15], enriching natural language input with 
spoken language capabilities [21], linear regression for assessing 
correlation of dialogue acts with learning [8] and integration of 
multiple dialogue policies [12]. However, a highly promising 
approach is to automatically mine models of user utterances from 
corpora of dialogue using machine learning techniques [16, 24]. 

A task of particular importance in modeling student utterances is 
determining the dialogue act of each utterance [25, 28]. The 
premise of dialogue act modeling is that it captures the 
communicative goal or action underlying each utterance, an idea 
that emerged within linguistic theory and has been leveraged with 
great success by dialogue systems researchers [2][27]. Dialogue 
act modeling, in practice, is based on creating taxonomies to use 
in dialogue act classification. Within tutorial dialogue systems, 

first the dialogue act for a student utterance is inferred, and this 
label serves as the basis for selecting the next tutorial strategy.  

There are two approaches for learning dialogue act models from a 
corpus: supervised and unsupervised. Supervised models require a 
manually labeled corpus on which to train, while unsupervised 
models employ machine learning techniques that rely solely on 
the structure of the data and not on manual labels. A rich literature 
on supervised modeling of dialogue acts has shown success in this 
task by leveraging a variety of lexical, prosodic, and structural 
features [29, 30]. However, supervised models face two 
significant limitations. First, manual annotation is a time-
consuming and expensive process, a problem that is compounded 
by the fact that many annotation schemes are domain-specific and 
must be re-engineered for new corpora. Second, although there 
are standard methods to assess agreement of different human 
annotators when applying a tagging scheme, developing the 
tagging scheme in the first place is often an ill-defined process. In 
contrast, unsupervised approaches do not rely on manual tags, and 
construct a partitioning of the corpus that suggests a fully data-
driven taxonomy. Unsupervised approaches have only just begun 
to be explored for dialogue act classification, but early results 
from the computational linguistics literature suggest that they hold 
promise [10, 24], and a very recent finding in the educational data 
mining literature has begun to explore these techniques for 
learning-centered speech [25]. 

This paper presents a novel approach toward unsupervised 
dialogue act classification: query-likelihood clustering. This 
approach adapts an information retrieval (IR) technique based on 
query likelihood to first identify utterances that are similar to a 
target utterance. These results are then clustered to identify 
dialogue acts within a corpus in a fully unsupervised fashion. We 
evaluate the proposed technique on a corpus of task-oriented 
tutorial dialogue collected through a textual, computer-mediated 
dialogue study. How best to evaluate unsupervised techniques is 
an open research question since there is no “perfect” model that 
the results can be compared to. We therefore examine two 
complementary evaluation criteria that have been used in prior 
work: quantitative evaluation with respect to manual labels [10, 
25], and detailed qualitative inspection of the clustering to 
determine whether it learned “natural” groupings of utterances 
[24]. The results demonstrate that query-likelihood clustering 
performs significantly better than majority baseline chance 
compared to manual labels. In addition, the proposed algorithm 
outperforms a recently reported unsupervised approach for speech 
act classification within a learning-centered corpus. Finally, 
qualitative analysis suggests that the clustering does group 
together many categories of utterances in an intuitive way, even 
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highlighting in a fully data-driven fashion some ways in which the 
original hand-authored dialogue act taxonomy could be revised 
and improved in the future.   

2. RELATED WORK 
Dialogue act classification aims to model the intent underlying 
each utterance. Supervised dialogue act modeling has been well 
studied in the computational linguistics literature, applying 
techniques such as Hidden Markov Models [30] and Maximum 
Entropy classifiers [4][29]. For tutorial dialogue, promising 
approaches have included an extension of latent semantic analysis 
[28],   a syntactic parser model [22], and vector-based classifiers 
[6]. 
Compared to the rich body of work on supervised dialogue act 
modeling, a much smaller body of work has focused on 
unsupervised approaches. A recent non-parametric Bayesian 
approach used Dirichlet Process Mixture Models [10], which 
attempt to identify the number of clusters non-parametrically.  
Another recent work on unsupervised classification of dialogue 
acts modeled a corpus of Twitter conversations using Hidden 
Markov Models combined with a topic model built using Latent 
Dirichlet Allocation [24].  This corpus was composed of small 
dialogues about many general subjects discussed on Twitter. In 
order for the dialogue act model not to be distracted by different 
topics, they separated content words from dialogue act cues with 
the help of the topic model. In our tutoring corpus, however, the 
content words reveal important information about dialogue acts. 
For example, the word “help” is generally found in utterances that 
are requesting a hint. Therefore, our model retains content words. 

Rus et al. utilize clustering to classify dialogue acts within an 
educational corpus [25], forming vectors of utterances using the 
leading tokens (words and punctuation marks), and using string 
comparison as the similarity metric. As they mention, this string 
comparison may not be sufficient to generalize word types used 
within the same context. For example, ‘hello’ and ‘hi’ are 
different according to string comparison; however, they are part of 
the same dialogue act, in that they both serve as a greeting. Our 
clustering approach uses query likelihood to group similar words 
that can be used for the same intention, and we use a blended part-
of-speech tag and word feature set which overcomes the challenge 
introduced by string comparisons. The results suggest that these 
extensions improve upon existing clustering techniques. 

3. TUTORING CORPUS  
The corpus consists of dialogues collected between pairs of tutors 
and students collaborating on the task of solving a programming 
problem as part of the JavaTutor project during spring 2007. The 
tutor and student interacted remotely with textual dialogue 
through computer interfaces. There were forty-three dialogues in 
total, with 1,525 student utterances (averaging 7.54 words per 
utterance) and 3,332 tutor utterances (averaging 9.04 words per 
utterance). This paper focuses on classifying the dialogue acts of 
student utterances only. Within an automated tutoring system, 
tutor utterances are system-generated and their dialogue acts are 
therefore known. The corpus was manually segmented and 
annotated with dialogue acts, one dialogue act per utterance, 
during prior research that focused on supervised dialogue act 
annotation and dialogue structure modeling [7]. While the manual 
dialogue act labels are not used in model training, they are used to 
evaluate the unsupervised clustering. Table 1 shows manually 
labeled tags and their frequencies. The Kappa for agreement on 
these manual tags was 0.76. An excerpt from the corpus is 
presented in Table 2. 

Table 1: Dialogue act tags with examples and student 
frequencies from corpus 

Tag Act Description Freq 

Q Question 
A general question which is 

not specific to the task 276 

EQ Evaluation 
Question 

A question about the task 416 

S Statement A statement of fact 211 

G Grounding Acknowledgement of 
previous utterance 192 

EX Extra-
Domain 

Any utterance that is not 
related to the task 133 

PF Positive 
Feedback 

Positive assessment of 
knowledge or task 116 

NF Negative 
Feedback 

Negative assessment of 
knowledge or task 92 

LF Lukewarm 
Feedback 

Assessment having both 
positive and negative 

assessments 
32 

GRE Greeting Greeting words 57 
 

Table 2: Excerpt from the corpus  
(typographical errors originated in corpus) 

 Utterance Tag 
Student: so obviously here im going to read 

into the array list and pull what we 
have in the list so i can do my 
calculations                                                                                        

S 

Tutor: something like that, yes                                                                                                                                                                                    LF 
Tutor: by the way, an array list (or 

ArrayList) is something different in 
Java.  this is just an array.                                                                                                            

S 

Student: ok G 
Student: im sorry i just refer to it as a list 

because thats what it reminds me it 
does                                                                                                                          

S 

Student: stores values inside a 
listbox(invisible)                                                                                                                                                                   

S 
 

Tutor: that's fine                                                                                                                                                                                               EX 
Tutor: ok, so what are we doing here?                                                                                                                                                                              EQ 

Student: im not sure how to read into the 
array                                                                                                                                                                

NF 

 

4. QUERY-LIKELIHOOD CLUSTERING 
This section describes our novel approach of adapting information 
retrieval (IR) techniques combined with clustering to the task of 
unsupervised dialogue act classification. IR is the process of 
searching available resources to retrieve results that are similar to 
the query [3]. IR techniques are mostly used in search engines to 
retrieve results that are similar to given queries. In the proposed 
approach, the target utterance that is to be classified is used as a 
query and its similar utterances are gathered using query 
likelihood. Then, the query likelihood results are provided to the 
clustering technique.  
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4.1 Natural Language Preprocessing 
At its core, query-likelihood information retrieval operates at the 
token, or word, level. In order to prepare the corpus for this 
application, several preliminary experiments were conducted to 
determine the appropriate type of preprocessing. It was observed 
that preprocessing is a crucial step in order to increase the 
discriminating cues extracted from the corpus.  

Part-of-speech (POS) tagging is a technique for labeling each 
word according to its grammatical part of speech such as noun, 
verb, and adjective. This procedure allows us to generalize words 
to their functionalities in sentences. For example, the pronouns 
‘you’ and ‘it’ are grouped in the same POS tag: PRP standing for 
personal pronoun. The generalization provided by this part-of-
speech backoff can be useful in dialogue act classification [5, 6, 
28].  We experimented on querying with both actual words and 
with full part-of-speech backoff. The best results were produced 
by a combination of words and POS tags. This hybrid approach 
replaces function words such as determiners (‘the’, ‘a’), 
conjunctions (‘and’, ‘but’), and prepositions (‘in’, ‘after’) with 
their POS tags. Content words were retained but stemmed (e.g., 
‘parameter’ becomes ‘paramet’, ‘completely’ becomes ‘complet’) 
to reduce the number of distinct words in the vocabulary of the 
corpus under consideration. This choice was motivated by the 
observation that in this task-oriented domain, important 
information about the dialogue act resides in content words. For 
instance, the word ‘confused’ reveals important information about 
the state in which the student is and it is likely that the student 
might be requesting a hint.  

It was noted that in this domain of computer science tutoring, the 
natural language contains special characters that indicate a 
semantically important entity related to the domain, such as short 
bits of programming code. Although they are important with 
regard to the tutoring task, they require additional preprocessing 
in order to be handled appropriately by automated natural 
language processing techniques. Therefore, code segments in the 
corpus were replaced with meaningful tags representing them. For 
instance, segments about array indexing, which may originally 
have appeared as ‘x[i]’ and been mishandled, were replaced with 
the text ‘ARRAY_INDEXING’. If-statements, loops and 
arithmetic operations were all replaced in the corpus using similar 
conventions. All procedures in natural language processing is 
automated using parser therefore, the human-intervention was in 
deciding on the procedure to use (retain content words, replace 
function words) not in its implementation. 

4.2 Query-Likelihood Representation 
The query likelihood model treats each utterance as a document. 
The target utterance whose dialogue act is to be predicted 
becomes the query, and we apply information retrieval by 
querying the target utterance in the corpus. This query produces a 
ranked list of documents, from most likely to least likely, and this 
list is used to identify those utterances that are most similar to the 
target. The query likelihood implementation from the Lemur 
Project was used in this work [31]. 

The ordering of words contains important information about the 
structure of utterances. For example, the word pair ‘I am’ is 
mostly found in statements whereas if we regard them separately, 
‘I’ can belong to a question such as ‘What should I do next?’ or 
‘am’ can be part of a evaluating question ‘Am I doing this 
correct?’ (After preprocessing ‘I am’ becomes ‘PRP (personal 
pronoun) VBP (present tense singular verb, non third person)’ 
however, the same issue applies to the POS tags as well.) Because 
of the importance of word ordering on inferring the structure of 

utterances, we utilized a modified query approach that considers 
bigrams (pairs of adjacent words occurring in each utterance) 
rather than unigrams (individual words).  

Table 3 displays several original utterances, their modified forms 
after POS backoff and stemming, and the query combinations that 
were submitted to the algorithm. The POS tag VBZ represents 
third person present tense singular verbs, DT represents 
determiners, TO is the same as the word ‘to’, VBD stands for past 
tense verbs, WDT and WRB are interrogatives, and MD 
represents modal verbs. Figure 1 shows an example query with a 
question and its similar utterances retrieved. 

Table 3: Original utterances, their processed versions  
and query combinations 

Utterance 
POS+ 

stemming 
Query 

combination 

I'm reading it 
right now 

VB read PRP 
right now 

(VB read) (read 
PRP) (PRP right) 
(right now) 

what is the basic 
structure to begin 
an array? 

WDT VBZ DT 
basic structur TO 
begin DT array? 

(WDT VBZ) 
(VBZ DT) (DT 
basic) (basic 
structur) (structur 
TO) (TO begin) 
(begin DT) (DT 
array) (array ?) 

that was correct WDT VBD 
correct 

(WDT VBD) 
(VBD  correct) 

how do you think 
you should start 
it? 

WRB do PRP 
think PRP MD 
start PRP? 

(WRB do) (do 
PRP) (PRP 
think)  (think 
PRP) (PRP MD) 
(PRP start) (start 
PRP) (PRP ?) 

 
 

Query: 
How can I solve this problem? 

Query Likelihood results: 
How can I do addition? 

What would be the results? 
Which should go first? 

Figure 1: Sample query and its results 

4.3 Clustering 
The similarity results from querying were used as the distance 
metric in a k-means clustering algorithm. The implementation of 
this idea relies on creating binary vectors for similar utterances 
and then grouping those vectors. Each utterance that is present in 
the similarity list is represented as a 1, while the others are 
represented with a value of 0. In this way, each target utterance in 
the corpus is represented by a vector indicating the utterances that 
are similar to it. The entire unsupervised dialogue act 
classification algorithm is summarized in Figure 2.  
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Let D be a corpus of utterances 𝐷 = {𝑢!,𝑢!…   𝑢!}  
Then the goal is: 

∀𝑢!   ∈ 𝐷, identify li = dialogue act label of ui 

Procedure: 
For each 𝑢! 

 1.   Set target utterance 𝑞!= 𝑢! 
 2. Let the query likelihood result of  
                       utterance 𝑢! be 𝑅 = (𝑢! ,𝑢!!!…   𝑢!)                                
                       such that R is the result of  
                       queryLikelihood(𝑞!) 
 3.  Create vector of query results       
                       indicator variables  
                       𝑉! = (𝑣!, 𝑣!…   𝑣! … 𝑣!) such that 

  𝑣! = 1 if 𝑢! ∈   𝑅 

  else 𝑣! = 0 

Let the total vector be 𝑉! = (𝑉!,,𝑉!,… ,𝑉!) 

Return clusters 𝐶 = {𝑐!, 𝑐!…   𝑐!} 
               such that C is the result of  
               k-means(𝑉!) 

Figure 2: Query-likelihood clustering algorithm.  

5. EXPERIMENTS 
The goal of the experiments is to apply the novel unsupervised 
technique of query-likelihood clustering to discover student 
dialogue act clusters within the corpus of tutorial dialogue. We 
utilize a two-pronged evaluation consisting of quantitative 
comparison in terms of accuracy on manual labels, as well as 
qualitative examination of the resulting clusters. This section first 
presents the model-learning process, including parameter tuning 
on a development set, and then presents quantitative and 
qualitative evaluations on the remainder of the corpus. We also 
compare performance of the proposed approach to a state-of-the-
art unsupervised technique for speech act labeling in a learning-
centered corpus. 

5.1 Parameter Tuning 
In order to train the unsupervised model, three parameters had to 
be set. Two of these parameters are used within the query phase 
and the last one applies to the clustering phase. The two 
parameters to be determined in the query phase are b, the blind 
relevance feedback threshold, and n, the number of top query 
likelihood results to be used while creating vectors for clustering. 
The parameter related to the clustering phase is the distance 
metric. In order to tune these parameters, a 25% validation set, 
constituting 10 randomly selected sessions, was drawn from the 
corpus. The parameter tuning was conducted in a sequential 
manner that allows the latter steps to use already fixed parameters.  
 

Token weighting. Prior to tuning the parameters, an additional 
optional set of token weights was tuned for use during querying. 
This optional parameter was desirable based on observations that 
some POS tags should be weighted more than others for 
identifying similar results to a target utterance. For example, 
interrogatives (question words such as what, where, when, how, 
and why) and question marks are highly discriminating for 
question dialogue moves. Weights were learned for this subset of 
tokens using an incremental approach as shown in Table 4. First, 
the mean average precision values of query likelihood results 
without any weights were given. Then, weights for WDT (POS 

tag for what and which) were utilized within the experiments. 
Having determined the proper weight for WDT, different weights 
for WRB (POS tag for why, where, how, when) were tried. 
Finally, the weight for question marks was set.  

Table 4: Mean average precision (MAP) results for 
weighting interrogative parts of speech and punctuation 

Weights MAP 

no weight 0.1239 

WDT = 10 0.2359 

WDT = 100 0.2326 

WRB = 10 0.2358 

WRB = 100 0.2339 

‘?’ = 10 0.2457 

‘?’ = 100 0.2567 
 

Relevance feedback threshold (b). In a typical query likelihood 
scenario, relevance feedback on the retrieved results is provided 
by human users and used to improve the model performance. 
However, in a fully unsupervised scenario, human relevance 
feedback is not available. Our unsupervised approach utilizes 
pseudo-relevance feedback (blind relevance feedback), which 
assumes that the top b documents retrieved are relevant to the 
query [26]. Taking the top b documents into account, the 
algorithm automatically finds words that are important for those 
documents and therefore may be useful for the query. In order to 
find the important words, relevance models for each retrieved 
document in the ranked list are computed, where a relevance 
model is the probability of features used in the query given the 
document. In our experiments, the features are composed of 
bigrams, which are pairs of adjacent words within an utterance. 
Therefore, the relevance model of a document is the probability of 
its bigrams given the whole utterance. Then, relevance models of 
the top b documents are sorted and the top terms are determined, 
which are used to expand the original query. Having chosen those 
words, the algorithm expands the initial query by appending the 
newly found terms and running the query again. This procedure of 
enriching the query with top relevant results is done in order to 
avoid sparse ranked lists. Like the other parameters described in 
this section, b was tuned on a development set. Table 5 shows the 
resulting best b-value of 30.  
 

Table 5: b-value MAP results  
b 5 10 15 20 25 30 35 

MAP 0.343 0.34 0.342 0.346 0.351 0.352 0.351 
 
Top query threshold (n). Given the b-value, we moved on to 
tuning n-values, which represent the number of top query 
likelihood results to be used in forming the vectors for subsequent 
clustering. A higher n value will treat a larger number of 
utterances retrieved during querying as “similar” to the target. A 
minimum of n=5 was chosen to sufficiently populate the vectors 
since the non-zero entries determine clusters, and we explored 
whether larger n values performed better; however, the optimal 
value was n=5 as shown in Table 6. 
 

Table 6: n-value MAP results with set b-value 

n-value 5 10 15 20 30 100 
MAP 0.517 0.432 0.409 0.398 0.395 0.307 
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Distance metric. We experimented with multiple distance metrics 
to determine which metric performed best within this novel 
context. The candidate distance metrics included the widely used 
Euclidean and Manhattan distances. Also considered was another 
widely used similarity metric in text mining, cosine similarity, 
which increases as the two vectors have non-zero entries in the 
same positions. This approach is particularly effective for sparse 
vectors. The final candidate was Borda count [18], a metric that 
weights non-zero entries according to their ranks in query 
likelihood. In our scenario, the first utterance retrieved by query 
likelihood gets the highest rank. This approach reforms vectors in 
a weighted manner, after which Euclidean distance is applied. 

Within the development set, cosine distance performed with 
highest accuracy at 43.43% compared to manual labels. Borda 
count achieved 42.63%, Euclidean distance 41.64%, and 
Manhattan distance 41.82%. Since cosine similarity is computed 
by the dot product of two vectors divided by the product of their 
magnitudes, it takes the size of vectors into account and provides 
a ratio of matching 1 values in the same position in both vectors. 
In this way, intersecting non-zero entries are valued with respect 
to the size of the vectors.  

5.2 Accuracy in Identifying Manually 
Labeled Dialogue Acts 
Having tuned the parameter values using the development set, we 
trained a model on the remainder of the corpus. This unsupervised 
model did not take manual labels into account during training, but 
we evaluate its performance with respect to manual labels. Due to 
the nature of unsupervised approach, the optimal number of 
clusters was not known. Therefore, we explore varying numbers 
of clusters using k-Means, a standard clustering algorithm that 
aims to cluster observations into k clusters so that each element 
has the highest similarity to every other element in the cluster 
[19]. In addition to k-means clustering, we experimented with a 
non-parametric Bayesian approach used in recent unsupervised 
dialogue act classification work in a non-tutoring domain [10].  

We calculate the accuracy of the approach for classification by 
comparing to manual labels. Figure 3 presents the accuracy of the 
proposed approach using the k-means clustering algorithm in 
Weka [17]. To label a target utterance, the query likelihood results 
were retrieved for that utterance, and then its vector was provided 
to the clustering algorithm. The resulting cluster in which the 
target utterance resides was interpreted as the dialogue act label of 
the target utterance. The majority label of the cluster was taken as 
its dialogue act label. For comparison, the accuracy results are 
compared against the majority class baseline of 25.87%, 
Evaluation Question (EQ). This is the most commonly occurring 
student dialogue act in the corpus and therefore represents the 
expected accuracy of a model that performs equal to chance. 
Additionally, we compare our implementation against that of the 
recent approach of Rus et al. [25], which clusters utterances via 
word similarity using a specified number of leading tokens of 
each utterance.  

The highest accuracy achieved by query-likelihood clustering was 
41.84% with k=8. This accuracy therefore constitutes a 61.9% 
improvement over baseline chance. We experimented with the 
Rus et al. leading-tokens clustering using two to five leading 
tokens as they suggest. Five leading tokens performed best, 
yielding 34.90% accuracy at k=7. 

In order to provide a comparison across corpora, we consider the 
results from Rus et al. on their corpora of educational games. 

Their highest accuracy was 37.9%, compared with a majority 
class baseline of 28.5% (statements). This is a 32.98% 
improvement over the majority baseline chance. Another 
algorithm tried by Rus et al. was Expectation Maximization,  
which achieved 37.9% accuracy on their combined corpus of 
educational games. This algorithm achieved its highest accuracy 
of 30.47% with four leading tokens on our corpus. We also 
experimented with Dirichlet process clustering as used by Crook 
et al. [10]. Dirichlet process clustering gave substantially lower 
results on our corpus after natural language preprocessing, with an 
accuracy of 24.48% compared to the 41.84% of query-likelihood 
clustering.1 
 

 
Figure 3: Accuracy results (%) for query-likelihood 
clustering, Rus et al. approach with 5 leading tokens and 
majority baseline. 

Finally, in order to evaluate the relative contribution of the query-
likelihood clustering components of automatic natural language 
preprocessing (POS tagging, stemming) and vector enhancement 
with information retrieval, we performed two experiments 
omitting each of these components from the procedure. 
Parameters were re-tuned for each experiment utilizing the same 
development set split used earlier (25% of the corpus). With the 
best-performing model size of k=8 clusters, omitting the natural 
language preprocessing step produced accuracy of 37.59% and 
omitting the information retrieval step produced accuracy of 
35.68%, each of which is substantially lower than the query-
likelihood clustering approach of 41.84%. However, these simpler 
approaches resulted in a smaller number of clusters for their best-
fit models, achieving their highest accuracies of 41.06% and 
40.45%, respectively, when k=4. This accuracy is only modestly 
lower than the query-likelihood clustering accuracy of 41.84%; 
however, a significant drawback is that the number of clusters is 
much smaller than are typically distinguished by dialogue act 
classification schemes, and would likely not result in sufficiently 
fine-grained distinctions to support dialogue management. 

5.3 Analysis of Clusters 
As shown in Table 7, the approach was particularly successful in 
clustering negative feedback utterances (NF), evaluation questions 
(EQ) and groundings (G). 64.06% of all NF utterances are 
grouped in one cluster (Cluster 2), while 64.09% of EQ utterances 
are in one cluster (Cluster 5) and 94.74% of all G utterances are in 
another cluster (Cluster 1). The Q and EQ tagged utterances, 

                                                                    
1 The Dirichlet clustering implementation from 

mahout.apache.org was used for this analysis. 
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which are structurally very similar in that they both are questions, 
were grouped into one cluster (Cluster 5), which constitutes 
58.54% of all Q and EQ tagged utterances. In another cluster, 
14.26% of all Q and EQ utterances were grouped together 
(Cluster 6).  

Table 7: Student utterance distributions over clusters using 
manual tags (majority dialogue act in bold for each cluster) 

Clusters/ 
Tags C1 C2 C3 C4 C5 C6 C7 C8 

GRE 31 1 0 4 8 0 0 2 

EX 22 21 5 16 8 0 1 21 

Q 1 13 11 20 121 33 0 36 

PF 57 16 6 7 0 1 0 5 

S 11 32 21 29 5 0 0 51 

G 144 0 0 1 0 0 6 1 

EQ 1 18 17 14 191 43 0 14 

NF 3 41 9 4 0 0 0 7 

LF 1 15 2 3 0 0 0 1 

 

In order to examine the structure of the clusters in more detail, 
Table 8 provides sample utterances from four of the eight clusters. 
The manual labels of the utterances are also given in parenthesis. 
Some clusters perform intuitively; for example, Cluster 1 is 
dominated by grounding, with many positive feedback utterances 
as well. These positive feedback and grounding utterances have 
similar surface forms such as “yeah,” “right,” and “oh,” and 
distinguishing them further will require modeling the broader 
dialogue structure (for example, a notion of dialogue history) in 
future work. 

Cluster 2 is dominated by negative feedback (NF) with a large 
number of statements (S). This cluster captures the vast majority 
of negative feedback moves, indicating that these moves are 
highly distinguishable. Most of the statements were in negative 
tone or expressing confusion. For example, the utterance “Im not 
sure if it is asking if the PARAMETER is how ever far you are 
away from NUMBER or the actual number you are away from 
NUMBER,” which is labeled as statement, shows confusion 
although it is a statement in terms of its intention.  

Cluster 3 and Cluster 4 are highly impure. Closer inspection 
reveals that Cluster 3 mostly has broken utterances such as 
“correction digit”, “is in”, “digit” and some statements. Cluster 4 
contains statements and extra domain utterances that are primarily 
statements. Moreover, there are some implicit questions such as 
“thats another thing I was going to ask am I just storing the values 
in METHOD_NAME and sending them to PARAMETER” and 
“So I have to call upon the PARAMETER class and use a method 
in there right?”. Cluster 7 is highly sparse, containing only seven 
utterances. These tend to be highly similar in structure, such as 
“oh ok,” and “oh dear.” The very low distance between these 
utterances pulled them tightly into one cluster that was judged as 
distinct from the others.  

Cluster 5 and Cluster 6 are dominated by evaluation questions 
(EQ), with a substantial number of general questions (Q) as well. 
The dominance of EQ in both clusters may relate to its high 
frequency within the corpus. However, these two question acts 
tend to exhibit close structural similarity although their roles are 
different (asking for feedback versus asking a general conceptual 

question). For example, the utterance ‘do i have to set it to a 
PARAMETER?’ is a question; however, a deeper analysis shows 
that it is more specifically an evaluation question that requests 
feedback on the task.  

Table 8: Utterances from selected clusters with manual tags 
Cluster 1 
- right (G) 
- ahh (G) 
- ok (G) 
- yeah (G) 
- yes (PF) 
- heheh yeah that would work (PF) 
- I see that (PF) 
- gotcha (EX) 
- Yes Giving me definitions to various commands and such 
(EX)  
- Ohh yes substantially (EX) 
 
Cluster 2 
- not really yet (NF) 
- im not completely sure about how to do this (NF) 
-  the parsing im not sure about (NF) 
- to be honest im not even sure what an array is (NF) 
- im not sure how to read into the array (NF) 
- I don't know how to do this (NF) 
- and I know there is more to this line but I cannot remember 
the command (NF) 
- Not yet (NF) 
- im not so good at ARRAY just yet (NF) 
- but I'm not exactly sure how to do that (NF) 
- Im not sure if it is asking if the PARAMETER is how ever far 
you are away from NUMBER or the actual number you are 
away from NUMBER (S) 
- I am asking how to do whatever drawing I need to do in the 
METHOD_CALL method (S) 
 
Cluster 5 
- So what's wrong with this? (Q) 
- Can't manually turn an integer into a string? (Q) 
- Then how would I incorporate that with the 
METHOD_CALL? I think it's asking me to use that in some 
why but it's not supplying arguments to do so (Q) 
- are we done extracting digits? (Q) 
- how do i sum the digits? (Q) 
- do i have to set it to a PARAMETER? (EQ) 
- thats another thing I was going to ask am I just storing the 
values in METHOD_NAME and sending them to 
PARAMETER? (EQ) 
- why is what I just highlighted underlined in red doesn't that 
mean its wrong? (EQ) 
- does extracting have to do with METHOD_NAME? or 
anything (EQ) 
 
Cluster 6 
- What is the next step? (Q) 
- What do I write in it? (Q) 
- what do i do first? (Q) 
- so what can i do to fix what i was doing? (Q) 
- does that look ok? (EQ) 
- is this correct? (EQ) 
- is this what i need to do? (EQ) 
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The presence of impure and sparse clusters prompted an 
experiment to explore whether other models with similar but 
slightly lower overall accuracy would yield a more desirable 
clustering. Therefore, we explored using an information criterion, 
Hartigan’s rule of thumb, that utilizes the number of parameters in 
the model. This metric identified ten clusters as optimal, with a 
slightly lower accuracy (40.28%) compared to eight clusters, and 
the sparse clusters remained. We also experimented with the X-
Means algorithm that utilizes Bayesian Information Criterion for 
splitting clusters [23], which resulted in four clusters with 36.72% 
accuracy. 

6. DISCUSSION 
A strength of unsupervised approaches is that because they do not 
rely on any manually engineered tagging schemes, they reflect the 
structure of the corpus in a fully data-driven way.  In our case, the 
results highlight challenges of utilizing pedagogically driven 
manual dialogue act classification taxonomies within automated 
approaches. For example, a cross-cutting issue with the clustering 
presented here is that EX dialogue acts are distributed almost 
equally across several clusters. In the manual tagging, EX is a 
catch-all tag for conversation that was not directly related to 
tutoring. This tag was applied at the structural level, so if a 
question such as ‘Should I close the door?’ was not task-related it 
would have been tagged EX, as would its answer, ‘Yes.’ This 
distinction was desirable from a pedagogical perspective, but from 
a linguistic perspective it conflates dialogue act with topic. Future 
work will explore combining unsupervised dialogue act modeling 
with unsupervised topic modeling in order to address this type of 
modeling challenge. From a dialogue act research perspective, it 
is important to consider the issue of conflating act with topic 
when devising manual tagging schemes that may become the 
target of automated approaches in later work. 

While the proposed algorithm is promising in that it outperforms 
current unsupervised approaches for dialogue act modeling, it has 
several notable limitations. One limitation is algorithmic 
complexity, which is quadratic over the size of the corpus. This 
complexity is inherent in the binary representation of each 
utterance as a vector with similarity to other utterances. Another 
limitation of the proposed approach arises with clustering 
algorithms in general, which is that a significant amount of human 
intelligence is often required to decide on the number of suitable 
clusters for the corpus. Nonparametric approaches to 
automatically identifying the number of clusters performed worse 
than parametric approaches in the current analyses; however, 
nonparametric approaches in general are an important area for 
future study. Finally, the query-likelihood clustering approach 
does not consider higher-level dialogue structure; it clusters one 
utterance at a time. This limitation leads to trouble disambiguating 
utterances with similar surface features. A highly promising 
direction to address this limitation is to enhance the algorithm 
with structural features such as dialogue history.  

7. CONCLUSION AND FUTURE WORK 
We have presented a novel student dialogue act classification 
model, query-likelihood clustering, which classifies dialogue acts 
in an unsupervised fashion by adapting techniques from 
information retrieval with a clustering approach. Although the 
technique did not utilize manual labels for model training, it 
performed substantially better than baseline chance at classifying 
utterances when compared to manually applied dialogue act tags. 
Moreover, query-likelihood clustering outperformed several 
currently reported approaches in the recent computational 
linguistics and educational data mining literature. It discovered a 

best-fit model with eight clusters, a close correspondence to the 
nine dialogue acts based on the handcrafted dialogue act 
taxonomy.  

This novel approach holds great promise for dialogue act 
classification. Several directions are particularly important for 
future work. Multimodal features, such as posture, gesture, or 
facial expression of students, may hold great potential for 
providing dialogue act cues. Additionally, future work should 
focus on modeling higher-level dialogue structure such as 
adjacency pairs and discourse structure within unsupervised 
frameworks, and on devising suitable novel techniques for joint 
dialogue act and topic modeling within task-oriented tutorial 
dialogue. Finally, evaluating unsupervised techniques is an open 
research question. Future work will focus on further developing 
research techniques for evaluating unsupervised dialogue act 
classification. Together these research directions will allow 
unsupervised classification of dialogue acts within large corpora. 
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ABSTRACT 
Bayesian Knowledge Tracing (BKT) is a common way of 
determining student knowledge of skills in adaptive educational 
systems and cognitive tutors. The basic BKT is a Hidden Markov 
Model (HMM) that models student knowledge based on five 
parameters: prior, learn rate, forget, guess, and slip. Expectation 
Maximization (EM) is often used to learn these parameters from 
training data. However, EM is a time-consuming process, and is 
prone to converging to erroneous, implausible local optima 
depending on the initial values of the BKT parameters. In this 
paper we address these two problems by using spectral learning to 
learn a Predictive State Representation (PSR) that represents the 
BKT HMM. We then use a heuristic to extract the BKT 
parameters from the learned PSR using basic matrix operations. 
The spectral learning method is based on an approximate 
factorization of the estimated covariance of windows from 
students’ sequences of correct and incorrect responses; it is fast, 
local-optimum-free, and statistically consistent. In the past few 
years, spectral techniques have been used on real-world problems 
involving latent variables in dynamical systems, computer vision, 
and natural language processing. Our results suggest that the 
parameters learned by the spectral algorithm can replace the 
parameters learned by EM; the results of our study show that the 
spectral algorithm can improve knowledge tracing parameter-
fitting time significantly while maintaining the same prediction 
accuracy, or help to improve accuracy while still keeping 
parameter-fitting time equivalent to EM. 

Keywords 

Bayesian Knowledge Tracing, Spectral Learning. 

1. INTRODUCTION 
Hidden Markov Models and extensions have been one of the most 
popular techniques for modeling complex patterns of behavior, 
especially patterns that extend over time. In the case of BKT, the 
model estimates the probability of a student knowing a particular 
skill (latent variable) based on the student’s past history of incorrect 
and correct attempts at that skill. This probability is the key value 
used by many cognitive tutors to determine when the student has 
reached mastery in a skill (also called a Knowledge Component, or 
KC) [17]. In an adaptive educational system, this probability can be 
used to recommend personalized learning activities based on the 
detailed representation of student knowledge in different topics.  

In practice, there is a two-step process for inferring student 
knowledge. In the first step, an HMM is learned for each topic or 
skill within a tutoring system based on the history of students’ 
interaction with the system. The output of this step is a set of 
parameters (basic parameters of BKT: prior, learn rate, forget, 
guess, and slip), which is used in the second step to estimate the 
mastery level of each student. A popular method for the first step, 
learning parameters from training data, is Expectation 
Maximization (EM). However, EM is a time consuming process, 
and previous studies [2,3,11,14] have shown that it can converge 
to erroneous learned parameters, depending on their initial values. 
To address these problems, we propose an alternate method: first 
we use a spectral learning method [4] to learn a Predictive State 
Representation [15] of the BKT HMM directly from the observed 
history of students’ interaction. Then we use a heuristic to extract 
the parameters of BKT directly from the PSR. Our results show 
that the learned PSR captures the essential features of the training 
data, allowing a computationally efficient and practically effective 
prediction of BKT parameters. In particular, we decreased the 
time spent on learning the parameters of BKT by almost 30 times 
on average compared to EM, while keeping the mean accuracy 
and RMSE of predicting students’ performance on the next 
question statistically the same.  Furthermore, by initializing EM 
with our extracted parameters, we can obtain improvements in 
accuracy and RMSE. 

This paper is organized as follows: Section 2 provides a background 
on BKT parameter learning and spectral learning of the parameters 
in PSRs. Section 3 describes our methodology and setting. In 
Section 4 we present the detailed results of our experiments and 
compare the BKT model with our model from several points of 
view. We provide analysis and justification of the results in Section 
5. Finally, Section 6 is conclusion and future work. 

2. BACKGROUND 
In BKT we are interested in a sequence of student answers to a 
series of exercises on different skills (KCs) in a tutoring system 
[6]. BKT treats each skill separately, and attempts to model each 
skill-specific sequence using a binary model of the student’s latent 
cognitive state (the skill is learned or unlearned). Treating state as 
Markovian, we therefore have five parameters to explain student 
mastery in each skill: probabilities for initial knowledge, 
knowledge acquisition, forget, guess, and slip. However, in 
standard BKT [6], it is typical to neglect the possibility of 
forgetting, leaving four free parameters. 

The main benefit of the BKT model is that it monitors changes in 
student knowledge state during practice. Each time a student 
answers a question, the model updates its estimate of whether the 
student knows the skill based on the student’s answer (the HMM 
observation). However, the typical parameter estimation algorithm 
for BKT, EM, is prone to converging to erroneous local optima 
depending on initialization. On the other hand, in the past few 

 

 
Conference’10, Month 1–2, 2010, City, State, Country. 
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00. 
 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 28



www.manaraa.com

 

years, researchers have introduced a generalization of HMMs 
called Predictive State Representations (PSRs) [16] that can be 
extracted from the data using spectral learning methods [8]. The 
new learning algorithm uses efficient matrix algebra techniques, 
which avoid the local optima problems of EM (or any other 
algorithms based on maximizing data likelihood over the HMM 
parameter space) and run in a fraction of the time of EM. In this 
section we first review the EM parameter learning of BKT and 
then provide a brief background on spectral learning of PSRs. 

2.1 EM Parameter Learning of BKT 
The main problem with BKT parameter learning by EM is the 
initial values. The EM algorithm is an iterative process. In each 
iteration, we first estimate the distributions over students’ latent 
knowledge states, and then update the BKT parameters to try to 
improve the expected log-likelihood of the training data given our 
latent state distribution estimates. As mentioned before, the 
iterative nature of EM means that it is prone to getting stuck in 
local optima. To remedy this problem, researchers often use 
multiple runs of EM from different starting points; however, the 
multiple runs can be time-consuming.  Calculating the log 
likelihood of the model in each iteration also involves going 
through all the training data, which further exacerbates the 
runtime problem, especially with large data sets. 

There are number of studies that try to handle the problems of EM 
parameter learning by different approaches. In basic BKT [6], the 
authors tried to solve the problem by imposing a plausible range 
of values for each parameter—for example setting the maximum 
value for the guess parameter to be 0.30. Similar approaches have 
been applied by [2] and [4]. Another study [12] tried to address 
the local optimum problem by modifying the structure of BKT 
and using information from multiple skills to estimate each 
student's prior in particular skills. The same group made an effort 
[13] to improve BKT by clustering students based on their 
performance and using different models for students in different 
clusters.  

Beck & Chang [3] discussed another fundamental problem, called 
identifiability, with learning BKT parameters by maximum 
likelihood. In their work, they showed that different sets of BKT 
parameters could lead to identical predictions of student 
performance. There is still one set that is more plausible based on 
expert knowledge, but the other set with identical fit tends to 
predict that the students are more likely to answer a question 
wrong when they mastered the skill. They recommend the same 
approach of constraining the values of the parameters into a 
plausible range based on the domain knowledge. While these 
studies elucidated the problem of identifiability and gave rules of 
thumb to follow in order to arrive at plausible parameters, these 
rules are often specific to a particular domain and do not 
necessarily generalize. Moreover, constraining EM to move inside 
a pre-known parameter space is not trivial, and in many cases the 
optimizer ends up exceeding its iteration threshold walking along 
the boundaries of the parameter space without converging to the 
maximum likelihood value. 

Pardos & Heffernan [11] suggested running a grid search over the 
EM parameter initialization space of BKT to try to find which 
initial values led to good or bad learned parameters. They 
analyzed the learned parameters and tried to find boundaries for 
the initial values not based on plausibility but based on the exact 
error. They showed that choosing initial guess and slip values that 
summed up to less than one tends to lead EM to converge toward 
the expert-preferred parameter set.  

2.2 Spectral Learning of PSRs 
A Predictive State Representation (PSR) [10] is a compact and 
complete description of a dynamical system. A PSR can be 
estimated from a matrix of conditional probabilities of future 
events (tests or characteristic events) given past events (histories 
or indicative events).   If the true probability matrix is generated 
from a PSR or an HMM, then it will have low rank; so, spectral 
methods can approximate a PSR well from empirical estimates of 
the probabilities [4,5,8,15].  (In practice we estimate a similarity 
transform of the PSR parameters, known as a Transformed PSR [15].)  

We use in particular the spectral algorithm of Boots & Gordon [5] 
[4]. They applied their method in several applications and 
compared the results with competing approaches. In particular, 
they tested the algorithm by learning a model of a high-
dimensional vision-based task, and showed that the learned PSR 
captures the essential features of the environment effectively, 
allowing accurate prediction with a small number of parameters. 
Our work uses their published code.1 

3. METHODOLOGY 
We propose replacing the parameter-learning step of BKT with a 
spectral method. In particular, we use spectral learning to discover a 
PSR from a small number of sufficient statistics of the observed 
sequences of student interactions. We then use a heuristic to extract 
an HMM that approximates the learned PSR and read the BKT 
parameters off of this extracted HMM. We can finally use these 
parameters directly to estimate student mastery levels, and evaluate 
prediction accuracy with our method compared to the standard 
EM/MLE method of BKT parameter fitting. We call the above 
method “spectral knowledge tracing” or SKT. We also evaluated 
using the learned parameters as initial values for EM in order to get 
closer to the global optimum. Due to the fact that spectral method 
does not attempt to maximize likelihood, and also some noise in the 
translation of the PSR to BKT parameters, the returned BKT 
parameters are close to the global maximum, but further 
improvement is available with a few EM iterations. The rest of the 
section presents a short description of the data along with a brief 
summary of our student model and analysis procedure. 

3.1 Data Description 
Our data comes from an online self-assessment tool QuizJET for 
Java programming. This tool is a part of an adaptive educational 
system JavaGuide [7] that keeps detailed track of students’ 
interaction to provide adaptive navigation support. The system 
presents and evaluates parameterized questions to students 
(programming question templates filled in with random parameters); 
students can try different versions of the same question several 
times until they acquire the knowledge to answer them correctly or 
give up. There are a total of 99 question templates, categorized into 
21 topics, with a maximum of 6 question templates within a topic.  

We consider each topic as a KC and each question template as a 
Step toward mastery of the KC. Based on the definition of BKT and 
KC [6,17] we are only considering the first attempt of each student 
on each question template, assuming that if a student tried a 
question template several times until success, they will answer the 
next question within the topic correctly on the first attempt. This 
mapping is more coarse-grained than the original definition of KC 
since we are not dealing the data from an intelligent tutoring system. 
However, the question templates are designed in such a way that 
answering all of them correctly will result in mastery of the topic.  

                                                                    
1 http://www.cs.cmu.edu/~ggordon/spectral-learning/ 
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Figure 1: Student view of a question template for the skill 

“Do-While-Loops”. 
Figure 1 shows a student view of an example question template.  
The student can select a topic from the left pane to expand the 
question templates under each topic. Then s/he can try answering 
any of the questions under the topic repeatedly whether s/he 
answers it right or wrong. The system has been in use in the 
introductory programming classes at the School of Information 
Sciences, University of Pittsburgh for more than four years. In our 
study we use data for 9 semesters from Spring 2008 to Fall 2012. 
Table 1 shows the distribution of records over the semesters. 

Table 1: distribution of the records over the semesters. 

Semester #Students #Topics (Templates) 
tried 

#Records 

Spring 2008 15 18 (75) 427 

Fall 2008 21 21 (96) 1003 

Spring 2009 20 21 (99) 1138 

Spring 2010 21 21 (99) 750 

Fall 2010 18 19 (91) 657 

Spring 2011 31 20 (95) 1585 

Fall 2011 14 17 (81) 456 

Spring 2012 41 19 (95) 2486 

Fall 2012 41 21 (99) 2017 

Total 222 21 (99) 10519 

The system had no major structural changes since 2008, but the 
enclosing adaptive system used some engagement techniques in 
order to motivate more students to use the system. This is the 
main reason the number of records is higher in the Spring and Fall 
semesters of 2012.  

3.2 Student Model 
A time-homogeneous, discrete Hidden Markov Model (HMM) is 
a probability distribution on random variables {(𝑥! , ℎ!)}!∈ℕ such 
that, conditioned on (xt,ht), all variables before t are independent 
of all those after t. The standard parameterization is the triple 
(𝑇,𝑂,𝜋) where: 

𝑇 ∈ ℝ!×!,                              𝑇!"   = Pr ℎ! = 𝑖 ℎ!!! = 𝑗  

𝑂 ∈ ℝ!×!,                         𝑂!" = Pr  [𝑥! = 𝑖|ℎ! = 𝑗] 

𝜋 ∈ ℝ!,       𝜋! = Pr  [ℎ! = 𝑗] 

𝑂 is a mapping from hidden states to output predictions, and 𝑇 is a 
mapping between hidden states. Considering our conditional 
independence properties, 𝑇, 𝑂, and 𝜋 fully characterize the probability 
distribution of any sequence of states and observations [8]. Since the 
hidden states ℎ! are not directly observable from the training data, one 
often uses heuristics like EM to find ℎ!, 𝑇, 𝑂 and 𝜋 that maximize 
the likelihood of the samples and the current estimates. In the BKT 
setting, 𝑇 is a 2×2 stochastic matrix, so it has two hidden parameters 
P(learn) and P(forget). O is also a 2×2 stochastic matrix, so it also 
has two hidden parameters P(guess) and P(slip).  And, 𝜋 is a length-
2 probability distribution, so it has one hidden parameter P(init). 

Our main contribution is to try extracting these matrices from a 
learned PSR, giving us the benefit of significantly decreasing 
training time and avoiding local optima. The details of the spectral 
algorithm for learning the PSR from the sequence of action-
observation pairs are beyond the scope of this paper and can be 
found in [4]. The algorithm gets a sequence of students’ first 
answers to different question templates within a topic, and builds 
a PSR using spectral learning.  The key parameters of this 
particular implementation are window sizes used in creating state 
estimates; we set these to 𝑛!"#$ = 10 and 𝑛!"# = 6. The outputs 
of the PSR learner are: first, the estimated PSR parameters ℎ!, 𝐴!, 
and 𝐴!, and second a set of (noisy) state estimates ℎ!, each of 
which represents a particular time point in the input sequence. We 
actually added dummy observations before the beginning and after 
the end of each observation sequence, in order to make the best use 
of our limited sample size; this means we get four matrices 𝐴! from 
the PSR learner, corresponding to the two original observations plus 
the two dummy observations.  We simply ignore the dummy 
observations when converting to an HMM.  

Nominally, the PSR parameters are related to the HMM parameters 
by the equations 𝜋 = ℎ!, 𝑇 =   𝐴! + 𝐴!, 𝑂! = 𝐴!𝑇!!.  (Here 𝑂! is 
the diagonal matrix with the 𝑖th column of 𝑂 on its diagonal.)  
However, there is an ambiguity in PSR parameterization: for any 
invertible matrix 𝑆, we can replace each state ℎ! by 𝑆ℎ!, as long as 
we replace 𝐴! by 𝑆𝐴!𝑆!! for 𝑖 = 1,2.  When we use the modified 
parameters to compute likelihoods, each pair 𝑆!!𝑆 cancels, leaving 
the predictions of the PSR unchanged.  So, we have to choose the 
right transformation  𝑆 to be able to find parameters 𝑇 and 𝑂 that 
satisfy the conditions of BKT (each element should be a probability 
between 0 and 1, and columns should sum to 1).  

To pick the transformation matrix 𝑆, we designed a heuristic that 
looks at the state estimates ℎ!: we attempt to guess which points 
in the learned state space correspond to the unit vectors (1,0) and 
(0,1) in the desired transformation of the learned state space. (We 
call these the “transformation points.”) Given the transformation 
points, the matrix 𝑆 is determined. Our heuristic runs in time 
linear in the length of the input sequence of correct/incorrect 
observations. Figure 2 shows an overview of the transformation 
process and Figure 3 shows the details of the heuristic. 

 
Figure 2: Overview of the transformation scheme.  
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Figure 3: Our heuristic to find the transformation points 

One slightly subtle point is that, due to noise in the parameter 
estimates, no matter how we choose the transformation 𝑆, the 
matrices 𝑂! = 𝐴!𝑇!! may not be diagonal.  In this case, we 
simply zero out the off-diagonal elements and renormalize. 

3.3 Analysis Procedure 
To evaluate our new parameter extraction method, we compared 
the results of our method with EM learning of BKT parameters as 
a baseline. We compare both runtime and the ability to predict 
students’ correct/incorrect answer to the next question; for the 
latter, we calculate both Root Mean Squared Error (RMSE) and 
prediction accuracy (percent correct). We hypothesize that our 
spectral method has better performance compared to EM in regard 
to the time spent on extracting the parameters, while keeping the 
same accuracy and RMSE of predicting the students’ answer to 
the next question. Since the parameters learned from the PSR are 
an approximation of the actual global best-fit set of BKT 
parameters, we also hypothesize that if we use the them as the 
initial parameters of EM, it will result in a better model in both 
accuracy and RMSE. 

4. RESULTS 
For the purpose of mimicking how the model may be trained and 
deployed in a real world scenario, we learn the model from the 
first semester data and test it on the second semester, learn the 
model from the first and second semester data and test it on the 
third semester, and so on. In total, we calculated results for 155 
topic-semester pairs. All analysis was conducted in Matlab on a 
laptop with a 2.4 GHz Intel® Core i5 CPU and 4 GB of RAM. 

4.1 EM Results 
In our experiments it took around 36 minutes for EM to fit the 
parameters, which is on average 15 seconds for each topic-
semester pair. In 2 out of 155 cases, EM failed to converge within 
the 200-iteration limit. The average accuracy of predicting a 
student’s answer to the next question using the parameters learned 
by EM is 0.650 with RMSE of 0.464.  Figure 4 shows the boxplot 
of the parameters learned by EM. The average values for prior, 
learn, forget, guess and slip are: 0.413, 0.162, 0.019, 0.431, 0.295. 

 
Figure 4: Boxplot of the parameters learned by EM 

 

4.2 SKT Results 
It took 1 minute 16 seconds in total for the spectral method to 
learn the parameters for all semesters and topics; that is almost 30 
times faster than EM. The average accuracy of predicting student 
answer to the next question is 0.664 and RMSE is 0.463. Figure 5 
shows the boxplot of the parameters learned by SKT. The average 
values for prior, learn, forget, guess and slip are: 0.526, 0.268, 
0.302, 0.397, 0.271. Note that these values are substantially 
different from those learned by EM, which means that the 
calculated student mastery levels will also be different. 
 

 
Figure 5: Boxplot of the parameters learned by spectral 

method 

4.3 SEM Results 
When we initialized EM with the spectrally learned parameters, 
the total time was 10 minutes and 40 seconds; that is still 
substantially faster than plain EM. As expected, the average 
accuracy of predicting a student’s answer to the next question 
increased to 0.706, and RMSE decreased to 0.422, better than 
both previous models. Figure 6 shows the boxplot of the refined 
parameters. The average values for prior, learn, forget, guess and 
slip are: 0.492, 0.381, 0.360, 0.391, 0.292. 
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Algorithm	  FindTransformationPoints(PSR	  output	  States)	  
Find	  the	  minimum	  and	  maximum	  values	  among	  the	  
predictive	  states	  (mi,	  ma)	  
Calculate	  p	  =	  distance	  between	  the	  maximum	  value	  
among	  predictive	  states	  and	  the	  initial	  state	  (s1)	  
Let	  n	  =	  size(predictive	  states)	  
Let	  step	  =	  p	  /	  n	  
For	  i=1	  to	  n	  

Fix	  the	  first	  transformation	  point	  to	  𝑚𝑖  –   𝑠𝑡𝑒𝑝	  
Set	  second	  transformation	  point	  to	  𝑠! + 𝑖  ×  𝑠𝑡𝑒𝑝	  
Calculate	  𝑆	  by	  linear	  regression	  from	  
transformation	  points	  to	  (1,0)	  and	  (0,1)	  	  
Transform	  the	  PSR	  and	  calculate	  𝑇! 	  and	  𝑂! 	  
If	  𝑇! 	  and	  𝑂! 	  have	  all	  elements	  between	  0	  and	  1	  

Break	  
End	  
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Figure 6: Boxplot of the parameters learned SEM 

4.4 Comparison 
4.4.1 Time 
To get a better understanding of the time complexity of EM and 
SKT and their relation, we show a semilog plot of the times 
(Figure 7). We measure the elapsed time of parameter learning 
using the tic and toc functions of Matlab. Both methods have a 
similar growth rate as we increase the size of the training data: as 
we can see in the Figure, the slope of the fitted line for the EM 
time (green points) is almost the same as the slope of the fitted 
line for the SKT time (red points). We also tried locally weighted 
scatter plot smoothing (LOWESS) to compare the runtimes 
(Figure 8). 
 

 
Figure 7: Scatter plot of log(time) with a fitted line 

 

 
Figure 8: Regression of the Log(time) 

The LOWESS plot confirms our intuition that the EM time grows 
at least linearly compared to the SKT time. To test that hypothesis 
we tried linear regression on the log-log plot.  A 95% confidence 
interval for the intercept is [2.82, 3.18], which excludes an 
intercept of 0; a 95% interval for the slope is [.51, .70], which 
excludes a slope of 1. This can be interpreted as: the time spent 
learning parameters using EM is on average at least 𝑒!.!! ≈ 16.77 
times greater than the time spent learning the parameters using 
SKT, and the scaling behavior of EM is likely to be worse (the 
ratio gets higher as the data gets larger). 

4.4.2 Accuracy and RMSE 
Figure 9 and Figure 10 show the histogram of prediction accuracy 
and RMSE for the 3 models. By looking at the histograms, we can 
say that the results are approximately normally distributed with 
about the same variance, but different means.  

 
Figure 9: Histogram of Prediction Accuracy 
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Figure 10: Histogram of the Prediction average RMSE 

 
Regarding prediction accuracy, both of our methods significantly 
improved the prediction results (p=0.017 SKT vs. EM, p<<0.001 
SEM vs. EM, paired t-test, 153 degrees of freedom). Regarding 
RMSE, the spectrally learned parameters do not result in a 
significant improvement compared to BKT, but the combination 
of SKT with EM leads to a significantly better (lower) RMSE 
compared to BKT (p<<0.001, paired t-test, 153 dof). Table 2 
shows the summary of the results. Figure 11 and Figure 12 show 
the boxplot of the prediction accuracy and RMSE respectively. 
 

Table 2: Summary of the results 

Method Accuracy RMSE 

BKT 0.649 (baseline) 0.465 (baseline) 

SKT 0.664 (p=0.017) 0.464 (p=0.348) 

SEM 0.706 (p<<0.01) 0.422(p<<0.01) 

 
 

 
Figure 11: Boxplot of the accuracy 

 
Figure 12: Boxplot of the RMSE 

5. DISCUSSION 
Based on the results of our study, we found that the spectrally 
learned parameters can be used directly in the BKT setting, and 
decrease the time spent on learning parameters by a factor of 
almost 30 while keeping the same performance in regard to 
prediction accuracy and RMSE. On the other hand, if we use the 
spectrally learned parameters to initialize the BKT EM 
optimization, we can get significantly improved results and still 
have the advantage of shorter time spent on learning the 
parameters. 

In a setting with a huge number of students and lots of data over 
several semesters, e.g., an adaptive educational system, the 
spectrally learned parameters are more helpful in keeping the time 
spent on building the model for each topic tractable. However, in 
a more delicate environment, like a cognitive tutor, in which the 
parameters of BKT are the main basis of the system, we can use 
the combination method, SEM, and build a more accurate student 
model in order to predict mastery in different skills.  

6. CONCLUSION AND FUTURE WORK 
In this paper we presented a novel spectral method for learning 
the parameters of BKT directly from students’ sequences of 
correct/incorrect responses.  One direction for future work would 
be to compare our method (learn a PSR and extract HMM 
parameters) to recent algorithms for directly learning an HMM by 
spectral methods [1], and perhaps combine ideas from these 
methods with our heuristic. 

Another future direction is that, since spectral algorithms have 
recently been used to learn the parameters of different types of 
graphical models [9], the results of our study open a new direction 
for future research on learning complex latent variable models 
(variations of BKT) directly from student performance data. 

From a practical point of view, the results of our study will help 
us improve our adaptive educational system. Currently, JavaGuide 
uses a knowledge accumulation approach, based on the total 
number of correct answers, to estimate students’ mastery within 
each topic for adaptation purposes. The SEM model can be used 
to improve the system by providing a more accurate (in regard to 
predicting the student answer to the next question) estimate of 
student knowledge. 
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ABSTRACT 
By implementing mastery learning, intelligent tutoring systems 
aim to present students with exactly the amount of instruction they 
need to master a concept.  In practice, determination of mastery is 
imperfect. Student knowledge must be inferred from performance, 
and performance does not always follow knowledge. A standard 
method is to set a threshold for mastery, representing a level of 
certainty that the student has attained mastery. Tutors can make 
two types of errors when assessing student knowledge: (1) false 
positives, in which a student without knowledge is judged to have 
mastered a skill, and (2) false negatives, in which a student 
is presented with additional practice opportunities after acquiring 
knowledge. Viewed from this perspective, the mastery threshold 
can be viewed as a parameter that controls the relative frequency 
of false negatives and false positives. In this paper, we provide a 
framework for understanding the role of the mastery threshold in 
Bayesian Knowledge Tracing and use simulations to model the 
effects of setting different thresholds under different best and 
worst-case skill modeling assumptions.  

Keywords 

Cognitive Tutor, intelligent tutoring systems, knowledge tracing, 
student modeling, mastery learning 

1. INTRODUCTION 
Carnegie Learning’s Cognitive Tutors (CTs) [12] and other 
intelligent tutoring systems (ITSs) adapt to real-time student 
learning to provide efficient practice.  Such tutors are structured 
around cognitive models, based on the ACT-R theory of cognition 
[1-4], that represent knowledge in a particular domain by 
atomizing it into knowledge components (KCs).  CTs for 
mathematics, for example, present students with problems that are 
associated with skills that track mathematics KCs in cognitive 
models.  Content is tailored to student knowledge via run-time 
assessments that probabilistically track student 
knowledge/mastery of skills using a framework called Bayesian 
Knowledge Tracing (BKT) [8]. 

Even in cases in which BKT mastery learning judgments are 
based on parameters that perfectly match student parameters (e.g., 
with idealized, simulated student data), assessment of mastery or 
knowledge is imperfect; student performance need not perfectly 
track knowledge. In this context, mastery learning assessment is a 
kind of classification problem. Like all classifiers, an ITS is 
subject to two types of errors when assessing student knowledge: 
(1) false positives, in which a student without knowledge is 
judged to have mastered a skill, and (2) false negatives, in which a 
student is presented with additional practice opportunities after 
acquiring knowledge. 

A false positive judgment results in pushing a student too quickly 
through the curriculum. Students pushed too quickly may be 
asked to demonstrate or use knowledge that they have not yet 
acquired fully. False negative judgments result in pushing a 
student too slowly, so the risk is that valuable instructional time is 
taken teaching KCs that are already mastered, rather than learning 
new KCs.  
Depending on instructional objectives and course design, these 
two types of errors may not be equally important. If we present a 
mixed-practice curriculum in which a student will receive more 
practice on KCs in the future, it may be acceptable to focus on 
minimizing false negatives. However, if a student will receive 
only a single block of practice on a KC, particularly if it 
constitutes important pre-requisite knowledge for later material, 
then we will strongly prefer to minimize false positives, even at 
the expense of incurring additional over-practice.  

Since detecting mastery typically requires a number of correct 
trials following the student’s attainment of knowledge, a certain 
amount of “lag” between the point where a student acquires 
knowledge of a skill and the point where a tutor detects student 
mastery may be inevitable.  We illustrate progression to mastery 
in Figure 1, dividing opportunities into three phases: learning 
before the student acquires knowledge of the skill (from 
opportunity 1 to K), “lag” practice opportunities immediately after 
knowledge acquisition (K to L), and over-practice after this lag, 
but before mastery judgment at opportunity M. 

 
Figure 1. Progression to mastery (judgment) over M student-

skill opportunities divided into three “phases” 
Despite imperfect assessment of the student, adaptive tutors 
attempt to minimize the number of opportunities at which students 
practice skills they have already mastered, so they can focus 
student practice on skills they have yet to master.  We investigate 
the impact of several factors on the efficiency of practice, 
focusing especially on the threshold used for student mastery 
assessments. 

We provide a framework for thinking about inherent trade-offs 
between the two types of CT assessment errors. We quantify the 
notions of “lag” and over-practice and investigate their 
relationships with the BKT probability threshold for mastery 
learning, mastery learning skill parameters, and the dynamics of 
the student population (or sub-populations) being modeled. 
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Recent work also focuses on the efficiency of student practice 
given various methods of individualizing student parameters (e.g., 
[7] [9]).  Increased efficiency has been quantified as the amount of 
time saved (e.g., by improved cognitive models), without 
negatively impacting learning [3].  Despite concerns to the 
contrary, recent work suggests that over-practice is not necessary 
for long-term retention [7]. Other work conceptualizes the 
problem of efficient practice roughly as we do, quantifying 
efficiency and over-practice in terms of expected counts of 
student opportunities [9].  This work differs in several important 
ways from past work, especially by focusing on simulated data for 
a variety of skills and quantifying a notion of an acceptable lag 
while not focusing on individualization.   

2. BAYESIAN KNOWLEDGE TRACING 
BKT [8] provides a method to track student knowledge 
acquisition, and it is the basis of the mastery learning 
implementation in the Cognitive Tutor.  For each skill, a student 
can be in one of two knowledge states: “unknown” or “known.”  
At each opportunity to practice a skill, the student generates an 
observable (correct or incorrect) response. Four parameters 
comprise the model of student behavior.  The first two are called 
learning parameters, and the last two are performance parameters: 

• P(L0): initial probability skill is known at first 
opportunity to practice it  

• P(T): probability that student learns the skill (i.e., 
transition from the unknown to the known state) 
after an opportunity to practice the skill 

• P(G): probability that student produces a correct 
response at an opportunity despite not knowing the 
skill (“guessing”) 

• P(S): probability that student produces an incorrect 
response at an opportunity despite knowing the 
skill (“slipping”). 

Corbett and Anderson [8] provide a well-known algorithm to 
estimate a student’s knowledge state in response to each 
observable student action and given parameters. The Cognitive 
Tutor implements run-time mastery assessment using such an 
algorithm.  Mastery of a skill is usually declared when the 
algorithm determines that a student has 95% probability of being 
in the known state for the skill.  We treat this mastery threshold as 
a tunable parameter that controls the relative frequency of the two 
types of mastery assessment errors. 

One way to think about false positive errors is as the proportion of 
students for whom at least one false positive occurred, i.e., the 
proportion of students for whom mastery of a skill was judged 
pre-maturely by the run-time algorithm. This provides an 
accounting of how many students the system moves on to practice 
new skills too quickly. 

The regular occurrence of a modest “lag” (i.e., of false negatives) 
is both expected and vital to a tutoring system remaining 
“conservative” in the sense that it infrequently commits false 
positive errors.  Some lag may be required because of uncertainty 
inherent in the BKT model. We can never be completely sure that 
correct performance results from student knowledge, rather than a 
guess. As we observe repeated correct performances, we become 
more certain that the behavior results from underlying knowledge, 
rather than just guessing. It is this transition from uncertainty to 
certainty that is the source of what we will call the “acceptable 
lag” after knowledge acquisition. The mastery threshold 

represents the point at which we consider the system to be certain 
enough to conclude that the student has mastered the skill. 

A well-calibrated, adaptive tutoring system should not frequently 
prescribe large amounts of “over-practice.”  We quantify the 
notion of the acceptable lag as well as over-practice and assess the 
proportion of students that experience over-practice.  

3. SIMULATION REGIME 
We use the BKT model to generate idealized data for simulated 
students in a manner comparable to [6] and [11]. For example, if 
P(L0) = 0.5, P(T) = 0.35, P(G) = 0.1 and P(S)=0.1, then the 
simulation would, for each simulated student, place the student in 
the known state initially with a probability of 0.5. Students in the 
known state would then generate correct responses with a 0.45 
probability [P(L0)*(1-P(S))]. Those in the unknown state would 
generate correct responses with probability 0.1, and have a 0.35 
probability of transitioning into the known state. Percent correct 
on the first opportunity for all students simulated with this skill 
would be 0.5 [P(L0)*(1-P(S))+(1- P(L0))*P(G)]. 

Since we know exactly when each virtual student transitioned into 
the known state, we can compare the point where this occurred to 
the judgment of the BKT run-time mastery algorithm, which can 
only observe the generated student actions. We apply this testing 
paradigm to scenarios where the runtime system uses the same 
BKT parameters as the generating model (“best-case”), and to a 
couple of scenarios where they are significantly different (“worst- 
cases”). 

We simulate data over skills represented by 14 unique parameter 
quadruples, a subset of those identified in [13] as representative of 
broad clusters of skills deployed in Cognitive Tutor mathematics 
curricula1. We ascertain the number of “lagged” opportunities we 
expect students to see, the frequency that the number of lagged 
opportunities can reasonably be considered over-practice (i.e., 
beyond the acceptable lag), and the frequency of pre-mature 
mastery judgment, for one best-case and two worst-case scenarios. 

4. RESULTS 
There are several ways of thinking about best and worst-case 
scenarios; we do not exhaust the space of possibilities.  We begin 
by considering a best-case scenario.  

4.1 Best Case: Homogeneous, Matching 
Student Population 
In our first round of simulations, we simulate response data, for 
four mastery threshold probabilities (75%, 90%, 95%, and 98%). 
We assume that students are homogeneous with respect to a skill, 
meaning that student behavior is generated probabilistically from 
the same set of BKT parameters for all students.  
For each skill parameter set, we simulate 10,000 students in this 
way, for up to thirty opportunities per student. Since we are 
implementing mastery learning, the actual number of 
opportunities generated by a simulated student depends on when 
and if the student reaches mastery. In this best-case scenario, the 
system judges mastery by the same skill parameters that are used 

                                                                    
1 Ritter, et al. [13] identify a total of 23 “cluster” skill quadruples 

inferred from empirical data collected for thousands of skills in 
CT curricula.  We discard seven quadruples with P(L0) > 0.75. 
Two quadruples are discarded that cover little of the empirical 
parameter space and seem to have implausible values for P(G) 
and P(S) (cf. [5]). 
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to generate student behaviors. That is, the system is correctly 
modeling student skills. 

Since these are simulated students, we know when students learn 
each skill (by transitioning from the unknown to known state) in 
addition to their observed behavior, so we compare the internal 
knowledge state at opportunities to those at which the BKT run-
time algorithm judges a student to have reached a sufficiently high 
probability of knowing each skill. Given the large sample of 
students and number of simulated opportunities, individual 
simulations for each mastery threshold should be comparable. 

4.1.1 Efficient Practice 
Figure 2 provides frequencies with which values of the median2 
number of lagged or over-practice opportunities occur over the 14 
skills for four mastery thresholds.  As we increase the mastery 
threshold, we expect the ordinary student to see more lagged 
opportunities (i.e., opportunities after knowledge acquisition).  At 
the 95% mastery threshold, for example, we expect the median 
student to see one to four lagged opportunities on most skills.  At 
the 98% threshold, more skills have a median lag of five or more 
opportunities. 
 

 
Figure 2. Frequency (# of skills) of median student lag 

opportunities (i.e., those beyond knowledge acquisition) [14 
skills simulated for 10,000 students at each threshold; student 

BKT parameters match run-time mastery learning 
parameters.] 

Figure 3 provides distributions over skills of the frequency with 
which student pre-mature mastery judgment (false positives) 
occurs for the four mastery thresholds. Coupled with Figure 2, we 
see a trade-off between pre-mature mastery judgments, which 
decrease, and lagged opportunities, which increase, as we increase 
the mastery threshold. We expect no more than 5% (indeed, 
generally less than 5%) of students to be pre-maturely judged as 
having acquired skill knowledge/mastery at the 95% and 98% 
thresholds. 

                                                                    
2 With few exceptions, in all simulations we report, for each skill, 

the median, mean, and modal number of lagged opportunities 
are relatively close in value.  The median takes on an integral 
value in these simulations, making it more readily interpretable. 

 

 
Figure 3. Distribution of proportion of simulated students (per 

skill) pre-maturely judged to have skill mastery [14 skills 
simulated for 10,000 students at each threshold; student BKT 

parameters match run-time mastery learning parameters] 

4.1.2 Over-Practice 
We seek to quantify over-practice, and the extent to which ideal 
students endure it, as a function of mastery thresholds and CT 
mastery learning parameters. 

4.1.2.1 Acceptable Lag After Knowledge Acquisition 
Recall that the second phase in the progression to mastery in 
Figure 1 begins at knowledge acquisition (opportunity K) and 
continues until the end of what we have called the acceptable lag 
at opportunity L. We define this acceptable number of lagged 
opportunities for each particular skill and mastery threshold so 
that we can quantify over-practice as opportunities after 
knowledge acquisition beyond an acceptable lag. 

We begin by noting that properties of the BKT model entail that 
the inferred probability of student skill knowledge never falls to 
zero for non-zero P(L0), P(T), and P(G).  Rather, each skill 
parameter quadruple implies a theoretical minimum probability of 
knowledge. We can estimate the theoretical minimum probability 
of knowledge per skill by simulating “runs” of consecutive 
incorrect student opportunities and noting the asymptotic value to 
which the probability of knowledge decreases. 

Figure 4 shows how the BKT estimated probability of knowledge 
for the skill with P(L0) = 0.631, P(T) = 0.11, P(G) = 0.282, and 
P(S) = 0.228, decreases over a series of consecutive incorrect 
responses from P(L0) to its theoretical minimum at roughly 0.161 
in about six opportunities. 

We determine the number of consecutive correct opportunities 
required to take a student from the theoretical minimum 
probability of knowledge, for each skill, to the mastery threshold 
probability.  The length of this run is the acceptable amount of 
lagged opportunities3; any simulated student that encounters a lag 

                                                                    
3 This definition presumably provides an upper bound for this 

value. Other definitions may be appropriate (e.g., based on 
analysis of empirical data), but we leave this topic for future 
research.   

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 37



www.manaraa.com

of opportunities with length greater than the acceptable number is 
considered to encounter over-practice for that skill. For the skill 
with theoretical minimum illustrated in Figure 4, the acceptable 
lags at the 75%, 90%, 95%, and 98% thresholds are 3, 4, 4, and 5, 
respectively.  We determine the proportion of students who 
encounter over-practice and compare this to the proportion of 
students with pre-mature mastery judgment. 

 
Figure 4. Illustration of theoretical minimum probability of 

skill knowledge over “run” of consecutive incorrect responses 
for a skill [P(L0) = 0.631; P(T) = 0.11; P(G) = 0.282; P(S) = 
0.228]; dashed-line marks approximate asymptote at 0.161. 

4.1.2.2 Frequency and Magnitude of Over-Practice 
Figure 5 shows that by increasing the threshold for mastery we 
tend to increase the proportion of students to whom over-practice 
opportunities are provided4 (as well as the variability of this 
proportion over skills). This illustrates the trade-off between pre-
mature mastery judgment and over-practice (in addition to the 
noted trade-off between pre-mature mastery and lagged practice 
opportunities).   

Notably, increasing the threshold does not drastically increase the 
number of over-practice opportunities the median simulated 
student is expected to see, only the probability that a student will 
get some over-practice. The median number of over-practice 
opportunities per student-skill interaction with over-practice is 1 
for the 75%, 90%, and 95% thresholds, and 2 for the 98% 
threshold.  While over-practice is assigned for roughly 30% of 
students at the traditional 95% threshold, the median student, for 
most skills, does not experience much over-practice.  The 
traditional 95% mastery criterion seems to embody a conservative 
tradeoff: some students will receive a small amount of over-
practice, but pre-mature mastery judgment is mostly avoided. 

                                                                    
4 It is not clear to us why the median proportion for skills at the 

98% threshold is lower than the 95% threshold. These median 
values are closer (with the median at 98% greater than that at 
95%) under other conditions we describe later. 

 
Figure 5. Distribution of proportion of simulated students (per 

skill) assigned over-practice opportunities (i.e., at least one 
opportunity beyond the acceptable lag for a particular skill) 

[14 skills simulated for 10,000 students at each threshold; 
student BKT parameters match run-time mastery learning 

parameters.] 

4.2 Worst-Case #1: Homogenous, Non-
Matching Student Population 
Next, we consider one type of worst-case scenario.  Simulated 
students are drawn from a homogenous population, but these 
student parameters uniformly mismatch the BKT parameters used 
for run-time mastery assessment. That is, the system is doing the 
poorest possible job of modeling the student’s learning 
parameters. For the same 14 skills, we specify mismatched 
student generating parameters in the following manner where PS 
stands for mismatched student parameters and PM corresponds to 
mastery assessment parameters that will be used: 

• PS(L0) = 1 – PM(L0) 

• PS(T) = 1 – PM(T) 

• PS(G) = 0.5 – PM(G) 

• PS(S) = 0.5 – PM(S) 

We generate data, in the same manner as the previous section, for 
10,000 students for up to thirty opportunities.  

4.2.1 Efficient Practice 
Figure 6 provides the frequency with which particular median 
lagged opportunity counts occur over the 14 skills at the four 
mastery thresholds.  We see a shift toward more skills with greater 
median counts of lagged opportunities, especially at the 95% and 
98% thresholds.  Coupled with Figure 7, we see evidence of the 
same trade-off between pre-mature mastery judgment and lag 
opportunities as in the best-case scenario, but we find (mostly) far 
lower proportions of students at each threshold with pre-mature 
mastery judgment. 

Figure 7 also makes apparent that two skills have substantially 
greater proportions of students with pre-mature mastery. These 
correspond to two of the 14 skills with P(T) > 0.8. Since they have 
a high mastery learning PM(T) parameter and simulated students 
have P(T) < 0.2, the mastery learning assessment naturally counts 
students as acquiring knowledge pre-maturely with greater 
frequency. 
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For this scheme of generating worst-case, mismatching student 
parameters (and the corresponding 14 skills’ parameters), we 
again find evidence that BKT mastery assessment is generally 
conservative, erring on the side of providing students with more 
opportunities after knowledge acquisition, rather than pre-
maturely judging mastery. 

 
Figure 6. Frequency (count of skills) of median student 

opportunities beyond knowledge acquisition for four run-time 
mastery threshold probabilities [Student BKT parameters 

uniformly “mismatch” 14 run-time mastery learning 
parameters.] 

 
Figure 7. For “mismatched” student skill parameters, 

distribution of proportion of simulated students (per skill) 
pre-maturely judged to have skill mastery, grouped by run-

time mastery thresholds 

4.2.2 Over-Practice 
Compared to the best case “matching” parameter scenario, Figure 
8 shows that the proportions of students that experience over-
practice at each mastery threshold are far greater (and increase 
with increasing mastery threshold).  However, the amount of 
over-practice through which simulated students must work 
remains modest; the median student that experiences over-practice 
sees 2 over-practice opportunities per skill over all the skills at the 

75% threshold, 3 at the 90% and 95% threshold, and 4 at the 98% 
threshold.  Again, we do not witness particularly onerous over-
practice in general, despite the mismatch of student parameters 
and mastery assessment parameters. 

 
Figure 8. For “mismatched” student skill parameters, 

distribution of proportion of simulated students (per skill) 
assigned over-practice opportunities  

4.3 Worst Case #2: Completely 
Heterogeneous Population, Random Student 
Parameters 
We now consider simulating maximally heterogeneous 
populations of simulated students for the same 14 skills.  Mastery 
learning parameters correspond to the 14 skill parameter 
quadruples, but for each skill and each student, BKT parameters 
for a generating model are randomly sampled as follows: 

• PS(L0), PS(T) ~ Uniform(0.0, 1.0) 

• PS(G), PS(S) ~ Uniform(0.0, 0.5). 

This corresponds to testing each CT skill parameter quadruple for 
robustness against a worst-case in which there are no stable sub-
populations of students; data for each student are drawn from a 
different, random generating model.  We consider how such a 
scenario would affect the CT’s ability to assign efficient practice 
based on BKT mastery assessment. 

4.3.1 Efficient Practice 
For worst-case #2, the pattern of trade-offs in efficient practice are 
the same as in the previous two cases, but frequencies of median 
lagged opportunities (Figure 9) and proportions of students judged 
for mastery pre-maturely (Figure 10) fall in between the best-case 
scenario and the previous worst-case scenario.  There is also a 
larger variance in the distribution of the proportion of students per 
skill that get pre-mature mastery judgments than in either of the 
previous two scenarios we have considered.   

This accords with our expectations, as randomly generated 
parameters will sometimes be very close (and other times far 
removed) from each skill’s mastery learning parameters.  Thus, a 
maximally heterogeneous population is really a mixture of best-
case students, worst-case students, and students somewhere in the 
“middle” of the two.  Further, given random generation of student 
parameters we reasonably expect an increase in variance in pre-
mature mastery judgment compared to either of the homogeneous 
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simulated student populations we have considered.  As with the 
mismatching student population, the two outlier skills for pre-
mature mastery judgment are those with P(T) > 0.8, but the 
proportion for these two skills is smaller than in the case of the 
mismatching population, as we expect. 

 
Figure 9. Frequency (count of skills) of median student over-
practice opportunities for four run-time mastery threshold 
probabilities with random student BKT parameters & 14 

“cluster” skill quadruples as mastery parameters 

 
Figure 10. For random student skill parameters, distribution 
of proportion of simulated students (per skill) pre-maturely 

judged to have skill mastery 

4.3.2 Over-Practice 
As in the previous two cases, we see that the proportions of 
students experiencing over-practice per skill generally increase as 
we increase the mastery threshold probability (Figure 11).  
Further, most values of these proportions fall roughly in between 
the medians for the previous two cases.  Median counts of over-
practice opportunities over all skills at each mastery threshold are 
also similar to those in the other scenarios (median = 2 for 75%, 
90%, and 95%; median = 3 for 98%). 

 

 
Figure 11. For random student skill parameters, distribution 
of proportion of simulated students (per skill) assigned over-

practice opportunities 

5. VISUALIZATION WITH ROC CURVES 
One way to conceptualize assessing student skill mastery is as the 
problem of “detecting” learning from a noisy signal.  With errors 
in mastery assessment cast in terms of false positives and false 
negatives, or Type I and Type II errors, a natural way to visualize 
mastery learning classification of student-skill opportunities and 
trade-offs between false positives and false negatives, as we adjust 
the mastery threshold, is via Receiver Operating Characteristic 
(ROC) curves.   

Figure 12 provides scatterplots of true positive rate versus false 
positive rate (roughly ROC curve graphs) for each skill from our 
simulations with random student skill parameters, grouped by 
mastery threshold probability.  The cluster of points at the bottom 
left (along with the dearth of points, two outliers aside, in the 
center and far right of the graph) indicate the relative 
“conservativeness” of BKT mastery learning for the skill 
parameters we consider. These points represent true positive rates 
that are relatively low mostly because of increased false negative 
errors, corresponding to opportunities that lag student knowledge 
acquisition (whether over-practice beyond an acceptable lag or 
not).   

Recall that we take a greater proportion of false negatives than 
false positives to be a virtue of a conservative tutoring system that 
decreases the risk of pushing students along too quickly. Two 
outliers on the graph (the two right-most points of the graph) 
represent skills each with false positive rates near 0.5 and 1, for 
the 90% and 75% mastery thresholds, respectively. Those points 
correspond to the same two skills we identified in §4.2.1 and 
§4.3.1 with P(T) > 0.8.  We find a similar cluster of points (and 
overall structure) in the same graph constructed over best-case 
simulations.  High P(T) means we assume that students learn 
quickly, so these results may indicate that such an assumption for 
a skill is more likely to produce high false positive rates, 
especially for lower mastery thresholds, regardless of the makeup 
of the student population. 
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Figure 12. Scatterplots of true positive rate versus false 
positive rate (roughly ROC graphs) for each skill from 

simulations with random student skill parameters, grouped by 
mastery threshold probability 

Since rates are calculated over student practice opportunities, false 
positive instances are limited to one per student per skill, because 
the student no longer practices a skill after mastery judgment. 
However, there can be many false negative errors for a single 
student. Simulating students without mastery learning, in general, 
would allow us to ascertain more balanced false positive rates for 
BKT mastery learning.   

Analogous graphs can be constructed at the level of students.  
This introduces some complications, since the assessment of the 
classification of a student as a true positive presumably depends 
not just on the performance of the mastery algorithm, but also on 
the estimation of acceptable lag for that skill. Many students will 
be counted as true positives, despite the fact that the tutor is 
committing false negative errors within the acceptable lag at the 
transaction level. As such, we should expect a lower false 
negative rate at the student level than at the opportunity level. We 
leave such extensions for future research, but note that there are 
important similarities between the type of analysis we provide and  
“signal detection for learning.” 

6. DISCUSSION 
The trade-off, as a function of mastery probability threshold, of 
student pre-mature mastery judgment (false positives), lagged 
skill opportunities, and over-practice (false negatives) is 
consistent across different best-case and worst-case skill modeling 
assumptions.  The value of the mastery probability threshold and 
skill modeling assumptions influence the magnitude of these error 
rates when calculated as proportions of students pre-maturely 
judged to have achieved mastery or subjected to over-practice.  
However, we find that for the median student subjected to over-
practice, regardless of the skill modeling scenario, the amount of 
over-practice as a count of opportunities is not, on the surface, 
particularly onerous.  Thus, BKT and a variety of skill parameters 
are generally robust to committing the types of errors we have 
quantified, with the exception of two outlier skills we discovered 
with P(T) > 0.8 for which pre-mature mastery judgment occurred 
more frequently in the two worst-case scenarios.  This suggests 
that without strong empirical evidence that certain skills are 

learned quickly, we should err on the side of setting lower values 
of P(T) for mastery learning. 

Over all three simulation scenarios, we find that the conventional 
95% mastery threshold probability leads to pre-mature mastery 
judgment for under 5% of students per skill for the majority of 
cases.  Further, onerous over-practice is generally not assigned to 
students at these thresholds, making it less likely that student time 
will be “crowded out” by practice for skills they have already 
mastered and making it more likely that they will cover more 
course material over all.  We emphasize that our results are 
limited to the skill parameter quadruples we considered that are 
broadly representative of those deployed in the CT [13], but 
broader patterns (e.g., that using P(T) > 0.8 leads to more false 
positives) seem to emerge and should be studied further. 

Beyond this computational, pragmatic justification for the 
conventionally deployed mastery threshold, we provide a 
framework for thinking about the BKT mastery threshold as a 
parameter that can be tuned according to course developers’ 
appetite for risk, in the sense of trading off false positives for false 
negatives, and how each type of error will affect student learning, 
course completion, and other instructional outcomes.  There is 
potential that a moderate amount of over-practice might have 
additional value in preventing future forgetting. This framework 
and these (or similar) results could be used to calibrate tutors to 
optimize student practice for future retention. Finally, we 
provided a better theoretical understanding of optimal 
performance of BKT-based mastery learning. 

This work calls for extension in several ways.  Beyond 
considering our relatively limited best-case and worst-case 
scenarios, we should investigate a greater range of average-case 
possibilities.  For example, students with diverse prior knowledge, 
learning rates, and other learning characteristics use real-world 
ITSs. How much fine-tuning of run-time mastery learning 
parameters, to student sub-populations or even individual students 
(e.g., [10], [11]), is necessary to prevent both over-practice of 
skills and pre-mature mastery judgment? 

Future work should also address a broader, more exhaustive range 
of BKT parameter quadruples.  Those we analyze here are 
important because they are representative of real-world data 
collected over thousands of students and skills, but we should 
seek a better understanding of the full parameter space and how 
different parameter combinations interact with factors like student 
sub-population composition and mastery learning thresholds, a 
greater number of which should also be systematically explored 
and tested.  Finally, depending on the investigator and educator 
interests, the nature of particular curricula, and other concerns, 
exploring alternative conceptualizations of over-practice and 
under-practice (cf. [7]) (and their connection to our work based on 
practice opportunities counts) is an interesting avenue for future 
research.  
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ABSTRACT 

Learning involves a rich array of cognitive and affective states. 

Recognizing and understanding these cognitive and affective 

dimensions of learning is key to designing informed interventions. 

Prior research has highlighted the importance of facial 

expressions in learning-centered affective states, but tracking 

facial expression poses significant challenges. This paper presents 

an automated analysis of fine-grained facial movements that occur 

during computer-mediated tutoring. We use the Computer 

Expression Recognition Toolbox (CERT) to track fine-grained 

facial movements consisting of eyebrow raising (inner and outer), 

brow lowering, eyelid tightening, and mouth dimpling within a 

naturalistic video corpus of tutorial dialogue (N=65). Within the 

dataset, upper face movements were found to be predictive of 

engagement, frustration, and learning, while mouth dimpling was 

a positive predictor of learning and self-reported performance. 

These results highlight how both intensity and frequency of facial 

expressions predict tutoring outcomes. Additionally, this paper 

presents a novel validation of an automated tracking tool on a 

naturalistic tutoring dataset, comparing CERT results with manual 

annotations across a prior video corpus. With the advent of 

readily available fine-grained facial expression recognition, the 

developments introduced here represent a next step toward 

automatically understanding moment-by-moment affective states 

during learning. 

Keywords 

Facial expression recognition, engagement, frustration, affect, 

computer-mediated tutoring 

1. INTRODUCTION 
Over the past decade, research has increasingly highlighted ways 

in which affective states are central to learning [6, 21]. Learning-

centered affective states, such as engagement and frustration, are 

inextricably linked with the cognitive aspects of learning. Thus, 

understanding and detecting learner affective states has become a 

fundamental research problem. In order to identify students’ 

affective states, researchers often investigate nonverbal behavior. 

A particularly compelling nonverbal channel is facial expression, 

which has been intensely studied for decades. However, there is 

still a need to more fully explore facial expression in the context 

of learning [6]. 

Recent research has identified facial expressions that are related to 

self-reported and judged learning-centered affective states [1, 7, 9, 

18, 25], which typically include boredom, confusion, engaged 

concentration, and frustration. However, more research is needed 

to fully explore the relationships between facial movement and 

learning-centered affective states. For instance, timing and 

intensity of facial expressions have only just begun to be explored 

in the context of learning [18]. 

The Facial Action Coding System (FACS) [10] has been widely 

used to study detailed facial movements for decades. FACS 

enumerates the possible movements of the human face as facial 

action units. Thus, FACS is an objective measure used to identify 

facial configurations before interpreting displayed affect. Because 

FACS quantifies facial movements present in displays of emotion, 

it allows researchers to identify facial components of learning-

centered affect, which have been found to be different from those 

in everyday emotions [4, 6, 7, 9, 18, 27]. Identifying these action 

units is a time-intensive manual task, but a variety of computer 

vision tools are in current use, most often focusing on tracking 

facial feature points [4, 27]. Facial feature tracking tools 

recognize the presence of a face and then locate facial features 

such as the corners of the mouth and eyes. Generally, there are 

two distinct families of tools: low-level tools that track facial 

features [3] (e.g., which way the head is turned and where points 

are positioned) and tools that provide affective interpretations [17, 

23, 24] (e.g., smiling, emotions). However, the tool used in this 

study, the Computer Expression Recognition Toolbox (CERT), 

offers a mid-level alternative. CERT produces intensity values for 

a wide array of FACS facial action units, thus enabling fine-

grained analyses of facial expression [19].  

This paper presents an automated facial recognition approach to 

analyzing student facial movements during tutoring and an 

examination of the extent to which these facial movements 

correspond to tutoring outcomes. The novel contributions are two-

fold. First, the output of the facial action unit tracking tool, 

CERT, was validated through comparing CERT output values 

with manual FACS annotations. The results indicate excellent 

agreement at the level of presence versus absence of facial 

movements. Naturalistic video is challenging for computer vision 

techniques, and this validation is the first of its kind on a 

naturalistic tutoring video corpus. Second, models were 

constructed to examine whether the intensity and frequency of 

facial expressions predict tutoring outcomes. The results show 

that several specific facial movements predict tutoring outcomes. 
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For instance, brow lowering intensity (i.e., the magnitude of the 

CERT output value) was associated with reduced perception of 

the tutoring session as being worthwhile, and greater self-reported 

frustration. Additionally, frequency of mouth dimpling predicts 

increased learning gains and self-reported task success. These 

results represent a next step toward large-scale analyses and 

understanding of learning-centered affective states in tutoring. 

2. RELATED WORK 
D’Mello and colleagues have a longstanding line of research into 

the mechanisms of facial expression and learning-centered 

affective states. In recent years, stable correlations between 

specific facial action units and self-reported or judged affective 

states have been identified [7, 9]. Brow lowering (AU4) and 

eyelid tightening (AU7) were correlated with confusion, while 

inner and outer brow raising (AU1, AU2) were correlated with 

frustration.  

Another prominent line of research is that of Baker and 

colleagues. After extensively observing student nonverbal 

behaviors during interactions with tutoring systems, they 

developed a protocol for judging students’ affective states, such as 

boredom or engagement [1, 22]. This has enabled lightweight 

annotation of affective states across a wide variety of classrooms. 

Automated tools extend these approaches to studying student 

facial expressions, with potential to confirm current hypotheses 

across large-scale datasets. 

The intelligent tutoring systems community has also begun 

integrating real-time facial expression tracking into studies of 

learning-centered affective states [5, 8]. These studies are a 

parallel line of research to that of understanding student affect. 

Incorporating nonverbal behavior tracking into intelligent tutoring 

systems is a necessary step toward meaningful real-time affective 

interventions. There has also been recent research that may lead to 

robust sensor-free affect detection [2]. Such an approach 

identifies patterns of behavior in log data that are associated with 

observed affective states. Then, models are built from the log data 

alone to predict affective states. 

In prior research toward automated analysis of learning-centered 

affect, the creators of CERT applied the tool to video corpora 

taken during demanding tasks [18, 25]. Particularly, the facial 

expressions of children were investigated in order to compile a set 

of facial expressions relevant to the younger population [18]. 

These studies inform the use of automated facial expression 

recognition. A key difference in the present study is that we are 

presenting a comparatively much larger scale of analysis (over 80 

times the duration of video). Additionally, we conducted a novel 

validation that compared values of CERT output with manual 

FACS annotations across a naturalistic tutoring video corpus. 

3. TUTORING VIDEO CORPUS 
The corpus consists of computer-mediated tutorial dialogue for 

introductory computer science collected during the 2011-2012 

academic year. Students (N=67) and tutors interacted through a 

web-based interface that provided learning tasks, an interface for 

computer programming, and textual dialogue. The participants 

were university students in the United States, with average age of 

18.5 years (stdev=1.5). The students voluntarily participated for 

course credit in an introductory engineering course, but no prior 

computer science knowledge was assumed or required. Each 

student was paired with a tutor for a total of six sessions on 

different days, limited to forty minutes each session. Recordings 

of the sessions included database logs, webcam video, skin 

conductance, and Kinect depth video. This study analyzes the 

webcam video corpus. The student workstation configuration is 

shown in Figure 1. The JavaTutor interface is shown on the next 

page in Figure 3. 

 

Figure 1. Student workstation with depth camera, skin 

conductance bracelet, and computer with webcam 

Before each session, students completed a content-based pretest. 

After each session, students answered a post-session survey and 

posttest (identical to the pretest). The post-session survey items 

were designed to measure several aspects of engagement and 

cognitive load. The survey was composed of a modified User 

Engagement Survey (UES) [20] with Focused Attention, 

Endurability, and Involvement subscales, and the NASA-TLX 

workload survey [16], which consisted of response items for 

Mental Demand, Physical Demand, Temporal Demand, 

Performance, Effort, and Frustration Level. Student survey items 

relevant to the results presented in Section 4 are shown in Figure 

2. Students were intentionally not asked about a wider set of 

emotions in order to avoid biasing their future interactions.  

 
Endurability (UES):  

   Working on this task was worthwhile. 

   I consider my learning experience a success. 

   My learning experience was rewarding. 

   I would recommend using JavaTutor to my friends and family. 

Temporal Demand (NASA-TLX): 

   How hurried or rushed was the pace of the task? 

Performance (NASA-TLX):  

   How successful were you in accomplishing what you were     

     asked to do? 

Frustration Level (NASA-TLX):  

   How insecure, discouraged, irritated, stressed, and annoyed  

     were you? 
 

Figure 2. Subset of student post-session survey items 
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Figure 3. The JavaTutor interface  

The tutoring video corpus is comprised of approximately four 

million video frames totaling thirty-seven hours across the first 

tutoring session. Two session recordings were missing due to 

human error (N=65). The recordings were taken at 640x480 

pixel resolution and thirty frames per second. CERT 

successfully tracked faces across a great majority of the tutoring 

video corpus (mean=83% of frames tracked, median=94%, 

stdev=23%). 

3.1 Facial Expression Recognition 
The Computer Expression Recognition Toolbox (CERT) [19] 

was used in this study because it allows frame-by-frame tracking 

of a wide variety of facial action units. CERT finds faces in a 

video frame, locates facial features for the nearest face, and 

outputs weights for each tracked facial action unit using support 

vector machines. For a detailed description of the technology 

used in CERT, see [26]. 

Based on observations from prior studies [12, 13], we selected a 

subset of the 20 facial action units that CERT detects as the 

focus of the present analyses. This set of facial action units was 

informed by a prior naturalistic tutoring video corpus [13], used 

in this study as a validation set, consisting of approximately 

650,000 FACS-annotated video frames and seven tutoring 

sessions. In this corpus, sixteen facial action units were 

annotated. The five most frequently occurring action units each 

occurred in over 10% of the facial expression events. The 

remaining facial action units occurred substantially less 

frequently. The five frequently occurring action units were 

selected for the further analysis presented here on the new 

corpus. Table 1 shows the relative frequency of each action 

unit’s participation in discrete facial expression events and the 

number of frames annotated with each action unit from the 

validation corpus. 

A screenshot of CERT processing is shown in Figure 4. In the 

course of processing videos with CERT, we noted that the range 

of output values can vary between individuals due to their hair, 

complexion, or wearing eyeglasses or hats. This has also been 

noted by the creators of CERT [26]. In order to better capture 

instances of facial expression displays, we introduce an 

adjustment procedure for individual tracking differences. First, 

the average output value for each student was computed for each 

action unit. These values correspond to individual baselines of 

facial expression. The average output value per session was 

subtracted for each action unit, resulting in individually adjusted 

CERT output. This adjustment was applied to all CERT values 

presented in this paper. Automatically recognized instances of 

the selected action units are shown in Figure 5, with 

corresponding adjusted CERT output. While any positive output 

value indicates that CERT recognizes an action unit, we used an 

empirically determined threshold of 0.25 to reduce the potential 

for false positives. This threshold was based on observations of 

CERT output in which action unit instances that were more than 

slightly visible corresponded with output values above 0.25. 

CERT successfully tracked faces across a large majority of the 

validation corpus (mean=76% of frames tracked, median=87%, 

stdev=23%). 

Table 1. The five most frequent facial action units  

in the validation corpus [13] 

Facial action unit Frames Event Freq. 

AU1: Inner Brow Raiser 12,257 15.5% 

AU2: Outer Brow Raiser 15,183 21.7% 

AU4: Brow Lowerer 127,510 18.6% 

AU7: Lid Tightener 9,474 13.2% 

AU14: Dimpler 14,462 24.2% 
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Figure 4. Screenshot of CERT video processing 

 

     

AU1(0.80) AU2(-0.12) AU1(0.17) AU2(0.27) AU1(-0.02) AU2(0.07) AU1(-0.22) AU2(-0.27) AU1(-0.02) AU2(0.00) 

AU4(0.25) AU7(-0.23) AU4(0.08) AU7(-0.09) AU4(0.47) AU7(0.08) AU4(0.11) AU7(0.26) AU4(-0.04) AU7(0.03) 

AU14(-0.06) AU14(-0.53) AU14(-0.85) AU14(-0.04) AU14(0.46) 

AU1 and AU4: 

Inner brow raiser and 

brow lowerer 

AU2: 

Outer brow raiser  

 

AU4: 

Brow lowerer  

 

AU7: 

Lid tightener  

 

AU14: 

Dimpler  

 

Figure 5. Automatically recognized facial action units (bold values are above selected threshold of 0.25) 

3.2 Validation 
CERT was developed using thousands of posed and 

spontaneous facial expression examples of adults outside of the 

tutoring domain. However, naturalistic tutoring data often has 

special considerations, such as a diverse demographic, 

background noise within a classroom or school setting, no 

controls for participant clothing or hair, and facial occlusion 

from a wide array of hand-to-face gesture movements. 

Therefore, we aim to validate CERT’s performance within the 

naturalistic tutoring domain. CERT’s adjusted output was 

compared to manual annotations from a validation corpus, as 

described in Section 3.1. 

The creators of CERT have applied the tool to the problem of 

understanding children’s facial expressions during learning. To 

validate CERT’s output, they compared it with manual FACS 

annotations across 200 video frames [18]. However, the goal in 

this analysis is to validate CERT’s performance across a 

validation corpus of approximately 650,000 video frames. It is 

important to know whether average CERT output values for 

video frames with a specific facial movement are different from 

those without that facial movement. If the values are 

differentiable, then CERT may be an appropriate tool for general 

use at a large scale. If the values cannot be distinguished, then 

CERT is likely to provide many false positives and false 

negatives. Thus, this novel validation analysis provides needed 
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insight into how well CERT performs across an entire corpus. 

The design of the validation analysis is shown in Figure 6. 

Adjust CERT Output: Adjusting CERT output values 

with a baseline for each individual allows for 

comparison across students 

 

Binary Split on AU: Output values for each student are 

divided between AU-present and AU-not-present and 

then averaged; these values serve as the input variable 

for logistic regression 

 

Build Predictive Model: A logistic regression model is 

built from all students’ average values for AU-present 

and AU-not-present, producing predicted categories of 

AU/Not-AU 

 

Compare Predictions: Compute Cohen’s Kappa and 

accuracy from the logistic regression model predictions 

and manual tags to evaluate how well AU/Not-AU was 

predicted 

Figure 6. Design of the validation analysis 

Adjusted CERT output was computed for each video frame as 

described in Section 3.1. The CERT output values were then 

averaged within five binary splits, one for each facial action unit 

under consideration. Each binary split was comprised of frames 

with a specific facial action present and frames without that 

particular action unit, as labeled in the validation corpus. For 

example, to evaluate performance on brow lowering (AU4), 

video frames were divided between presence or absence of AU4 

via the manual annotations. Once the binary split was 

performed, the frames were further subdivided by student. Thus, 

each student has an average value for frames with a specific 

action unit present and an average value for frames without that 

action unit. Logistic regression models were constructed using 

the average value as the sole parameter. One logistic regression 

model was built per action unit, for a total of five. The binary 

response variable categories (action unit present/action unit 

absent) were produced from each regression model. The 

predicted categories were compared to the categories from 

manual annotation, yielding Cohen’s κ and percent accuracy.  

The validation results show that CERT output has an excellent 

capability to distinguish facial expression events from baseline 

across the validation corpus, yielding an average κ across the 

five action units of 0.82. Naturalistic data is challenging for 

computer vision techniques, so the validation analysis confirms 

the accuracy of CERT facial expression recognition. Table 2 

displays the validation results. 

Table 2. Comparison of agreement on validation corpus [13] 

Manual FACS vs. logistic regression of CERT output 

FACS Coder AU1 AU2 AU4 AU7 AU14 

Manual κ*
 0.88 0.82 0.79 0.78 0.73 

CERT κ*
 0.86 0.86 0.68 1 0.71 

CERT Accuracy
*
 93% 93% 85% 100% 86% 

*
Manual κ on face events; CERT evaluated on avg. output 

In order to explore the effectiveness of the correction for 

individual differences described in Section 3.1, the validation 

analysis was performed again, this time without corrected output 

values. With raw CERT output, the logistic regression models 

could not distinguish between the average values for AU-present 

versus AU-not-present (Table 3). Thus, agreement with the 

manual annotations was poor. The validation analyses illustrate 

that CERT output should be corrected with average values if a 

comparison across individuals is desired. This correction is 

straightforward to apply in post-processing. In a real-time 

application of such a tool, a running average could be computed 

at each video frame.  

Table 3. Secondary validation analysis on raw CERT output 

 AU1 AU2 AU4 AU7 AU14 

CERT κ 0.14 0.29 0.05 0.29 0.29 

CERT Accuracy 57% 64% 54% 64% 64% 

 

A difficulty that remains for facial expression recognition is face 

occlusion, where the face is covered by an object, hand, etc. One 

source of face occlusions is hand-to-face gestures [14], where 

one or two hands touch the lower face. These gestures are 

particularly prominent in our tutoring video corpus, as students 

often place a hand to their face while thinking or cradle their 

head in both hands while apparently tired or bored. These 

gestures can result in loss of face tracking or incorrect output. 

Accordingly, our analyses considered only video frames where 

face tracking and registration were successful (i.e., where CERT 

produced facial action unit output). Examples of both types of 

occlusion errors are shown in Figure 7. The CERT adjusted 

output values for the mostly occluded face frame (in the left 

image) are [AU1 = 1.34, AU2 = 0.65, AU4 = 0.62, AU7 = 0.30, 

AU14 = -1.17]. If these values are interpreted with the 0.25 

threshold, then they represent presence of multiple action units, 

but that is clearly not the case when viewing the video. CERT 

was unable to find the student’s face in the partially occluded 

frame (in the right image), though the presence of brow 

lowering is apparent. While hand-to-face gestures present a 

significant complication in naturalistic tutoring data, there has 

been preliminary progress toward automatically detecting these 

gestures [14], so their effect may be mitigated in future facial 

expression tracking research. 

  

Figure 7. Facial recognition errors due to gestures:  

mostly occluded (left) and partially occluded (right) 

4. PREDICTIVE MODELS 
Automated facial expression recognition enables fine-grained 

analyses of facial movements across an entire video corpus. 
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With such tracking, there is potential to discover previously 

unidentified ways in which both frequency [7] and intensity [18] 

of facial expressions inform diagnosis of student affective states. 

A first step toward this possibility is to quantify facial 

expressions as they occurred throughout tutoring and compare 

these with tutorial outcomes. Therefore, predictive models of 

both affective and learning outcomes were built leveraging both 

the average intensity and frequency of facial movements. Refer 

to Figure 5 for example images of the facial action units. 

Predictive models were constructed using minimum Bayesian 

Information Criterion (BIC) in forward stepwise linear 

regression, using JMP statistical software. These models are 

conservative in how they select predictive features because the 

explanatory value of added parameters must offset the BIC 

penalty for model complexity. Tutoring outcomes (affective and 

learning) were the dependent variables. Therefore, a model was 

constructed to predict each of the post-session survey scales and 

normalized learning gain (ten in total). The models for which 

facial action unit features were significantly explanatory are 

described below. 

4.1 Facial Action Units and Affective 

Outcomes 
Endurability was the student’s self-report of whether he or she 

found the tutoring session to be worthwhile and whether he or 

she would recommend JavaTutor tutoring to others. Endurability 

was predicted by inner brow raising (AU1) intensity and brow 

lowering (AU4) intensity. AU1 was a positive predictor, while 

AU4 was negative. After adjusting for degrees of freedom (i.e., 

the number of model parameters), the model effect size was r = 

0.37. The model is shown in Table 4. 

Table 4. Stepwise linear regression model for Endurability 

Endurability = Partial R2 Model R2 p 

-10.58 * AU4_Intensity 0.088 0.088 0.004 

6.60 * AU1_Intensity 0.075 0.162 0.023 

16.61 (intercept) <0.001 

RMSE = 10.01% of range in Endurability scale 

Temporal demand captures the student’s self-report of whether 

he or she felt rushed or hurried during the session. Temporal 

demand was negatively predicted by outer brow raising (AU2) 

frequency; that is, students with higher frequency of this action 

unit reported feeling more rushed during the session. The 

adjusted model effect size was r = 0.23. The model is shown in 

Table 5. 

Table 5. Stepwise linear regression model  

for Temporal Demand 

Temporal Demand = Partial R2 Model R2 p 

-103.15 * AU2_Freq  0.068 0.068 0.037 

34.90 (intercept) <0.001 

RMSE = 19.69% of range in Temporal Demand scale 

Performance was the student’s self-report of how successful he 

or she felt in accomplishing the task. Performance was 

positively predicted by frequency of mouth dimpling (AU14), so 

students who displayed AU14 more frequently reported a higher 

sense of performance. The adjusted model effect size was r = 

0.26. The model is shown in Table 6. 

Table 6. Stepwise linear regression model for Performance 

Performance = Partial R2 Model R2 p 

64.65 * AU14_Freq  0.081 0.081 0.022 

72.74 (intercept) <0.001 

RMSE = 8.50% of range in Performance scale 

Frustration was the student’s self-report of how insecure, 

agitated or upset he or she was during the tutoring session. 

Frustration was positively predicted by intensity of brow 

lowering (AU4); that is, students who displayed more intense 

AU4 reported feeling more insecure, agitated, or upset. The 

adjusted model effect size was r = 0.29. The model is shown in 

Table 7. 

Table 7. Stepwise linear regression model for Frustration 

Frustration = Partial R2 Model R2 p 

77.27 * AU4_Intensity  0.098 0.098 0.011 

-15.34 (intercept) 0.165 

RMSE = 17.05% of range in Frustration scale 

4.2 Facial Action Units and Learning Gain 
We considered whether facial movements predicted learning 

gains. Normalized learning gain was computed using the 

following formula if posttest score was greater than pretest 

score: 

NLG = Posttest - Pretest  

         1 – Pretest 

Otherwise, normalized learning gain was computed as follows: 

NLG = Posttest – Pretest 

      Pretest 

Normalized learning gain was predicted by outer brow raising 

(AU2) intensity and mouth dimpling (AU14) frequency. AU2 

was a negative predictor and AU14 was a positive predictor; that 

is, lower AU2 intensity corresponded to lower learning gain, 

while greater AU14 frequency corresponded to higher learning 

gain. The adjusted model effect size was r = 0.43. The model is 

shown in Table 8. 

Table 8. Stepwise linear regression model  

for Normalized Learning Gain 

Norm. Learn Gain = Partial R2 Model R2 p 

-2.29 * AU2_Intensity  0.145 0.145 <0.001 

2.13 * AU14_Freq 0.064 0.208 0.031 

0.73 (intercept) 0.053 

RMSE = 29.49% of range in Normalized Learning Gain 

5. DISCUSSION 
The results highlight that specific facial movements predict 

tutoring outcomes of engagement, frustration, and learning. 

Particular patterns emerged for almost all of the facial action 

units analyzed. We discuss each of the results in turn along with 

the insight they provide into mechanisms of engagement, 

frustration, and learning as predicted by facial expression. 

Average intensity of brow lowering (AU4) was associated with 

negative outcomes, such as increased frustration and reduced 

desire to attend future tutoring sessions. Brow lowering (AU4) 

has been correlated with confusion in prior research [7, 9] and 
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interpreted as a thoughtful state in other research [12, 18]. Here, 

the average intensity of brow lowering is found to be a positive 

predictor of student frustration and a negative predictor of 

students finding the tutoring session worthwhile. It may be that 

the tutor and student were unable to overcome student 

confusion, resulting in frustration instead of deep learning [9]. 

This interpretation is compatible with the theory of cognitive 

disequilibrium, which maps possible transitions from confusion 

to deep learning when a new concept is successfully acquired or 

to frustration when the concept cannot be reconciled with the 

student’s present understanding. It is also possible that in some 

cases, AU4 displays represent an angry or agitated affective 

state. AU4 is a key component of the prototypical display of 

anger [11]. Further study that accounts for student progress 

through the programming task may reveal whether there is a 

significant cognitive aspect to this result. 

Average intensity of inner brow raising (AU1) was positively 

associated with students finding the tutoring session worthwhile. 

At first glance, this finding seems to be in marked contrast to 

prior research that implicated both inner and outer brow raising 

as components of frustration displays [7]. However, intensity of 

the facial expressions was not considered in the prior work. AU1 

is also a component of prototypical expressions of surprise or 

sadness [11]. From among these possible affective states—

frustration, sadness, and surprise—surprise may be most likely 

to explain higher ratings of endurability. Students may have 

found the tutoring session to be surprising because it was a first 

exposure to computer programming. Surprise displays were 

observed while processing the videos through CERT and there 

were numerous such displays in the validation corpus. However, 

further study is required to disambiguate this result. 

Lower frequency of outer brow raising (AU2) predicted a lesser 

sense of being hurried or rushed; in contrast, greater intensity of 

displays of AU2 predicted reduced learning gains. Outer brow 

raising (AU2) has been associated with frustration in prior 

research [7]. As frustrated students may not achieve high 

learning gains, the intensity of AU2 may be indicative of 

frustration. However, AU2 was not predictive of students’ self-

reported frustration levels, so this may be capturing a subtly 

different phenomenon. An alternative interpretation comes from 

research into facial expressions of anxiety, in which “fear brow” 

facial movements were found to occur more often during anxiety 

[15]. The prototypical “fear brow” includes AU1, AU2, and 

AU4 present in combination [11]. An example of this facial 

expression is shown as AU2 in Figure 5. Greater anxiety during 

tutoring may result in feeling rushed or hurried and may also 

negatively impact learning. Thus, anxiety is consistent with the 

results for AU2. However, the other action units expected in 

facial expressions of anxiety, AU1 and AU4, did not have the 

same results. This is likely due to the conflicting nature of brow 

raising and brow lowering, as the CERT values for AU1 and 

AU4 may be reduced during their combined movement in the 

“fear brow” (see Figure 5). Further analyses of combined facial 

movements would provide insight into this complication of 

automated facial expression recognition. 

Frequency of mouth dimpling (AU14) predicted increased 

student self-reports of task success, as well as increased learning 

gains. There have not been conclusive associations of mouth 

dimpling (AU14) and learning-centered emotions. However, this 

action unit has been implicated as being involved in expressions 

of frustration [7] and concentration [18]. In this study, 

frequency of AU14 was positively predictive of both self-

reported performance and normalized learning gains. While the 

effect appears to be fairly subtle (effect size below 0.3 for both), 

it appears to be a display of concentration. This leads to the 

interesting question of whether AU4 or AU14 better represents a 

thoughtful, contemplative state. Further research in this vein 

may resolve the question. 

While eyelid tightening (AU7) was not added to any of the 

predictive models, there appear to be reasons for this. 

Observation of CERT processing and the results of the 

validation analysis indicate a way to adjust CERT’s output of 

AU7, enabling refined study of the action unit. AU7 is an 

important facial movement to include, as it has been correlated 

with confusion [7]. Our proposed method for correcting AU7 

output was informed by observing that CERT tends to confuse 

AU7 with blinking or eyelid closing. In prior manual annotation 

efforts, we explicitly labeled AU7 only when eyelid movements 

tightened the orbital region of the eye (as in the FACS manual). 

Thus, manual annotation seems more effective due to this 

complication of eye movements. However, note that CERT’s 

AU7 output perfectly agreed with manual annotations in our 

validation analysis. Thus, CERT clearly tracks eyelid 

movements well. The problem may be that CERT’s AU7 output 

is overly sensitive to other eyelid movements. One way to 

mitigate this problem may be to subtract other eye-related 

movements from instances of AU7. For instance, if AU7 is 

detected, but CERT also recognizes that the eyelids are closed, 

the detected AU7 event could be discarded. 

The results demonstrated predictive value not only for frequency 

of facial movements, but also intensity. The relationship 

between facial expression intensity and learning-centered affect 

is unknown, but perhaps action unit intensity is indicative of 

higher-arousal internal affective states. Additionally, it is 

possible that intensity will inform disambiguation between 

learning-centered affective states that may involve similar action 

units (e.g., confusion/frustration and anxiety/frustration). Lastly, 

intensity of facial movements may be able to aid diagnosis of 

low arousal affective states. For instance, a model of low 

intensity facial movements may be predictive of boredom, which 

current facial expression models have difficulty identifying. 

6. CONCLUSION 
This paper presented an automated facial recognition approach 

to analyzing student facial movements during tutoring using the 

Computer Expression Recognition Toolbox (CERT), which 

tracks a wide array of well-defined facial movements from the 

Facial Action Coding System (FACS). CERT output was 

validated by comparing its output values with manual FACS 

annotations, achieving excellent agreement despite the 

challenges imposed by naturalistic tutoring video. Predictive 

models were then built to examine the relationship between 

intensity and frequency of facial movements and tutoring 

session outcomes. The predictive models highlighted 

relationships between facial expression and aspects of 

engagement, frustration, and learning. 

This novel approach of fine-grained, corpus-wide analysis of 

facial expressions has great potential for educational data 

mining. The validation analysis confirmed that CERT excels at 

tracking specific facial movements throughout tutoring sessions. 

Future studies should examine the phenomena of facial 

expression and learning in more detail. Temporal characteristics 
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of facial expression can also be examined, such as how rapidly 

an expression appears and how quickly it vanishes. 

Additionally, with these results in hand, it will be important to 

conduct an analysis of the broader set of facial action units 

tracked by CERT to build a comprehensive understanding of the 

interplay between learning and affect. 
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ABSTRACT 
The rich interaction space of many educational games presents a 
challenge for designers and researchers who strive to help players 
achieve specific learning outcomes. Giving players a large amount 
of freedom over how they perform a complex game task makes it 
difficult to anticipate what they will do. In order to address this 
issue designers must ask: what are students doing in my game? 
And does it embody what I intended them to learn? To answer 
these questions, designers need methods to expose the details of 
student play. We describe our approach for automatic extraction 
of conceptual features from logs of student play sessions within an 
open educational game utilizing a two-dimensional context-free 
grammar. We demonstrate how these features can be used to clus-
ter student solutions in the educational game RumbleBlocks. Us-
ing these clusters, we explore the range of solutions and measure 
how many students use the designers’ envisioned solution. 
Equipped with this information, designers and researchers can 
focus redesign efforts to areas in the game where discrepancies 
exist between the designers’ intentions and player experiences.  

Keywords 

Educational Games, Representation Learning, Context-Free 
Grammars, Clustering 

1. INTRODUCTION 
Educational games are a growing sub-field of instructional tech-
nology. Researchers see video games as a compelling medium for 
instruction because they can offer students the ability to practice 
new skills within an authentic context that poses little personal 
risk [7]. These promising aspects of games have led many educa-
tional game designers to create “open games”, which allow stu-
dents to exercise creativity in how they solve problems. [12,25]. 
Open educational games are a form of exploratory learning envi-
ronment and commonly use ill-defined problems as part of their 
designs [11,19]. While the tendency toward open experiences is 
compelling for educational game designers, it presents problems 
when analyzing student learning, a necessary part of designing 
activities to foster robust learning. 

When designing an open game experience, the designer surren-
ders a degree of control over the nature and progression of the 
experience to the player [10]. This openness can be problematic to 
the designers of educational game experiences who are concerned 
that students receive some type of intended instruction and 
achieve a desired learning outcome. Educational game designers 
require a detailed picture of how students are playing a game in 
order to know if disparities exist between the designers’ intentions 
and player experiences; and, if such disparities do exist, designers 
need to know where to focus redesign efforts. 

To facilitate designers’ and researchers’ analysis of open educa-
tional games we propose a methodology for extracting conceptual 

features from student log data. We demonstrate our methodology 
in RumbleBlocks, an educational game designed to teach basic 
concepts of structural stability to young children [5]. The method 
takes as input logs of student gameplay and yields a set of concep-
tual features which describe student solutions. While some aspects 
of our approach are specific to RumbleBlocks, the general concept 
should be applicable to open educational games.  

To automatically generate features in RumbleBlocks, we use a 
four-step process that converts the log data from student play into 
feature vectors. This process, which is the primary contribution of 
this paper, consists of discretizing the log data containing student 
solutions; generating a grammar from the discretized logs; using 
the grammar to parse each solution; and converting the resultant 
parse trees into vectors that concisely represent the structural 
components of the solutions. In the following sections, we first 
describe the game RumbleBlocks and then provide the details of 
the four-step process to extract features. Afterwards, we show the 
results of using the extracted features to cluster student solutions, 
which enables the identification of misalignment between design-
er intentions and student actions.  

1.1 RumbleBlocks 
RumbleBlocks is an educational game designed to teach basic 
structural stability and balance concepts to children in kindergar-
ten through grade 3 (5-8 years old) [5]. It focuses primarily on 
three basic principles of stability: objects with wider bases are 
more stable, objects that are symmetrical are more stable, and 
objects with lower centers of mass are more stable. These princi-
ples are derived from the National Research Council’s Framework 
for New Science Educational Standards [21] and other science 
education curricula for the target age group. 
The game follows a sci-fi narrative where the player is helping a 
group of aliens who become stranded when their mother ship is 
damaged. Each level (see Figure 1 for an example level) consists 
of an alien stranded on a cliff with their deactivated space ship 
lying on the ground. The player must use an inventory of blocks 
to build a structure that is tall enough to reach the alien. In Figure 
1, the player is dragging a third block (the highlighted square 
block) from the inventory (top left) to the tower-under-
construction (bottom, center). Additionally, the player’s structure 
must also cover a series of blue “energy balls” floating in space 
which are narratively used to power the space ship, but serve to 
both guide and constrain the players’ designs. Once the student is 
confident in their design, they can place the spaceship on top of 
their tower triggering an earthquake that serves as a test of the 
tower’s stability. If, at the end of the quake, the tower is still 
standing and the spaceship is still on top, the student passes the 
level and proceeds to the next level; otherwise they start the level 
over again. 
Beyond the limits imposed by the energy ball mechanic and the 
types of available blocks, students are not very constrained in the 
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designs they can create. Each level in RumbleBlocks is designed 
to emphasize a particular principle of structural stability, and thus 
has a particular solution that was envisioned by the designers. 
However, students are not required to use it, and it is even possi-
ble that students may find a solution that is better than the one that 
the designer envisioned. Throughout development, the designers 
formed an intuition for the different groups of answer types being 
used by students, but they lacked methods for understanding how 
similar two answers were, and how many different answers were 
possible for each level. While it would have been possible to ren-
der all student solutions into screenshots, it would have been in-
feasible to manually comb through the thousands of towers gener-
ated by students. 
To address this issue of understanding the kinds of solutions stu-
dents are using, we have developed a method for extracting the 
conceptual features of game states in RumbleBlocks utilizing a 
two-dimensional context-free grammar. These features allow the 
designers and researchers of RumbleBlocks to examine the differ-
ent sub-patterns that players are using in building their towers. 
The conceptual features can be used as a way of comparing dif-
ferent towers and evaluating how often students produce the an-
swer which designers expected. It also enables us to zero in on the 
solutions they did not expect. To demonstrate the utility of these 
features we perform a clustering analysis, which assigns towers to 
groups, which correspond to the different unique solution that are 
possible on each level of the game. Designers can use this analysis 
to better understand the space of student solutions. 

2. CONCEPTUAL FEATURE EXTRACTION 
The first challenge in using RumbleBlocks data, or any education-
al game data, is to convert it into a form that is amenable to analy-
sis. This task is not easy because a single state, or tower, in Rum-
bleBlocks is both continuous and two-dimensional. Previous work 
has used an empirical measure of symmetry, width-of-base, and 

center-of-mass (human selected features) to describe a tower and 
has shown that these features can be predictive of student out-
comes [9]. These features give a useful abstract evaluation of 
students’ solutions; however, they are not descriptive enough to 
provide insight regarding specific patterns in student solutions. 
Without a more detailed description, it is hard for a designer to 
understand where new interventions need to be implemented to 
better facilitate student learning. In this work, we seek to remedy 
this problem by automatically extracting fine-grained conceptual 
features using unsupervised learning directly from two-
dimensional descriptions of towers. These features allow us to 
investigate the solution space at a higher level of detail. 
Our conceptual feature extraction process takes as input log files 
from all student play sessions and outputs all student towers as 
feature vectors that represent the towers’ structural components. 
The process consists of the four steps illustrated in Figure 2 and 
discussed in turn in the next sections. First, we discretize the rep-
resentations of all towers in the raw log files using a two-
dimensional grid. Second, we generate grammatical rules based 
on the discretized representations using a novel algorithm of our 
own design: the Exhaustive Rule Generator (ERG), which induces 
a two-dimensional grammar returning an exhaustive set of rules 
capable of parsing the entire set. Third, the discrete representa-
tions are parsed using the rules generated by ERG, which returns a 
set of parse trees describing each tower in a hierarchical fashion. 
Finally, we process the parse trees to generate a set of feature 
vectors that denote which concepts from the grammar are present 
within each tower. 

2.1 Discretization 
The first step in the conceptual feature extraction process is dis-
cretization, or gathering meaningful data from the logs and con-
verting it from a continuous two-dimensional space into a discrete 
two-dimensional space. The input to this step is the raw student 
log data, which contains action-by-action traces of student play 
sessions at replay fidelity. The logs generated by RumbleBlocks 
are intended to be post-processed through a replay analysis engine 
[9] which allows researchers to play logs back through an active 
instance of the game engine in order to extract information from 
live game states. Using this approach we are able to access infor-
mation on individual game objects, such as collision information 
or bounding box dimensions, without having to log everything at 
the time of play. Since the logs are being replayed within the same 
game engine, the replayed game states are consistent with what 
students experienced. 
To convert the continuous data from RumbleBlocks into discrete 
data we utilized a binning process. To bin a tower, the coordinates 
of the extents of each block’s bounding box (the smallest rectan-
gle which can be drawn around the block, a property accessible in 
the active game state) are translated such that the bottom left cor-
ner of the tower is at position (0,0). After translation, all of the 
edge coordinates of each block are divided by the size of the 

 
Figure 1. An example level from RumbleBlocks. The alien 

is stranded on the cliff and players must build a tower 
which is tall enough to reach him while also covering all 

blue “energy balls” to power his spaceship. 

 
Figure 2. The Conceptual Feature Extraction Process.  
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smallest block (a square), creating a unit grid. Finally, the edges 
of blocks are rounded to their nearest integer positions (e.g., an x 
position of 1.6 would be rounded to 2), in effect “snapping” 
blocks to grid positions, which helps to ensure that clear divisions 
can be drawn between blocks because some blocks are slightly out 
of alignment. After binning, we output the discretized towers as a 
set of blocks described by their type and converted left, right, top 
and bottom values. The block type is the concatenation of the 
original block’s shape (cube, rectangle etc.) and its rotation about 
the z-axis rounded to the nearest 15 degrees (for example the “rec-
tangle” block with a 90 degree angle would now have “rectan-
gle90” as its type). Thus, the final tower is discrete and comprised 
of blocks binned to a unit grid. 

2.2 Exhaustive Rule Generation (ERG) 
Once all of the student log data has been converted into discre-
tized towers, we can automatically generate features describing 
the spatial aspects of these towers using two-dimensional context-
free grammars. These grammars, which have been used to per-
ceive structure in pictures, are an extension of 1D grammars for 
strings [4]. The grammar used in our approach are simplification 
of probabilistic two-dimensional context-free grammars, which 
have been used in previous work to teach an artificial agent to 
learn to perceive tutor interfaces [16]. Our approach is slightly 
different than this previous work in that we do not need to choose 
a single best parse of a tower but instead want to extract all of the 
spatial features present in the tower. This makes the rule probabil-
ities from [16] unnecessary and so we omit them. Additionally, 
the towers in the RumbleBlocks task are much more complicated 
than the grid layout of the tutoring system interfaces explored in 
the previous work. Despite these differences, the spirit of our 
work is the same. We are using context-free grammars to perform 
representation learning.  
Before explaining how we automatically generate a grammar we 
give a description of how they are structured. A two-dimensional 
context-free grammar is represented by a 4-tuple G = <S,V,E,R>. 
S is the start symbol, which in our case represents the concept of a 
complete tower. V represents the set of nonterminal symbols, 
which represent the structural components of a tower. In the trivi-
al case these nonterminals represent terminals, i.e. individual 
blocks or space, but more complicated nonterminals represent 
intermediate structures, e.g. a pair of blocks stacked on one anoth-
er, or even entire towers. E is the set of terminal symbols, which 
in our task represent the blocks and filler space. Finally, R is the 
set of rules, which describe how nonterminal symbols can decom-
pose into other terminal and nonterminal symbols, as well as the 
direction (vertical, horizontal, or unary) in which they decompose. 
Because our rules capture the relative positions between blocks 
and the spaces between them (vertically and horizontally adja-
cent), we do not need to store position information. To clarify, our 

rules have the following form: 
NT  BOTTOM TOP [vertical] 
NT  LEFT RIGHT [horizontal] 
NT  block [unary] 

Where NT, BOTTOM, TOP, LEFT, and RIGHT are nonterminal 
symbols, i.e.∈V, and block is a terminal symbol, i.e.∈E. The 
vertical rule can be used to parse the two structures, BOTTOM 
and TOP, into the NT structure if they are vertically adjacent, 
horizontally aligned (the values of their left extents and right ex-
tents are equal), have equal width, and if the BOTTOM structure is 
below the TOP structure. Similarly, the horizontal rule can be 
used to parse the two structures, LEFT and RIGHT, into the NT 
structure if they are horizontally adjacent, vertically aligned, have 
equal height, and if the LEFT structure is to the left of the RIGHT 
structure. Finally, the unary rule allows the block symbol to be 
parsed into NT; no additional constraints apply for unary rules. 
We utilize Chomsky Normal Form to represent our rules because 
it allows for polynomial time parsing using the CKY algorithm 
[6], so every nonterminal decomposes into a pair of nonterminals 
or a single terminal symbol. Note that for convenience, we also 
have unary start rules that point to nonterminals representing en-
tire towers. Even though this is in violation of Chomsky Normal 
Form, we only have these special rules at the top-most level so it 
does not have an effect on parsing complexity. See Figure 3 for an 
example of how a grammar can be used to parse a tower. 
Before we can parse discretized RumbleBlocks towers we need to 
generate a grammar capable of parsing the set of towers. One 
difficulty is that most towers are not initially parsable because 
their blocks don’t align cleanly, which is needed for matching 
vertical and horizontal grammar rules. To deal with the problem 
that not all towers are completely rectangular in shape, we intro-
duce a new ‘space’ terminal symbol that has unit size, i.e. takes 
up one grid cell, and fill in all of the negative space in a tower 
with these symbols. 
While introducing ‘space’ symbols enables us to parse towers that 
have space in them, it also causes an additional problem. First, we 
plan on automatically generating new nonterminals for blocks that 
are adjacent to one another. Because there are so many ways to 
pair up ‘space’ symbols we end up bloating the grammar with 
unnecessary nonterminals that all reduce to space. Furthermore, 
this explosive number of nonterminal symbols also pair up with 
meaningful block symbols causing the grammar to grow even 
larger. To prevent grammar bloat we seed our initial grammar 
with the following recursive space rules: 

NSPACE  space [unary] 
NSPACE  NSPACE NSPACE [vertical] 
NSPACE  NSPACE NSPACE [horizontal] 

 
Figure 3. An example of how grammar (a) can be used to describe towers (b and c).  

The extra space and alignment rules of the grammar are omitted for clarity.  
 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 53



www.manaraa.com

We also ensure that no additional nonterminals that reduce solely 
to space are introduced during automatic grammar generation.  
Once we augment the towers with ‘space’ symbols we use the 
novel Exhaustive Rule Generator (ERG) Algorithm (see Algo-
rithm 1) to recursively generate a nonterminal for every pair of 
adjacent structures. The input to the algorithm is a set of towers 
and a start symbol. The algorithm starts by creating an empty 
grammar (seeded with recursive space rules), adds terminals for 
all of the blocks and the space symbol, creates an empty collection 
of remembered structures (used to ensure multiple nonterminals 
are not generated for the same structure), and iterates through the 
set of towers adding rules for each tower using the recursive Rule-
Gen procedure. 
The Rule-Gen procedure takes a single tower, a grammar, and a 
collection of remembered structures as inputs. It starts by check-
ing if there is already a nonterminal that describes the tower, if 
such a nonterminal exists it is returned. Next, the algorithm 
checks if the tower only contains space, if so the algorithm returns 
the special NSPACE symbol (so any generated grammar integrates 
with the recursive space rules). If neither condition is met then a 
new nonterminal is generated with a unique name and added to 
the grammar. If the structure consists of a single terminal then a 
unary rule is added decomposing the new nonterminal into the 
terminal symbol. An entry in the hash table is created for that 
tower and the nonterminal is returned. If the structure contains 
more than one terminal, it is divided at each location (both hori-
zontal and vertical) where the structure can be divided into two 
sub-structures (without splitting a terminal). For each division, the 
Rule-Gen procedure is called on the sub-structures and a rule is 
added mapping the new nonterminal to the nonterminals repre-
senting each sub-structure. The direction of this rule is determined 

by the direction of the division. After adding rules for all divi-
sions, an entry is added to the collection mapping the structure to 
the new nonterminal and the nonterminal is returned.  
The result of the ERG algorithm is a grammar that contains a 
nonterminal for every structure present in the set of towers. How-
ever, one subtle problem remains. Two towers that are nearly 
similar, but are unaligned and consequently have an additional 
‘space’ somewhere in the tower end up sharing no intermediate 
nonterminal symbols in their parses, see the differences between 
towers (b) and (c) in Figure 3. This is a problem because we are 
using nonterminals to model spatial features common across tow-
ers. To counter this effect, we introduce a set of “alignment rules” 
for every nonterminal NT in our grammar: 

NT  NT NSPACE [vertical] 
NT  NSPACE NT [horizontal] 
NT  NT NSPACE [horizontal] 

These rules triple the number of grammar rules, but add additional 
parses to towers so that they share common structure with other 
similar but differently aligned towers, see Figure 4. We have two 
horizontal rules so that we can have additional space on the left 
and right of a symbol, but we only have one vertical rule because 
we can have additional negative space on the top of a block, but 
not on the bottom, because blocks in RumbleBlocks are subject to 
gravity and any space below a block would be filled by the block 
falling into a new position. It is important to note that while these 
rules enable the towers to share similar structure, it does not give 
them identical parses. This enables us to relate similar structures 
using their parse trees without having to worry about truly differ-
ent towers being lumped together. 

2.3 Parsing 
After generating a grammar, we can use it to parse the towers and 
determine all of the nonterminal symbols that can be derived from 
each tower. We use a modified version of the CKY algorithm [6] 
that functions over two dimensions instead of one. This algorithm, 
which utilizes dynamic programming, is an approach to bottom-
up parsing in polynomial time. One feature of the CKY algorithm 
is that the amount of time required to compute all parses of a tow-
er is the same as the amount of time required to compute one 
parse. Using this approach, we produce all of the parses for every 
tower in our set. 

2.4 Feature Vector Generation 
Once we have all of the parse trees, we convert them into feature 
vectors. This converted format is useful because the vector repre-
sentation is more concise and easier to manipulate when doing 
analyses. To create a feature vector we create a one-dimensional 
vector with an integer value for every nonterminal in the gram-

 
Figure 4. The two possible parses of tower (c) after align-
ment rules are added. Notice that the rules in the red tree 

are now similar to the rules in tower (b)’s parse tree. 
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mar. These values are initialized to be 0 but are set to 1 for every 
nonterminal that appears in at least one of a given tower’s parse 
trees, similar to previous work [17]. Thus, a feature vector is a 
concise description of all the structures that are present in all of 
the parses of a given tower. Once we have generated these feature 
vectors, we can use them to perform a variety of analyses as we 
will demonstrate next. 

3. Data 
The data we present here comes from a large formative evaluation 
of RumbleBlocks, which was performed in two local area elemen-
tary schools. The sample includes play sessions from 174 students 
from grades K-3 (5-8 years old) who played the game for a total 
of 40 min across 2 sessions. The game contained 39 different 
levels, each intended to target a specific principle of stability 
through the use of the energy balls as scaffolding. Players played 
an average of 17.8 unique levels (σ =7.2), as not all students com-
pleted the entire game. Additionally, because students are allowed 
to retry levels in which they fail, the data can contain multiple 
attempts by a student on each level (μ =1.24, σ =.68). In total, the 
dataset contains 6317 unique structures created by students. 
Due to constraints of the conceptual feature extraction process 
some data had to be excluded from analysis. The parsing process 
requires that blocks be aligned to a grid such that clear separations 
can be drawn between them—because of this it was necessary to 
omit any structures where the binning process caused blocks to 
overlap the same grid cell (less than 0.2% of data). Additionally, 
rotating a block will sometimes cause its bounding box to inter-
sect with adjacent grid cells, because the bounding box expands to 
encompass the maximum left, right, top, and bottom values of the 
block’s geometry rather than rotating with it. To address these 
issues of grid overlap we exclude any record that contained blocks 
whose dimensions intersected or any blocks whose z-axis rotation 
was not a multiple of 90, after rounding to the nearest 15 degrees. 
Overall these constraints exclude ~3.5% of our sample.  
The final grammar generated from the dataset by the ERG algo-
rithm contains 13 terminals, 6,010 nonterminals, and 30,923 rules. 
Each nonterminal was used an average of 50.59 times (σ =240.2) 
across all towers. The average number of levels in which a given 
nonterminal was used was 3.09 (σ =4.14). The average number of 
nonterminals per towers was 49.96 (σ =40.23). Reporting statistics 
on the number of nonterminals within an average parse or number 
of parses within an average tower is complicated by the inclusion 
of alignment rules which add some arbitrary number of parses to 
each tower. 

4. CLUSTER ANALYSIS 
In order to demonstrate the utility of these conceptual features to 
guide the design process in educational games, we performed a 
clustering analysis of student solutions in RumbleBlocks, to dis-
cern how many solutions students were demonstrating. Clustering 
takes a series of data points, in our cases represented by conceptu-
al feature vectors, and assigns them to groups based on how simi-
lar the points are. Clustering similar to ours has been used by 
Andersen and Liu et al. to group game states as a way of explor-
ing common paths that players take through a game [18]. Our 
approach differs from theirs in that our features are machine 
learned rather than defined by designers. This allows us to ob-
serve emergent patterns in play without biasing the results with 
human input. 

4.1 Method 
As we were interested in what kinds of solutions students were 
using on each level, we performed clustering of solutions on a 

level-by-level basis, which will yield groups of similar student 
solutions. Within each level we utilized the k-means clustering 
algorithm (we use the scikit-learn implementation [22]). This 
algorithm takes as input a set of data and a parameter k, where 
each datum is described by an n-dimensional vector and k speci-
fies the number of desired clusters. The output is a set of labels 
assigning each datum to a particular cluster. The algorithm works 
by using the k-means++ approach [3] to select initial centroids for 
the clusters such that they are generally distant from one another. 
This initialization algorithm guarantees that the solution found 
will be O(log k) competitive to the optimal solution. Given the 
initial centroid positions, the data points are then assigned to the 
clusters based on which centroid they are nearest to, as measured 
by the Euclidian distance between the n-dimensional vectors of 
the point and the centroid. Once the points are assigned, the posi-
tions of the centroids are updated relative to the points they en-
compass. This process (also called hard expectation-
maximization) is then repeated until quiescence. Although the 
worst-case running time is known to be super polynomial in the 
size of the input, in practice the algorithm finds solutions reasona-
bly quickly [2]. For a given run of k-means we repeat this process 
10 times and select the model that has the best fit to the data, 
which is measured by the within cluster sum squared distance 
from every point to its centroid. Running the algorithm multiple 
times helps to avoid local maximums and accounts for the inher-
ent non-deterministic nature of the algorithm. 
As we are also interested in how many solutions are present in the 
data, not just which solutions are similar, we therefore must de-
termine the correct number of clusters to use, in essence choosing 
a good value for k. To identify the number of clusters present in 
the data, we use the G-means algorithm, which acts as a wrapper 
around the k-means algorithm [8]. This approach starts by running 
k-means on the entire dataset with k initialized to 1. The algorithm 
then takes the clusters of points returned by the previous k-means 
and attempts to divide each of them into two further sub-clusters, 
again using k-means with k=2. A vector is then drawn between 
the two new sub-clusters’ centroids, which represents the dimen-
sion over which the two clusters are separated. The algorithm then 
projects all the points from both sub-clusters onto this single di-
mension of separation and checks to see if they have a Gaussian 
distribution using the Anderson-Darling statistic (with p < 0.01). 
If the distribution is found to not be Gaussian, the original value 
of k is incremented and the process is repeated for all clusters. 
Once all of the clusters are found to have a Gaussian distribution, 
the final k value is returned, representing a good number of 
groups in the dataset. This approach has been shown to be more 
effective than BIC at deciding the correct value for k [8]. Because 
k-means returns different clusters on different runs, we run the G-
means algorithm 10 times and return the mode k value as the most 
likely value for k. 
Before using the machine clustering to conduct analyses, we must 
first ensure that it is creating reasonable clusters.  As a test of the 
validity of the clusters, we had two independent coders hand clus-
ter three levels to generate a gold standard with which to compare 
the machine clustering results (κ = 0.88). Additionally, we want to 
evaluate the effectiveness of our approach by comparing it to a 
naïve method of automatic grouping. The naïve method we used 
was to group the towers by direct equability, i.e. assigning all 
towers that have identical discrete representations to the same 
group. This allows us to see how much closer our approach gets to 
human results than a naïve machine approach.  
The selected three levels were chosen because they were part of 
an in-game counterbalanced pre-posttest, which did not use the 
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energy ball mechanic, making them less constrained and likely to 
have more variable answers, and therefore pose a greater chal-
lenge in terms of accurate clustering. Additionally, because all 
students were required to play them as part of the pre-post design, 
these levels have some of the largest sample sizes of all levels. 
In comparing different clusterings we report the completeness, 
homogeneity, V-Measure [24], and Adjusted Rand Index (ARI) 
[23] on these three levels for machine clustering and direct equali-
ty using human clustering as a gold standard. These measures 
each evaluate different aspects of clustering results and are stand-
ard metrics of clustering quality. The Completeness score 
measures how well records in the same class are clustered togeth-
er, i.e., how well the clustering put items that should be together 
in the same group. The Homogeneity score measures how well 
records that are different are separated, i.e. when the elements 
within a given cluster are all the same. Because these measures 
are in opposition to each other, we report the V-measure, which 
gives a harmonic balance between the completeness and homoge-
neity scores. Finally, ARI is a measure of clustering accuracy 
adjusted for chance. The measure has a range of [-1, 1] and ap-
proaches 0 when guessing. 
After testing the clustering on a subset of hand-coded levels, we 
also wanted to gauge the validity of the approach on all levels. To 
measure validity we make the assumption that if two towers are 
highly similar they are also likely to both stand or fall in the 
earthquake, though some noise is to be expected due to indetermi-
nacies in the game’s physics engine. Taking this assumption, we 
can again use homogeneity as a way of calculating how consistent 
the success/failure designation is within a cluster. Comparing the 
homogeneity scores of the machine clustering and the random 
clustering of the towers (using the same number of clusters as 
determined by G-means) can tell us if the machine clustering is 
significantly better than that expected by chance. This metric can 
be interpreted as a sanity check to ensure that the clustering is 
actually working on levels that have not been hand labeled. 
After evaluating clustering validity, we can use clustering to get a 
sense of how often players are using designer envisioned solu-
tions. In designing the levels, the game designers tried to make 
each level focus on one of the three targeted principles of stability 
(low center of mass, wide base, symmetry). That is, the designers’ 
intention is that on each level, the configuration of the energy dots 
and the block inventory, are such that the student is led to a solu-
tion that exemplifies the particular principle targeted at that level.  
It is fine, and probably desirable, if levels allows for multiple (and 
unforeseen) solutions. However, what we hope to avoid is levels 
that have a large number of unforeseen solutions that do not ad-
dress the particular principle that the level is intended to target. 
To perform this alignment analysis we had one of the designers of 
RumbleBlocks generate a play session log that represented the 
“answer key” for each level. We then determined which of the 

clusters the intended solution would be grouped into on each level 
and compared the number of towers in that group to the total 
number of towers for that level. This information can help us get a 
sense of the alignment between what designer expectant students 
to do and what players actually do. Having this information can 
help the designers know where to focus future redesign efforts to 
best target discrepancies.  

4.2 Results 
When looking at the measures of clustering effectiveness in Table 
1 we see that the k-means algorithm was able to outperform 
straight equality grouping in ARI and completeness. This can be 
interpreted to mean that k-means clustering is making a higher 
percentage of correct decisions in grouping structures, suggesting 
that the results of clustering can be validly used in further analy-
sis. In all instances, the equality grouping performs better than k-
means clustering in homogeneity score because if direct equality 
is used to assign group labels the resulting groups will be, by def-
inition, perfectly homogeneous. In many instances, this causes the 
V-measure to also be better because V-measure evenly weights 
for completeness and homogeneity. Overall these results can be 
interpreted to mean that clustering along conceptual features of 
towers provides reasonable grouping accuracy when compared to 
human clustering. 
When clustering was performed across all levels, the mean homo-
geneity of the k-means clusters was found to be significantly 
greater than the homogeneity from random grouping of student 
solutions using a two-sample t-test (p < .001). Assuming that 
similar towers would stand or fall together, this further supports 
the idea that the clustering algorithm is not separating similar 
student solutions. 
Overall the clustering algorithm generated an average of 8 clusters 
per level (σ = 3.98), compared to the average number of groups as 
determined by equality grouping 56 (σ = 45.77). The smallest 
number of clusters (2) was seen in the tutorial level, which con-
tains only 1 block and the spaceship allowing for very little differ-
ence between solutions. The highest number of clusters (17) was 
found in a later level (centerOfMass_07) which contains 5 larger 
blocks and 6 energy balls allowing for nuanced differences in 
solution styles. 
Our analysis of what percentage of solutions appear similar to the 
designers’ intended solutions shows a high degree of variability, 
see Figure 5. Some levels, like the tutorial and other earlier levels, 
are found near the higher end of the spectrum because as introduc-
tory levels they do not allow for a large number of solutions. 
However, the levels on the lower end of the spectrum indicate that 
few students actually created the towers envisioned by the design-
ers. These levels warrant a closer investigation to ascertain what 
other kinds of solutions students are producing. For example, 
upon further inspection of the solutions to centerOfMass_07, de-
signed to target the principle of low center of mass, we discovered 

Table 1. Clustering measures (completeness, homogeneity, v-measure, and adjusted rand index) 
means and standard deviations after 10 iterations of clustering.  

Note that equality clustering is constant and so has no standard deviation. 

Level Comparison Completeness (SD) Homogeneity (SD) V-Measure (SD) Adj. Rand Index (SD) 
com_11_noCheck 

(n=251) 
k-means .74 (.06) .57 (.10) .63 (.04) .51 (.08) 
equality .55 (NA) .99 (NA) .71 (NA) .23 (NA) 

s_13_noCheck 
(n=249) 

k-means .83 (.02) .63 (.04) .72 (.02) .47 (.04) 
equality .60 (NA) .99 (NA) .75 (NA) .16 (NA) 

wb_03_noCheck 
(n=254) 

k-means .63 (.02) .80 (.02) .71 (.02) .42 (.02) 
equality .53 (NA) .99 (NA) .69 (NA) .28 (NA) 
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that a large number of student solutions that did not typify the 
level’s key principle (See Figure 6). While a number of these 
solutions did not actually survive the earthquake the variety of 
atypical solutions points to the need for more guidance. In further 
iterations designers should focus their efforts on these levels to 
consider whether students need more scaffolding. 

5. DISCUSSION 
In this paper we have described a process for conceptual feature 
extraction from logs of gameplay in an educational game. The 
process follows four steps starting with the raw student log files. 
The files are discretized and then used to generate a two-
dimensional context-free grammar that can be used to parse the 
towers and yield a vector of features present in the tower. We 
demonstrated how conceptual features could be used to perform a 
clustering analysis of common student solutions. 
While the results we discussed are specific to RumbleBlocks as-
pects of our approach could be generalized to other games or edu-
cational technology environments by altering some of the steps in 
the process. One example of another game this approach would 
work for is Refraction, which has players redirecting laser beams 
around a grid based board by placing laser splitters to make prop-
er fractions [1,18]. This game already takes place on a grid and so 
would not require a discretization step, but the other steps would 
be applicable. In this game, our approach would learn features 
corresponding to patterns of laser splitters on the grid, which 
could be used to generate feature vectors for each student solution 
and to cluster these feature vectors. These clusters would be simi-
lar to those generated by Liu et al. [18] but the features would be 
automatically generated rather than human tagged.  
When applying our approach more generally, the discretization 
step will always be specific to a particular game or interface, as it 
requires an intimate knowledge of the context. Employing a re-
play analysis engine can assist with discretization by providing a 
standard format [9]. The ERG algorithm is applicable to any dis-
crete two-dimensional representation of structure in which adja-
cency relations are meaningful. Converting parses into feature 
vectors for analysis is a technique that should be applicable to 
most situations.  
The features generated with this method can be used by many 
different kinds of analyses beyond what we present here. For in-
stance, the feature vectors could be used as a way to represent 
game data in a format suitable for DataShop [13], a large open 
repository of educational technology interaction data. A feature 
vector is analogous to the state of a tutoring system interface and 
the changes in the feature vector from step to step correspond to 
the student actions. Additionally, virtual agents, such as SimStu-
dent [20], could use this data representation as a way of under-

standing and interacting with educational games, enabling us to 
model student learning in these contexts. 
While the grammars extracted by our method have proven to be 
useful, they still have some limitations, such as an inability to 
represent towers that cannot be cleanly mapped to a grid or which 
contain overlapping or angled substructures. Making the grammar 
more descriptive would require the relaxing of constraints con-
cerning how nonterminals can be parsed, e.g., not requiring strict 
alignment. Another issue has to do with how many different non-
terminals map to nearly equivalent structures. Even though we 
attempt to minimize this by introducing the alignment and space 
rules, there are still cases where further reductions could be im-
plemented. One potential solution, to address this problem in gen-
eral, is to implement model merging to condense pairs of nonter-
minals that represent similar concepts into single nonterminals 
[15]. The ability to merge similar nonterminals is a promising 
direction for future work. 
In addition to being able to describe more towers, model merging 
would also allow the generalization of grammars to cases we have 
not seen. Because context-free grammars can be used generative-
ly, the generalized grammar could be used to produce novel tow-
ers, similar to the work of Talton et al. [26]. In our case, these 
novel towers would give insight into the as-yet-unseen portions of 
the solution space. Furthermore, the novel towers could be used as 
templates in creating new levels. In future work we will be explor-
ing ways to feed this information, and information from cluster-
ing, directly back into the game development environment.  
The clustering results not only provide the designers of Rumble-
Blocks with a picture of how students are playing their game, they 
also possess further uses beyond assisting design iteration, such as 
exploring research questions. One potential use of the clustering is 
as an empirical measure of how “open” a particular level is, by 
counting how many different clusters, i.e. different solutions, that 
level affords. Using this measure allows researchers to explore the 
interactions of openness with learning and engagement. Exploring 
this interpretation of the clustering results will be a part of our 
ongoing analysis of RumbleBlocks. 
Another intriguing direction for future work would be to explore 
the relationship between the conceptual features and the 
knowledge components [14] used in building towers in Rumble-
Blocks. There may exist a mapping between the substructures 
used in towers and the conceptual knowledge components related 
to stable structures. Exploring this would require measurements of 
how a student’s use of particular structures changed over time and 
how it relates to task performance. If such a mapping exists, then 
our approach would not only be useful for automated feature ex-
traction, but also for automatically building models of conceptual 
knowledge components.  

 
Figure 6. An example of mismatch with designer expecta-
tion and student solution from the centerOfMass_07 level. 

The designer's answer is on the left. 
 

 
Figure 5. Percentage of use of the envisioned solution on a 

level for each level. 
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6. CONCLUSION 
Framing game experiences in terms of conceptual features can 
help both designers and researchers better understand how stu-
dents interact with their games. The main contribution of this 
paper is an approach for extracting conceptual features from play 
logs within educational games and using these features to perform 
clustering of student solutions. Designers can use the clusterings 
to better understand the space of student solutions and to know 
where to focus their attention to improve student learning experi-
ences. Ultimately we envision feeding back this clustering infor-
mation directly into the game design platform. This information 
can also enable researchers to explore important questions, such 
as how “openness” and difficulty relate to student engagement. 
While our approach was created with the specific two-
dimensional world of RumbleBlocks in mind, it should be general-
izable, and we hope others will find it useful in exploring other 
educational games.  
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ABSTRACT 
In the field of educational data mining, there are competing 

methods for predicting student performance. One involves 

building complex models, such as Bayesian networks with 

Knowledge Tracing (KT), or using logistic regression with 

Performance Factors Analysis (PFA). However, Wang and 

Heffernan showed that a raw data approach can be applied 

successfully to educational data mining with their results from 

what they called the Assistance Model (AM), which takes the 

number of attempts and hints required to answer the previous 

question correctly into account, which KT and PFA ignore. We 

extend their work by introducing a general framework for using 

raw data to predict student performance, and explore a new way 

of making predictions within this framework, called the 

Assistance Progress Model (APM). APM makes predictions based 

on the relationship between the assistance used on the two 

previous problems. KT, AM and APM are evaluated and 

compared to one another, as are multiple methods of ensembling 

them together. Finally, we discuss the importance of reporting 

multiple accuracy measures when evaluating student models. 

 

Keywords 

Student Modeling, Knowledge Tracing, Educational Data Mining, 

Assistance Model, Assistance Progress Model 

1. INTRODUCTION 
Understanding and modeling student behavior is important for 

intelligent tutoring systems (ITS) to provide assistance to students 

and help them learn. For nearly two decades, Knowledge Tracing 

(KT) [5] and various extensions to it [12, 16, 18] have been used 

to model student knowledge as a latent using Bayesian networks, 

as well as to predict student performance. Other models used to 

predict student performance include Performance Factors 

Analysis (PFA) [14] and Item Response Theory [8]. However, 

these models do not take assistance information into account. In 

most systems, questions in which hints are requested are marked 

as wrong, and students are usually required to answer a question 

correctly before moving on to the next one. Therefore, the number 

of hints and attempts used by a student to answer a question 

correctly is likely valuable information. 

Previous work has shown that using assistance information helps 

predict scores on the Massachusetts Comprehensive Assessment 

Systems math test [6], can help predict learning gains [1], and can 

be more predictive than binary performance [17]. Recently, it has 

been shown that using simple probabilities derived from the data 

based on the amount of assistance used, an approach called the 

Assistance Model (AM), can improve predictions of performance 

when ensembled with KT [15]. 

This work continues research in the area of using assistance 

information to help predict performance in three ways: 

1. Specifying a framework for building “tabling methods” 

from the data, a generalization of AM 

2. Experimenting with a new model within this framework 

called the Assistance Progress Model (APM), which 

makes predictions based on the relationship between the 

assistance used on the previous two problems 

3. Experimenting with new ways of ensembling these 

models to achieve better predictions 

Additionally, the importance of reporting multiple accuracy 

measures when evaluating student models is discussed, as well as 

why three of the most commonly reported measures (mean 

absolute error (MAE), root mean squared error (RMSE) and area 

under the ROC curve (AUC)) do not always agree on which 

model makes the most accurate predictions. 

Section 2 describes the tutoring system and dataset used. Section 

3 describes the methodology: the models and ensembling methods 

used, the tabling method framework, and the procedure for 

evaluating the models. Section 4 presents the results, followed by 

discussion and possible directions for future work in Section 5. 

2.  DATA 
The data used here was the same used in [15], which introduced 

AM. This dataset comes from ASSISTments, a freely available 

web-based tutoring system for 4th through 10th grade mathematics. 

While working on a problem within ASSISTments, a student can 

receive assistance in two ways: by requesting a hint, or by 

entering an incorrect answer, as shown in Figure 1. 
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Figure 1. Examples of assistance within ASSISTments (from 

Wang and Heffernan, 2011) 

The dataset comes from four Mastery Learning classes conducted 

in 2009, where students worked on problem sets until achieving 

some criterion, usually specified as answering three questions in a 

row correctly. The questions in these problem sets were generated 

randomly from templates, with the difficulty of each question 

assumed to be the same as all other questions generated from the 

same template. No problem selection algorithm was used to select 

the next question. 

Two hundred 12-14 year old 8th grade students participated in 

these classes, generating 17,776 problem logs from 93 problem 

sets. However, due to the nature of the models studied in this 

paper, data from two of these students could not be used since 

these two students never answered more than one question within 

the same problem set. 

Since two of the models cannot be used to predict performance on 

the first question of a problem set, as they rely on assistance usage 

on previous problems, these models were not trained or evaluated 

on the first question answered by a student on a given problem 

set. This reduced the dataset for these models to 12,099 problem 

logs. KT models were still trained using the entire dataset, but 

only evaluated on the 12,099 logs they had in common with the 

other models. 

3. METHODS 
This section begins by giving an overview of KT, then introduces 

a framework for building data-driven student models called 

“tabling methods,” and describes two such methods: AM and 

APM. Next, the approaches used to ensemble these individual 

models together are briefly discussed. Finally, the procedure and 

measures used to evaluate all models are discussed. 

3.1 Knowledge Tracing 
KT is a well-studied student model introduced in [5] that keeps 

track over time of the probability that a student has mastered a 

given skill, given their past performance as evidence. The 

probability that a skill for a given student is in the “known” (vs. 

the “unknown”) state can then be used to predict future 

performance. 

Constructing KT models involves learning four parameters:  

1. Initial Knowledge (L0) – the probability the student has 

mastered the skill before attempting the first question 

2. Learn Rate (T) – the probability the student will have 

mastered the skill after attempting a given question if 

they have not mastered the skill already, independent of 

performance 

3. Guess Rate (G) – the probability the student will answer 

correctly despite not having mastered the skill 

4. Slip Rate (S) – the probability the student will answer 

incorrectly despite having mastered the skill 

KT models can be represented as static, “unrolled” Bayesian 

networks, as shown in Figure 2. The level of knowledge Km at 

time step m influences performance on question Qm. Initial 

knowledge influences K0, while knowledge at time step m-1 

influences knowledge at time step m for m > 0. The learned T, G 

and S parameters are the same across all practice opportunities, 

meaning that the conditional probability tables (CPTs) for all 

nodes Km where m > 0 have the same values, and the CPTs for all 

Q nodes have the same values. 

 

Figure 2. Static Bayesian network representation of 

Knowledge Tracing 

In this work, the Bayes Net Toolbox for Matlab [9] is used to 

create separate KT models for each problem set. The parameters 

for each model are learned using Expectation-Maximization, with 

initial values of 0.3 for L0, 0.09 for T, 0.1 for G and 0.09 for S. 

3.2 Tabling Methods 
In previous work [15], a data-driven approach called AM was 

used to predict performance based on the number of attempts and 

hints used on the previous problem. This was done by creating a 

table of probabilities of the student answering the next question 

correctly on the first attempt without any hints, indexed by the 

number of attempts and hints used on the previous problem. 

These probabilities were computed simply by computing the 

percentage of questions answered correctly on the first attempt 

with no hints, parameterized by the number of attempts and hints 

used on the previous problem. 

Then, unseen test data was predicted by using the number of 

attempts and hints used on the previous problem to do a table 

lookup. The corresponding probability of getting the next 

question correct in the table was assigned as the prediction. 

In this work, we present a generalization of this approach that 

serves as a framework for data-driven approaches for student 

modeling. The general procedure is as follows: 

1. Create a table based on one or more attributes of the 

training data. 
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2. Compute the probability of answering a question 

correctly for each combination of values of the 

attributes selected in Step 1, and insert these 

probabilities into the proper cells in the table. 

3. For each previously unseen test case, do a table lookup 

based on the attributes of the test case to obtain the 

probability (over the training data) of the student 

answering the question correctly. 

4. Assign the retrieved probability as the prediction for the 

test case. 

The attributes selected in Step 1 can be anything available or 

computable from the data, such as the number of hints and 

attempts used on the previous problem as AM does, or the 

correctness of the previous problem, the time taken, the type of 

skill, etc. These attributes could also represent which bin an 

instance falls into, where bins are constructed by splitting up 

students and/or problems based on some criteria. 

Cells may need to be added to the table when values for one or 

more of the attributes are not available, depending on the nature 

of the attributes. If there are not enough data points for certain 

cells, it may help to simply combine them with others. Finally, 

depending on the nature of the selected attributes and the data, it 

may be useful to split certain cells based on some criterion. 

In this work, two data-driven approaches that follow this 

framework are explored: the Assistance Model, as described by 

Heffernan and Wang and further described below, and the 

Assistance Progress Model (APM), which constructs a table based 

on the relationships between hints and attempts used on the 

previous two problems. 

3.2.1 Assistance Model 
As described previously, AM consists of a table of probabilities of 

a student answering a question correctly based on the number of 

attempts and the percentage of available hints used on the 

previous problem of the same skill. Attempts are broken into three 

bins: 1, (1, 6] and (6, ∞), while the percentage of hints is broken 

into four: 0, (0, 50], (50, 100) and 100. The AM table constructed 

from the entire dataset is shown in Table 1. 

Table 1. AM table for entire dataset 

 Attempts 

 

 

Hint % 

 1 (1, 6] (6, ∞) 

0 0.778 0.594 0.480 

(0, 50] 0.560 0.623 0.444 

(50, 100) 0.328 0.461 0.444 

100 0.264 0.348 0.374 

 

For instance, according to Table 1, when students answered 

correctly on the first attempt with no hints, they answered the next 

question correctly 77.8% of the time. On the other hand, if they 

required over six attempts and used all of the hints available, they 

answered the next question correctly only 37.4% of the time. 

According to Table 1, when attempts are held constant, the 

general trend is that as hint usage increases, the probability that 

the student will answer the next question correctly decreases. This 

makes sense since hints are more likely to be used by students 

with lower knowledge of the skill. 

When hints are held constant, different patterns occur with respect 

to the number of attempts used. When no hints are used, the 

probability of answering the next question correctly decreases as 

the number of attempts increases. This relationship is reversed 

when all hints are used. Finally, if just some of the hints are used, 

making a few attempts (between 2 and 6, inclusive) helps more 

than making one attempt, but making many attempts (> 6) 

decreases the probability of answering the next question correctly. 

The pattern for no hints can be explained as more attempts 

required being indicative of lower student knowledge. For all 

hints being used, more attempts may indicate the student is 

attempting to learn rather than just requesting hints until the 

answer is given to them. Using some of the hints suggests the 

student has not mastered the skill, but has some knowledge of it 

and is attempting to learn. The relationship between making one 

attempt and making a few attempts can be explained by the more 

attempts the student makes, the more they learn, to a point. The 

use of excessive amounts of attempts probably indicates the 

student is not learning, despite using some of the hints. 

The highest probability in the table, 0.778, corresponds to the 

case where the previous question was answered correctly. This is 

unsurprising since in this case, the student likely has mastered the 

skill. The lowest probability, 0.264, corresponds to making only 

one attempt while requesting all of the hints. This corresponds to 

the case where the student requests hints until the answer is given 

to them. This could be caused by the student simply not 

understanding the skill, or by the student “gaming the system,” or 

“attempting to succeed in an interactive learning environment by 

exploiting properties of the system rather than by learning the 

material” [2]. In either case, not much learning takes place. 

In [15], the AM table was constructed using 80% of the data and 

used to predict the remaining 20%. In this work, all models were 

evaluated using five-fold cross-validation. 

3.2.2 Assistance Progress Model 
AM only takes into account the number of attempts and 

percentage of hints required on the previous question to predict 

the student’s performance on the following question, without 

considering the progress the student is making over time in terms 

of attempts and hints used. APM, on the other hand, takes into 

account the relationships between the attempts and percentage of 

hints used on the previous two problems to predict performance 

on the next question. 

The initial model looked like Table 2, each entry corresponding to 

a case where the second of the two previous problems requires a 

lower, equal or higher number of attempts or percentage of hints 

than the one before it. The number of data points for each cell 

appears in parentheses. 

Table 2. Initial APM table for the entire dataset 

 Hint % Relationship 

Attempts 

Relationship 

 < = > 

< 0.672 (586) 0.611 (1410) 0.567 (60) 

= 0.649 (248) 0.734 (8309) 0.590 (83) 

> 0.541 (85) 0.552 (1019) 0.512 (299) 
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However, it was necessary to extend the model to handle the case 

where there were fewer than two previous questions, so a separate 

cell was added for this situation (it had been treated as (equal 

attempts, equal hint %)). Next, it was observed that certain cells 

had few observations, so these cells were combined. Finally, it 

was realized that the (equal attempts, equal hint %) cell combined 

data of two very different situations: the case where both 

questions being compared were answered correctly, and the case 

where they were both answered incorrectly. Therefore, this cell 

was split into two cells according to correctness. The final APM 

table, with probabilities taken over the entire dataset, is shown in 

Table 3. Cells without enough data on their own have been 

merged, and the (equal attempts, equal hint %) cell has been split 

in two: the top cell corresponds to the case when both questions 

are answered correctly, and the bottom to when both are answered 

incorrectly. The top-left cell contains the probability that 

questions with fewer than two predecessors will be answered 

correctly. The number of data points per cell are in parentheses. 

Table 3. APM table for the entire dataset 

 Hint % Relationship 

Attempt 

Relationship 

0.708 

(2722) 

< = > 

< 0.672 

(586) 

0.611 (1410) 

0.580 (143) 
= 0.649 

(248) 

0.791 (5028) 

0.352 (559) 

> 0.551 (1104) 0.512 (299) 

 

According to Table 3, when the relationship between attempts is 

held constant, the general pattern is that the probability of 

correctness decreases as the relationship between the percentage 

of hints used worsens. The (equal attempts, equal hint %) cells do 

not fit this pattern, though this could be because they are split 

based on correctness. However, the same cell from Table 2 also 

does not fit the pattern. The same relationship exists between the 

attempt relationship and probability of answering correctly when 

the hint % relationship is held constant, again with the exception 

of the (equal attempts, equal hint %) cells. These patterns are 

intuitive, as students who are learning the material should require 

less assistance from one problem to the next and are likelier to 

answer the next question correctly, whereas those who are not 

learning will generally require the same amount of assistance or 

more to proceed, and are less likely to answer the next question 

correctly without assistance. 

The highest probability in the table corresponds to the case where 

the hints and attempts used are the same for the previous two 

questions, and both are answered correctly (0.791). The lowest is 

when they are the same and are both answered incorrectly (0.352). 

The former result is intuitive since it corresponds to the case 

where the student answers two questions in a row correctly, the 

best situation represented in the table. The latter corresponds to 

no progress in terms of assistance over the previous two 

questions, indicating that little if any learning has taken place. 

3.3 Ensembling Models 
As shown in [15], ensembling models can give better results than 

any individual model on its own. There are two goals in this work 

regarding ensembled models: improving the predictive power of 

AM by ensembling it with APM, and improving the predictive 

power of KT using both AM and APM. Wang and Heffernan 

already showed that ensembling KT with AM gives better results 

than KT on its own. It remains to be seen whether including APM 

will result in further improvements. 

In addition to using means and linear regression models, as done 

in [15], this work also uses decision trees and random forests. 

3.4 Evaluation 
To evaluate the models, three metrics are computed: MAE, 

RMSE, and AUC. These metrics are computed by obtaining 

predictions using five-fold cross-validation (using the same 

partition for each model), then computing each metric per student. 

Finally, the individual student metrics are averaged across 

students to obtain the final overall metrics. Computing the 

average across students for each metric in this way avoids 

favoring students with more data than others, and avoids 

statistical independence issues when it comes to computing AUC.  

For these reasons, Pardos et al used average AUC per student as 

their accuracy measure in their work in evaluating several student 

models and various ways of ensembling them [11]. 

All three of these metrics are reported because they are concerned 

with different properties of the set of predictions and therefore do 

not always agree on which model is best. MAE and RMSE are 

concerned with how close the real-valued predictions are, on 

average, to their actual binary values. On the other hand, AUC is 

concerned with how separable the predictions for positive and 

negative examples are, or how well the model is at predicting 

binary classes rather than real-valued estimates. 

For example, in Table 4, the first two sets of predictions (P1 and 

P2) achieve AUCs of 1 since both perfectly separate the two 

classes (0 and 1). However, P2 achieves much better MAE 

(0.3960) and RMSE (0.6261) values than P1 (0.5940 and 0.7669, 

respectively). What’s more, P3 achieves an AUC of only 0.5, but 

outperforms both P1 and P2 in terms of RMSE (0.5292) and P1 in 

terms of MAE (0.4400). 

Table 4. Example dataset 

Actual Value P1 P2 P3 

0 0 0.99 0.8 

1 0.01 1 0.8 

1 0.01 1 0.8 

0 0 0.99 0.8 

1 0.01 1 0.8 

 

Therefore, it is important to report all of these metrics. As shown 

above, they do not necessarily agree with each other. 

Additionally, although MAE and RMSE are similar, not even they 

always agree on the best model, as RMSE punishes larger errors 

more than MAE does. 

4. RESULTS 
In this section, the results for both the individual models and the 

ensemble models are reported. Given the importance of reporting 

multiple accuracy measures as discussed in the preceding section, 

three measures are reported for each model: MAE, RMSE and 

AUC. Each measure is computed by first computing the measure 
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for each individual student, then averaging across students. The 

individual student measures are obtained by using predictions 

made using five-fold cross-validation, where the folds used are 

identical for every model. 

4.1 Individual Models 
The results of the three individual models are shown in Table 5. 

As described before, each of the three metrics are measured for 

each individual student, and then averaged across students. 

In addition to the individual models discussed in Section 3, the 

results for a baseline model (always predicts 1, the majority class) 

are reported to serve as a baseline for the other models. 

Table 5. Results for the individual models 

 MAE RMSE AUC 

Baseline 0.2510 0.4642 0.5000 

AM 0.3657 0.4129 0.5789 

APM 0.3844 0.4221 0.5618 

KT 0.3358 0.4071 0.6466 

 

Unsurprisingly, KT performs reliably better than AM and APM in 

MAE (t(197) = -8.45, p < .0001; t(197) = -13.55, p < .0001) and 

AUC (t(187) = 6.35, p < .0001; t(187) = 5.97, p < .0001), and at 

least marginally better in RMSE (t(197) = -1.75, p = .0824; t(197) 

= -4.44, p < .0001), as KT is a full student model, whereas AM 

and APM do not attempt to model student knowledge and make 

predictions solely on the basis of table lookups. Additionally, AM 

outperforms APM in MAE and RMSE (t(197) = -12.88, p < 

.0001; t(197) = -5.61, p < .0001), which is also not surprising 

considering that APM does not consider the actual number of 

attempts or percentage of hints used, only the relationships 

between them for the previous two questions. APM also has fewer 

parameters (9) than AM (12). The difference in AUC was not 

reliable (t(187) = 1.62, p = .1063). 

The baseline model reliably outperforms all other models in terms 

of MAE (t(197) = -15.30, p < .0001; t(197) = -18.36, p < .0001; 

t(197) = -10.62, p < .0001), and reliably underperforms all other 

models in terms of RMSE (t(197) = 5.87, p < .0001; t(197) = 

4.92, p < .0001; t(197) = 6.01, p < .0001) and AUC (t(187) = -

9.72, p < .0001; t(187) = -6.34, p < .0001; t(187) = -12.80, p < 

.0001). It makes sense that the baseline performs well in terms of 

MAE, given that the mean value of the target attribute, the 

correctness of a question, is 0.6910. RMSE punishes larger 

differences more than MAE, making the baseline pay more for its 

wrong predictions of all cases where the student got the question 

wrong. Finally, since all predictions share the same value, the 

baseline cannot do any better than chance at separating the data. 

Therefore, it earns an AUC value of 0.5000. 

These drastic differences in performance for the baseline alone 

across measures highlight the need for reporting multiple accuracy 

measures when evaluating student models. 

4.2 Ensembled Models 
In this subsection, various ways of ensembling the individual 

models are evaluated. Since KT was the best performer of the 

individual models in all three measures by at least marginally 

reliable margins, the ensembled models here are compared to KT. 

In the results for each ensemble method, underlined type indicates 

measures that are reliably worse than those for KT, boldface type 

indicates measures that are reliably better than those for KT, and 

regular type indicates there is no reliable difference between the 

measures for KT and the model in question. Statistical 

significance was determined using two-tailed pairwise t-tests and 

Benjamini and Hochberg’s false discovery rate procedure [4]. 

4.2.1 Mean 
The first ensembling method involved taking the simple mean of 

the predictions given by the various models. This was done in five 

ways: 1) with AM and APM to determine if it outperformed AM 

and APM on their own; combining KT with 2) AM and 3) APM 

to determine if either AM or APM improved predictions over 

using KT on its own; 4) with all three models to determine if it 

outperformed any of the individual models, and 5) taking the 

mean of AM and APM first, then taking the mean of those results 

with KT. The intuition for the last method is that KT performs 

better than AM, and most likely APM as well. Therefore, taking 

the mean of AM and APM first gives KT more influence in the 

final result while still incorporating both AM and APM. The 

results for these models are shown in Table 6. 

Table 6. Results for the mean models 

 MAE RMSE AUC 

AM, APM 0.3751 0.4137 0.5917 

KT, AM 0.3508 0.4006 0.6472 

KT, APM 0.3601 0.4033 0.6409 

KT, AM, APM 0.3620 0.4032 0.6433 

KT, (AM, APM) 0.3554 0.4010 0.6469 

 

According to the table above, taking the mean of KT and any 

combination of AM and APM predictions produces results that do 

as well as or reliably outperform KT in RMSE and AUC but 

reliably underperform in MAE. There is no reliable difference 

between the top two performing models, “KT, AM” and “KT, 

(AM, APM)” except in MAE, where “KT, AM” performs reliably 

better (t(197) = -12.88, p < .0001). Therefore, at least when taking 

means, adding APM to a model that already includes AM and KT 

does not reliably improve accuracy in any measure. 

Additionally, taking the mean of the AM and APM models yields 

predictions that are comparable in RMSE and AUC, while 

reliably worse in MAE (t(197) = 12.88, p < .0001). Therefore, 

including APM predictions in mean models does not appear to 

improve predictive accuracy. 

4.2.2 Linear Regression 
The second ensembling method is linear regression. In this 

method, the training data for each fold was used to construct AM, 

APM and KT models. Predictions were then made for each 

training instance using these models, and then a linear regression 

model was built using the three individual predictions as 

predictors, along with the number of attempts and percentage of 

hints used, and nominal attributes describing the relationship 

between the attempts and hints used on the previous two 

problems. This model was then applied to the fold’s test data, 

whose instances were augmented with predictions from the AM, 

APM and KT models built from the fold’s training data. 

Linear regression models were built with six different subsets of 

the aforementioned features: 
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1. AM – includes the AM prediction as well as the number 

of attempts and percentage of hints used on the previous 

problem 

2. AM, KT – the AM set, along with the KT prediction 

3. AM, APM* – the AM set, along with the two nominal 

attributes indicating the relationships between the 

attempts and hints used for the previous two problems 

4. AM, APM*, KT – the AM, APM* set, along with the 

KT prediction 

5. AM, APM – the AM, APM* set along with the APM 

prediction 

6. AM, APM, KT – the AM, APM*, KT set along with the 

APM prediction 

The motivation for testing these subsets of attributes is to 

determine the relative improvements attained by progressively 

adding more assistance relationship information to the model, 

both with and without KT. These models are built in Matlab using 

the LinearModel class. The results for the linear regression 

models are shown in Table 7. 

Table 7. Results for the linear regression models 

 MAE RMSE AUC 

AM 0.3701 0.4148 0.5770 

AM, KT 0.3338 0.4024 0.6500 

AM, APM* 0.3671 0.4127 0.5753 

AM, APM*, KT 0.3319 0.4005 0.6341 

AM, APM 0.3647 0.4112 0.5874 

AM, APM, KT 0.3316 0.4000 0.6379 

 

Not surprisingly, models that incorporate KT predictions all 

outperform their counterparts that lack KT predictions across all 

three measures. AM and APM together do better than AM, but 

not when KT is included. The best combination of models for 

linear regression is AM and KT, as it was for the mean models. 

Unlike its corresponding mean model, the linear regression model 

that combines AM and KT reliably outperforms KT in MAE and 

RMSE, and is comparable in terms of AUC. This is consistent 

with the previous finding that combining AM and KT using linear 

regression outperforms KT [15], though their model did reliably 

better than KT for all three measures, which were taken over the 

entire dataset rather than averaged across students. 

4.2.3 Decision Trees 
Next, decision tree models were built from the results of the three 

individual models in the same way that the linear regression 

models were built, with the exception that the minimum number 

of data points per leaf and the level of pruning were optimized 

using brute force search per fold by using sub-fold cross-

validation. The search varied the pruning level from 0 to 100% of 

the model in steps of 5%, and varied the minimum data points per 

leaf from 5 to 50 in steps of 5. 

The decision trees were given the same set of attributes as the 

linear regression models, and were tested using the same six 

subsets of those attributes as described above for the linear 

regression models. The decision trees were built in Matlab using 

classregtree, specifying the method as ‘regression’. 

The same sub-folds were used for each fold for all decision tree 

models. The results for these models are reported in Table 8. The 

model names correspond to the same subsets of attributes used for 

the linear regression models. 

Table 8. Results for the decision tree models 

 MAE RMSE AUC 

AM 0.3637 0.4119 0.5793 

AM, KT 0.3293 0.4009 0.6385 

AM, APM* 0.3586 0.4087 0.5847 

AM, APM*, KT 0.3286 0.4008 0.6358 

AM, APM 0.3586 0.4090 0.5860 

AM, APM, KT 0.3290 0.4012 0.6351 

 

As for the linear regression models, the models that include KT 

predictions perform better than those that did not, across all three 

accuracy measures. Adding APM* to AM reliably improves 

accuracy, but there is no difference between this and combining 

AM and APM. Adding APM features of any kind do not improve 

models that include KT predictions. As for the linear regression 

models, the decision tree that performs the best is the one that 

only includes KT and AM, which reliably outperforms KT in both 

MAE and RMSE, with no reliable difference in AUC. 

4.2.4 Random Forest 
The final ensembling method used in this work was Random 

Forest, which is a collection of decision trees where each 

individual decision tree was built from a random subset of the 

attributes and a random subset of the data. In this work, random 

forests consisted of 1,000 such trees, which were each built 

randomly from any subset of the attributes and between 10% and 

90% of the data. The prediction of the random forest as a whole 

for a given test instance was the simple mean of the predictions 

given by each individual tree within the forest. The trees were 

regression trees and required a minimum of five data points per 

leaf node. No pruning was done, as varying the pruning levels did 

not appear to significantly affect the predictive accuracy of the 

forests for this dataset. 

The same set of attributes used for linear regression and decision 

trees were used in the random forest models, and the same six 

attribute subsets were tested separately as for the other methods.  

With the exception of MAE (many of the predictions were 1, 

which happens to be the majority class), these models performed 

worse than the other ensembling methods. This could be due to 

most of the trees being overfit to the training data, as sub-fold 

cross-validation with brute force search of optimal pruning 

parameters was not performed for these trees as it was for the 

individual decision trees reported on in the previous section. 

However, averaging these models with KT produced better 

results, as shown in Table 9. 

Table 9. Results for averaging the KT and random forest 

models 

 MAE RMSE AUC 

AM 0.3505 0.4002 0.6461 

AM, KT 0.3054 0.4117 0.6313 

AM, APM* 0.3479 0.3985 0.6477 
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AM, APM*, KT 0.3005 0.4109 0.6358 

AM, APM 0.3485 0.3990 0.6468 

AM, APM, KT 0.2997 0.4090 0.6375 

 

Unlike other ensembling methods, when random forest 

predictions are averaged with those of KT, progressively more 

APM data improves accuracy, though not always significantly. 

Otherwise, adding APM predictions appears to worsen results. 

4.2.5 Overall 
For the first three ensembling methods, those that included only 

AM and KT performed the best. However, for random forests, it 

was the average of KT with the random forest consisting of 

predictions from all three individual models. Table 10 reproduces 

these results, with bold-faced type indicating values that are 

reliably better than KT, and underlined type indicating values that 

are reliably worse. Table 11 reports the p-values of the differences 

between these models for each accuracy measure, with values 

indicating reliable differences in bold-faced type. 

Table 10. Results for the best of each ensembling method 

 MAE RMSE AUC 

MEAN 0.3508 0.4006 0.6472 

LR 0.3338 0.4024 0.6500 

TREE 0.3293 0.4009 0.6385 

RF 0.2997 0.4090 0.6375 

 

Table 11. Significance tests for the best ensembling methods 

 MAE RMSE AUC 

MEAN, LR 0.0000 0.1659 0.4274 

MEAN, TREE 0.0000 0.8803 0.1116 

MEAN, RF 0.0000 0.0022 0.1400 

LR, TREE 0.0000 0.1669 0.0223 

LR, RF 0.0000 0.0026 0.0406 

TREE, RF 0.0000 0.0001 0.8476 

 

From Tables 10 and 11, it appears that either the decision tree or 

random forest (averaged with KT) models could be considered the 

best model, depending on which measure is considered the most 

important. The random forest model is reliably better than the 

decision tree in terms of MAE, but reliably worse in terms of 

RMSE. 

In general, it appears there is some value in comparing the usage 

of assistance over the previous two problems, as ensembling APM 

with AM consistently gives better results than using AM on its 

own, except when taking means. Despite this, ensemble methods 

that use only KT and AM perform better than any other model 

studied in this work, including all of those using APM. One 

explanation could be that one important thing that APM captures 

is learning over the previous two questions, which is already 

modeled in KT. The one exception is when a random forest of all 

individual models is averaged with KT, which indicates that there 

is information that APM takes into account that neither AM nor 

KT considers. Right now, it is not clear which of these ensemble 

models is best given the disagreement among the metrics. It 

depends on the relative importance placed on each metric. 

5. DISCUSSION AND FUTURE WORK 
In this work, we generalized an existing raw data model, AM, into 

a framework for predicting student performance by tabling raw 

data. This framework provides an efficient way for adding new 

sources of information into existing student models. From there, 

we developed a new model, APM, which makes predictions based 

on the relationship between the assistance used on the previous 

two problems. Finally, we evaluated these models and KT, and 

then explored several ways of ensembling these models together. 

We found that although APM is not as predictive as AM, 

combining the two with various ensembling methods produces 

models that reliably outperform AM on its own. This shows that 

prediction accuracy can be strengthened by recognizing the 

progress a student makes in terms of the assistance they use. 

However, for the most part, the best models studied in this paper 

were those that only ensembled KT and AM. Adding APM to 

such models did not improve accuracy, except in the case of 

random forests averaged with KT. Despite this, it is still evident 

that there is value in considering student progress in terms of 

assistance. Perhaps there are better methods of incorporating that 

information into predictive models that will yield better results. 

We also confirmed that ensembles of AM and KT reliably 

outperform KT, in line with previous work [15]. Whereas 

previous work showed this was the case when computing the 

measures across all problem logs, this work shows it also holds 

when the measures are computed as averages across students. 

We reported three different accuracy measures to fairly compare 

models against each other, and argued that reporting multiple 

measures is necessary since they measure different properties of 

the predictions and therefore do not always agree on which model 

is best. We also argued that computing these measures per 

student, then averaging across students is more reliable than 

treating all problems as equal since the latter approach favors 

models that are biased towards students with more data. 

Although we found that the ensemble methods perform better than 

KT at predicting performance, such models are difficult to 

interpret and therefore may be limited in usefulness. Fitting a KT 

model for a given skill yields four meaningful parameters that 

describe the nature of that skill, whereas ensemble methods in this 

work give models of how to computationally combine predictions 

from KT and AM to maximize predictive accuracy. Since KT 

models student knowledge, it can be used to guide an ITS session. 

KT can also be extended to quantify the effects of help [3], 

gaming [7], and individual items [10], among other factors, on 

learning and performance. It appears the usefulness of the 

ensemble methods is limited to prediction of the next question, a 

task that serves as a good measure of the validity of a student 

model but does not appear to be useful in guiding ITS interaction. 

On the other hand, AM and APM are simple to compute and do 

not suffer from the identifiability problem that KT does [13]. AM 

and APM consist of summaries of the raw data rather than 

inferred parameters. Although not as predictive as KT, AM and 

APM give interpretable statistics with little chance of overfitting. 

Additionally, they consider the assistance used, which could 

indicate the usefulness of a system’s help features. Other tabling 

methods could be used to study the effects of other aspects of ITS, 

though likely with lower predictive accuracy than KT due to the 

limited set of values such methods can use as predictions. 
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Since the ensemble models outperformed KT but appear to be 

limited to predicting a student’s performance on the next question, 

finding a way to use such predictions within ITS would be a 

useful contribution. Question selection could be a possible 

application (i.e. selecting an easier question if the model predicts 

the student will answer the next question incorrectly). 

Another direction for future work could be determining other 

useful specializations of the framework we presented for building 

models from raw data. AM and APM focus on assistance, but 

other attributes could prove useful. Additionally, this work did not 

investigate grouping students or problems. 

Another future direction could be determining why some models, 

like APM, can reliably improve a model such as AM when 

ensembled with it, but not improve results when a third model 

such as KT is involved. It appears that the information that APM 

uses is important, but may not be used by APM in the best way 

possible. Examining the use of assistance over the course of more 

than just the previous two problems may also prove useful. 

Finally, experimenting with other methods of ensembling the 

models described here and other raw data models within this 

framework is also worth looking into. Previous work 

experimented with means and linear regression [15], and this 

work expanded upon those methods by including decision trees 

and random forests. However, other work in ensembling student 

models suggests that neural networks may perform better [11]. 
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ABSTRACT
A key challenge in educational data mining research is cap-
turing student work in a form suitable for computational
analysis. Online learning environments, such as intelligent
tutoring systems, have proven to be one effective means for
accomplishing this. Here, we investigate a method for cap-
turing students’ ordinary handwritten coursework in digi-
tal form. We provided students with LivescribeTMdigital
pens which they used to complete all of their homework and
exams. These pens work as traditional pens but addition-
ally digitize students’ handwriting into time-stamped pen
strokes enabling us to analyze not only the final image, but
also the sequence in which it was written. By applying data
mining techniques to digital copies of students’ handwritten
work, we seek to gain insights into the cognitive processes
employed by students in an ordinary work environment.

We present a novel transformation of the pen stroke data,
which represents each student’s homework solution as a se-
quence of discrete actions. We apply differential data mining
techniques to these sequences to identify those patterns of
actions that are more frequently exhibited by either good- or
poor-performing students. We compute numerical features
from those patterns which we use to predict performance in
the course. The resulting model explains up to 34.4% of the
variance in students’ final course grade. Furthermore the
underlying parameters of the model indicate which patterns
best correlate with positive performance. These patterns
in turn provide valuable insight into the cognitive processes
employed by students, which can be directly used by the
instructor to identify and address deficiencies in students’
understanding.

1. INTRODUCTION
Educational data mining has typically been applied to data
extracted from students’ interactions with Intelligent Tutor-

ing Systems (ITS) and Course Management Systems (CMS).
This research has been used to improve the way students
interact with these interfaces and has led to a better un-
derstanding of the ways students learn when using these
systems.

In this study, we investigate a method for capturing stu-
dents’ ordinary, handwritten coursework in digital form. In
the winter quarter of 2012, undergraduate Mechanical En-
gineering students were provided LivescribeTMdigital pens
with which they completed all their coursework. These pens
record students’ handwriting as time-stamped pen strokes,
enabling us to analyze not only the final image, but also the
sequence in which it was written.

We have developed a novel representation of a student’s
handwritten assignment which characterizes the sequence of
actions the student took to solve each problem. This repre-
sentation comprises an alphabet of canonical actions that a
student may perform when solving a homework assignment.
Each action is characterized by its duration, problem num-
ber, and semantic content. This representation allows us to
apply traditional data mining techniques to our database of
students’ handwritten homework solutions.

Our analysis focus on two separate groups of students: those
who scored in the top third of the class on exams, and those
who scored in the bottom third. We applied a differen-
tial data mining technique to the sequences of each of these
groups and identified behaviors that are more frequently ex-
hibited by one group than the other.

These patterns serve as the basis for a number of features
used to train a linear regression model to predict students’
performance in the course. This model achieves an R2 of
0.34. More importantly, the underlying parameters of this
model provide valuable insights as to which of the patterns
most correlate with performance. Using these most-predictive
patterns, we are able to identify high-level, cognitive behav-
iors exhibited by the students.

2. RELATED WORK
Data-driven educational research has traditionally been lim-
ited by the time-consuming process of monitoring students’
learning. For example, substantial research has been per-
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formed which investigated the correlation between perfor-
mance and the amount of time and effort spent on home-
work assignments [2, 5, 8, 16, 18]. Manually watching each
student solve each homework assignment would require an
intractable amount of time and, additionally, may skew the
results of the study. Instead, each of these researchers re-
lied on students or their parents to self-report the amount
of time spent on each homework assignment.

Cooper et al. [6] compared the results of each of these stud-
ies and found an average correlation of r = 0.14 with a range
from −0.25 to 0.65. Cooper et al. summarize this inconsis-
tency in findings when they state that, “to date, the role
of research in forming homework policies and practices has
been minimal. This is because the influences on homework
are complex, and no simple, general finding applicable to all
students is possible.” This underlies the impact that Edu-
cational Data Mining can have on the educational research
community. By instrumenting students’ natural problem-
solving processes, we are able to capture a precise mea-
surement of the actions students perform when solving their
homework assignments.

More recently, researchers have applied data mining tech-
niques to ITS and CMS data. For example, Romero et
al. [17] applied data mining techniques to data collected with
the Moodle CMS. This system allows students to both view
and submit various assignments, e.g., homework and exams,
and records detailed logs of students’ interactions. These
interaction logs were mined for rare association rules, that
is, patterns which appear infrequently in the data. The re-
sulting rules were then manually inspected to identify fringe
behaviors exhibited by students.

Similarly Mostow et al. [14] applied data mining techniques
to interaction logs taken from Project LISTEN’s Reading
Tutor, an ITS. This system tutors young students as they
learn to read by listening to them read stories aloud and
providing feedback. The authors developed a system which
automatically identified meaningful features from these logs
which were then used to train classifiers to predict students’
future behavior with the system.

Sequential pattern mining [1] is a technique used to identify
significant patterns in sequences of discrete items, e.g., con-
sumer transaction records [1] or DNA transcripts [4]. These
techniques have typically been used to mine patterns from a
single database of sequences. In Educational Data Mining,
it is often the case that researchers seek to find patterns that
best distinguish students who do and do not perform well
in the course. Thus there is a need for novel pattern mining
techniques aimed at differentiating between two databases
of sequences.

More recently, Ye and Keogh [20] developed a novel tech-
nique which identifies patterns which best separate two time-
series databases. This technique identifies frequently occur-
ring patterns within each database, as traditional pattern
mining techniques have, but furthermore, evaluates each
pattern by using it to separate sequences from the two databases.
If a sequence contains the pattern, that sequence is identified
as being part of the same database that the pattern came
from. The pattern which provides the greatest information

gain is kept as the “shapelet” that best separates the two
databases.

Similarly, Kinnebrew and Biswas [13] have developed a novel
differential pattern mining technique used to identify pat-
terns that differentiate between the interactions of different
groups of students with the Betty’s Brain ITS. This tech-
nique begins by using SPAM [3] to identify patterns that
occur in a significant number of sequences in either database.
A t-test for each pattern is then performed to determine if
there is a significant difference in the frequency of that pat-
tern in each sequence of each of the two databases. This
algorithm can identify patterns that occur significantly fre-
quently in one database and not the other.

The work of Oviatt et al. [15] suggests that natural work
environments are critical to student performance. Their ex-
amination of computer interfaces for completing geometry
problems suggests that, “as the interfaces departed more
from familiar work practice..., students would experience
greater cognitive load such that performance would dete-
riorate in speed, attentional focus, meta-cognitive control,
correctness of problem solutions, and memory.” Thus, our
goal is to apply Educational Data Mining techniques to data
collected in natural work environments.

To that end, recent research has focused on mining ordinary,
handwritten coursework data. For example, Van Arsdale
and Stahovich [19] demonstrated that a correlation exists
between the temporal and spatial organization of students’
handwritten problem solutions and the correctness of the
work. The organization of exam solutions was characterized
by a set of quantitative features, which were then used to
predict performance on those problems. On average these
features accounted for 40.0% of the variance in students’
performance on exam problems.

Similarly, Herold and Stahovich [12] presented a study in
which data mining techniques were applied to students’ hand-
written coursework to identify how self-explanation affected
students’ solution processes. In this study, students from a
Mechanical Engineering course were split into two groups,
one which provided handwritten self-explanation along with
their homework assignments and one which did not. Digital
copies of the students’ handwritten homework were mined
for commonly occurring n-grams, revealing that students
who generated self-explanation solved problems more like an
expert than did those who did not generate self-explanation.

In this work, we build upon these prior efforts by applying
differential pattern mining techniques to students’ ordinary,
handwritten problem-solving processes. In so doing, we aim
to identify successful and unsuccessful solution habits and
infer the higher-level cognitive processes they indicate.

3. DATA COLLECTION
In the winter quarter of 2012, students enrolled in an under-
graduate Mechanical Engineering Statics course were given
LivescribeTMdigital pens. Students completed all their course-
work with these pens, creating a digital record of their hand-
written homework, quiz, and exam solutions. A typical
exam problem is shown in Figure 1. Each problem includes
a figure describing a system subject to external forces. The
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Figure 1: A typical Statics problem. The problem
statement reads, “The device shown is used for cut-
ting PVC pipe. If a force, F = 15lb, is applied to
each handle as shown, determine the cutting force
T . Also, determine the magnitude and the direction
of the force that the pivot at A applies to the blade.”

student must apply the principles of equilibrium to compute
the resulting reaction forces.

Students typically begin solving problems by drawing a free
body diagram (FBD) representing the boundary of the sys-
tem and the forces acting on it. The free body diagram is
then used as a guide for constructing force and moment equi-
librium equations. Most pen strokes in a solution correspond
to either a free body diagram, an equation, or a cross-out.
(Because the Livescribe pens use ink, students cannot erase
errors and must instead cross them out.) Figure 2 shows a
hypothetical solution to a Statics problem.

In this study, we focus on the data for homework assign-
ments three, four, five, six, and eight, as these are the ones
focused on equilibrium analysis. Assignments one and two,
by contrast, focused on basic vector math, while assignment
seven was a review of centroids.

The resulting data set comprises 556 sketches from 132 stu-
dents. Each sketch corresponds to a single page of work
from a student. Each sketch, K = {s1, ..., sm}, comprises
a series of pen strokes. Each pen stroke, si = {p1, ..., pn},
comprises a series of points. Each point pj = {x, y, t} is a
triple where x and y are two-dimensional Cartesian coor-
dinates, and t is the time-stamp of that point. All points
within a pen stroke, and all pen strokes within a sketch,
are ordered by increasing time-stamp. The time-stamp of
the first point in a pen stroke signifies the start time of
that pen stroke and the last point is used to signify its
end time. A sequence of labels also exists for each sketch,
L = {l1, ..., lm}|l ∈ {FBD,EQN,CRO}. Each label, li,
identifies stroke, si, by its semantic content: free body dia-
gram (FBD), equation (EQN), or cross-out (CRO). We man-
ually labeled the pen strokes of each sketch, but it has been
shown in recent work that this process may be automated
reliably [11].

While these labels account for virtually all the ink written

Figure 2: A hypothetical solution to a Statics prob-
lem. The color of each pen-stroke identifies the com-
ponent to which it refers: cyan = FBD, green =
equation, and cross-out = black.

by students, more fine-grained labeling schemes could have
been developed by subdividing each label. For example, in-
stead of labeling a pen stroke as being part of an equation, it
could be labeled according to the type of equation to which
it corresponds, namely, sum of forces in the X or Y direc-
tion or the sum of moments. We chose the labeling scheme
presented for two major reasons.

First, this labeling scheme is sufficient for investigating hith-
erto unverifiable intuitions about the ways students solve
Statics problems, such as the intuition that students who
possess a strong understanding of the material will complete
their FBD entirely before beginning their equation work.
Similarly, we may corroborate the intuition that students
who possess a strong understanding of the material will com-
plete their problems in problem-number order, that is, they
complete problem one entirely before completing problem
two and so on.

Second, by subdividing each of the labels, we risk increasing
the granularity of the resulting action sequences too far, in-
creasing the number of total discrete actions to a point that
prevents patterns from being identified.

4. ACTION SEQUENCES
In this section, we describe how each sketch may be trans-
formed into an action sequence, comprising discrete actions,
that is suitable for differential pattern mining. Each action
is an element of a predefined alphabet of canonical actions.
Each element in the alphabet represents an uninterrupted
period of problem-solving performed by a student as he or
she solves a homework assignment. We seek to character-
ize the duration, semantic content, and homework problem
number for each action.

We begin by segmenting the pen strokes of each sketch by
semantic type. To do so, we simply identify each index, i, in
L such that li 6= li+1, and segment the series of pen strokes
at each identified index. Each resulting segment contains
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Figure 3: A histogram of the durations of FBD ac-
tions across all homework assignments. For exam-
ple, the first(leftmost) bar indicates that approxi-
mately 6,000 FBD actions were between zero and
five seconds long.

a sequence of actions corresponding to the same semantic
type. The resulting segments do not yet satisfy the above
definition of an action, as they do not necessarily contain
uninterrupted work. Thus, we further segment the sketch
at each index, j, such that the difference between the start
time of sj and the end time of sj−1 is greater than a specified
threshold. In this paper, we use a threshold of five minutes,
which was determined a priori ; five minutes is a sufficiently
large gap to be considered an intended break in the problem-
solving process.

Each segment is then labeled with an element from the al-
phabet of canonical actions. If the segment comprises cross-
out pen strokes, then it is given the cross-out label, C, re-
gardless of its length or problem number. The remaining
groups are labeled with a triple, {P, T,D}, where P repre-
sents the problem number, T represents the semantic type,
and D, represents the duration of the action. P ∈ {1, ..., 8}
as there are never more than eight problems on a given
homework assignment. T ∈ {F,E} where F represents a
FBD action and E represents an equation action. Lastly,
D ∈ {S,M,L}, where S, M , and L indicate an action of
small, medium, or large duration respectively. Take for ex-
ample, the label <1-E-S>. This indicates a small action on
the equations from problem one of an assignment.

The cut-off points for each duration category were deter-
mined by studying the distribution of lengths of all the FBD
and equation actions. Figures 3 and 4 show a histogram for
the duration of FBD and equation actions respectively. We
partition each distribution into three segments such that the
area under the curve for each segment is equal. The resulting
thresholds are 11.26 and 80.1 seconds for FBDs and 29.59
and 147.82 seconds for equations. There are 49 unique labels
in the canonical action alphabet, comprising the 48 possible
combinations for a given triple and the additional cross-out
label.

We seek to assign the action sequences of a student to a
performance group based on that student’s performance. In
particular, we group a student’s action sequence for an as-
signment by that student’s performance on the most rele-
vant exam, which we defined as the one that occurred most
recently after that assignment was due.
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Figure 4: A histogram of the durations of EQN ac-
tions across all homework assignments. For exam-
ple, the first(leftmost) bar indicates that approxi-
mately 3,500 EQN actions were between zero and
five seconds long.

Students completed homework assignments three and four
prior to the first midterm exam. Students completed home-
work assignments five and six after the first midterm exam
and before the second. Students completed homework as-
signment eight after the second midterm exam and before
the final exam. Each midterm exam only comprised prob-
lems similar to those encountered on the homework assign-
ments leading up to it. Thus the first midterm exam re-
quired that students solve problems similar to those found
on homework assignment three and four and the second
midterm exam required students to solve problems similar
to those found on homework assignments five and six. The
final exam comprised problems similar to all those encoun-
tered on all homework assignments.

Using this schedule of exams and homework assignments,
we assign each action sequence to a group based on perfor-
mance. An action sequence is assigned to the top-performing
group if the student who performed those actions scored in
the top third on the relevant exam. Similarly, an action
sequence is assigned to the bottom-performing group if the
student scored in the the bottom third of the class. The dif-
ferential mining technique employed in this paper requires
exactly two databases as input, thus the remaining middle-
performing students are excluded from our analysis to help
accentuate the differences in problem-solving behaviors of
top- and bottom-performing students.

Descriptive statistics of the lengths of the action sequences
for the two performance group for each assignment are shown
in Table 1. It is interesting to note that the average action
sequences of the bottom-performing group are always longer
than those of the top-performing group, and in two cases this
difference is significant (p < 0.01).

5. DIFFERENTIAL MINING
To identify patterns that distinguish good performance from
poor performance we employ the differential pattern mining
technique developed by Kinnebrew and Biswas [13]. This
algorithm identifies patterns that are differentially frequent
with respect to two databases of sequences, called the left
and right databases.

This algorithm uses two metrics to measure the frequency
of a pattern, s-frequency and i-frequency. s-frequency is de-
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Table 1: Average, median, and standard deviation
of the sequences for each grouping of sequences on
each assignment. The fourth column contains the p-
value of a t-test comparing the bottom-performing
and top-performing groups on each assignment.

Group Average Median Std. Dev. t-test
HW3 Bot. 89.52 88 43.30 0.21
HW3 Top 75.38 54.5 56.12 –
HW4 Bot. 130.25 128 63.97 0.00
HW4 Top 83.28 78 46.67 –
HW5 Bot. 127.88 119.5 70.89 0.01
HW5 Top 87.14 72 54.42 –
HW6 Bot. 144.73 140 52.55 0.171
HW6 Top 126.52 122 66.05 –
HW8 Bot. 82.45 72 73.94 0.17
HW8 Top 62.28 53.5 39.64 –

fined as the number of sequences in a database that contains
a specific pattern. i-frequency is defined as the number of
times a pattern appears within a single sequence. Take for
example, a database of ten sequences in which the first seven
sequences contain one instance of a particular pattern and
the last three sequences contain two instances of that same
pattern. This pattern would then have a s-frequency of 10.
This pattern would have an i-frequency of one in the first
pattern and an i-frequency of two in the last pattern.

This algorithm begins by finding all patterns that meet a
specified s-frequency threshold in the left and right database
separately. Each such pattern is called an s-frequent pat-
tern. A modified implementation of the SPAM algorithm
[3] is used to identify the initial set of s-frequent patterns
constrained by the a maximum gap between subsequent ele-
ments within a pattern. We use a maximum gap constraint
of two in our study.

The i-frequency of each s-frequent pattern is computed for
each sequence in each database. A separate t-test is com-
puted for each s-frequent pattern to determine if the i-
frequency values computed using the left database are signif-
icantly different from those computed for the right database.
If the resulting p-value of the t-test is below a certain thresh-
old, called the p-value threshold, it is considered to be dif-

ferentially frequent. This algorithm identifies four types of
differentially frequent patterns: those that are s-frequent in
both sets but whose average i-frequency is higher in the left
database; those that are s-frequent in both sets but whose
average i-frequency is higher in the right database; those
that are are only s-frequent in the left database; and those
that are only s-frequent in the right database. In this study,
we consider only the sequences from the last two cases as
they are the most most useful for distinguishing between
good- and poor-performing students.

In our implementation, we use the set of sequences from
the bottom-performing group as the left database and those
from the top-performing group as the right database. We use
a s-frequency threshold of 0.6, meaning that a pattern must
appear in at least 60% of the sequences in a database in order
to be considered s-frequent. We use a p-value threshold of
0.1.

6. PERFORMANCE PREDICTION
The differential pattern mining technique identified 98 pat-
terns in total: 6 that were s-frequent in the top-performing
group but not in the bottom-performing group, and 92 that
were s-frequent in the bottom-performing group but not in
the top-performing group.

Our goal is to use these 98 patterns to construct a model
to distinguish between good- and poor-performing students.
We represent each student with 98 binary features. Each
feature indicates whether a particular differential pattern
from a particular assignment is contained within a student’s
action sequence for that assignment. To avoid computing
a model that over-fits the data, we used the Correlation-
based Feature Selection (CFS) algorithm with 10-fold cross-
validation to identify the subset of the 98 features with the
most predictive power. Those features that were selected in
more than six of the ten folds by the CFS algorithm were
included in the final feature subset. Table 2 shows the 20
features that were ultimately selected in this way.

We then used these 20 features to construct a linear regres-
sion model which predicts students’ overall performance in
the course. While more robust, non-linear classifiers could
have been used, e.g., AdaBoost [7] or Support Vector Ma-
chines [9], we use a linear regression model because of the
ease of interpretation; the coefficients that comprise the
model give insight into the predictive power of the features
used to train it. We used the linear regression package avail-
able in the WEKA machine learning software suite [10] to
train the model. Our predictive model achieves an R2 of
0.343 and includes seven features with non-zero coefficients.
Table 3 lists these seven features.

7. DISCUSSION
We manually inspected each of the 98 patterns identified by
the differential pattern mining algorithm and categorized the
different types of cognitive processes they demonstrate. We
identified seven distinct categories. Difficulty is the category
in which students seem to encounter difficulties with a par-
ticular problem, evidenced by either repeated cross-outs or
repeated attempts at the same component of the same prob-
lem. For example, the pattern <C, 1-E-S, C> describes a
scenario in which the student crossed out work, worked on
equations for problem one for a short time, and then again
crossed out work.

Three categories describe patterns in which actions are re-
peated: Repeated Equation, Repeated FBD, and Repeated

Cross-out. For instance, <2-E-S 2-E-S> is an example of a
Repeated Equation action. Such sequences may be an indi-
cation that a student is taking a break in the middle of a
particular activity to think more carefully before continuing
with that activity.

Two categories describe patterns suggesting that a student
may be revising either a FBD (FBD Revision) or an equation
(Equation revision). These patterns comprise a cross-out
followed by either the FBD or equation they are most likely
revising. Also, when a student moves from working on an
equation back to a FBD, this is likely an indication that the
FBD is being revised; students typically attempt to complete
their FBD before moving on to equations.

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 71



www.manaraa.com

Table 2: Features selected using the CFS algorithm.
Each feature corresponds to a pattern identified by
the differential pattern mining algorithm. Each line
shows the homework number and group (top or bot-
tom) from which the pattern was identified. The fi-
nal column shows the pattern that was used to com-
pute the feature.

HW No. Perf. Group Sequence
3 Top 1-E-M 1-F-S
3 Top 1-F-M 1-E-M
3 Bot 2-F-M 2-E-S
3 Bot C 5-E-S
3 Bot 5-E-M 5-F-S
3 Bot 5-E-S 5-F-M
3 Bot C 4-E-L
4 Bot C 1-E-M
4 Bot 1-E-L C
4 Bot C 5-E-L
4 Bot 1-E-M 1-E-S
4 Bot C C
5 Bot 4-E-S 4-E-S
6 Bot 1-F-M 1-E-S 1-E-M
6 Bot 1-E-S 1-E-M 1-F-M
6 Bot 1-F-M 1-F-S
6 Bot 1-F-S 1-F-M
8 Bot 5-F-M 5-F-S
8 Bot 5-F-S 5-E-M
8 Bot 5-F-M 5-E-S

Table 3: Non-zero feature coefficients for the linear
regression model trained to predict student perfor-
mance.

Sequence HW Weight Category
1-F-S 1-F-M 3 48.8 Repeated FBD
C 5-E-L 3 51.0 EQN Revision
C 5-E-S 4 51.2 EQN Revision

1-E-M 1-F-S 4 55.5 FBD Revision
C 1-E-M 6 62.7 EQN Revision

1-F-M 1-E-S 1-E-M 6 63.1 Difficulty
5-F-M 5-F-S 8 73.1 Repeated FBD

Lastly, is the Normal category. This is the category for all
patterns in which a FBD is followed by an equation of the
same problem number. A differential pattern belonging to
the Normal category is particularly informative when one
group exhibits significantly more normal sequences – it is an
indication that the other group is solving their homework
assignment out-of-order more often.

The non-zero weighted features of the linear regression model
(Table 3) help identify the patterns which are most predic-
tive of students’ grades, and thus provide insight into the
behaviors which best correlate with students’ performance.
In Table 3, Patterns 1, 4, 5, and 6 are all similar in that they
comprise actions pertaining to the first problem on a home-
work assignment, and suggest that a student may be having
difficulty or is frequently revising his or her work. This is
an indication that when students encounter difficulty on the
first problem, which is typically the easiest problem of the

homework assignment, that they may continue to encounter
those difficulties throughout the quarter.

Patterns 2, 3, and 7 in Table 3 are all similar in that they
pertain to problems that are very similar to problems that
appear on either a later midterm, the final exam, or both.
(These problems differ only superficially from exam prob-
lems. For example, the geometry may be rotated.) These
patterns all describe situations in which the student is revis-
ing his or her equations or FBDs. The features suggest that
students who frequently revise problems which are similar
to an exam problem are likely to have difficulty with those
problems later on during an exam.

It would be difficult to use the linear regression model to pre-
dict performance for students of a future section in Statics.
To do so would require that the instruction, assignments,
and exams, be identical. This is not likely to be the case, as
some of the homework problems are modified each year to
prevent copying solutions from the previous offering.

Instead, the patterns and correlations discovered in this pa-
per may be used to guide future offerings of this course.
For example, if a student’s work contains patterns which
indicate difficulty, similar to those found in this study, on
the first problem of an assignment or on a problem which
is similar to one that will appear in a future exam, the in-
structor can provide targeted materials for that student to
address that difficulty. Furthermore, the results here in-
dicate which problems have a strong bearing on students’
performance. For example, students who seemed to have
difficulty constructing a FBD on problem five of homework
eight typically did not perform well in the course. This indi-
cates to the instructors of future offerings this course, that
more time should be spent in class reviewing how the FBD
for this problem should be constructed.

8. CONCLUSION
We have presented an application of data mining techniques
to educational data extracted from a novel environment. We
have given undergraduate Mechanical Engineering students
LivescribeTMdigital pens with which they completed all their
coursework. These pens record students’ handwriting as
time-stamped pen strokes enabling us to not only analyze
the final image, but also the sequence in which it was writ-
ten.

We developed a novel representation of students’ handwrit-
ten work on an assignment which characterizes the sequence
of actions the student took to solve that problem. This rep-
resentation comprises an alphabet of 49 canonical actions
that a student may make when solving his or her homework
assignment. Each action is characterized by its duration,
problem number, and semantic content. This representation
allows us for the first time, to apply traditional data mining
techniques to sequences of students’ handwritten problem
solutions.

We assigned these sequences into top- and bottom-performing
groups according to performance on each sequence’s most
relevant exam. The most relevant exam for a sequence from
a particular homework assignment is the exam which occurs
most recently after that homework assignment was due. Se-
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quences from students who performed in the top third of the
class on that assignment comprise the top-performing group
and sequences from students who performed in the bottom
third comprise the bottom-performing group. We applied a
differential data mining technique to the sequences from the
students in each of these groups and identified patterns that
are more frequently exhibited by one group than the other.

These patterns serve as the basis for features used to train
a linear regression model to predict students’ performance
in the course. This model achieves an R2 of 0.34. Further-
more, the underlying parameters of this model provide valu-
able insights as to which of the patterns best correlate with
performance. From these best-correlating patterns, we have
manually identified high-level cognitive behaviors exhibited
by the students. These behaviors provide insight as to when
students may be experiencing difficulty in the course. These
techniques may be applied in future sections of this course
to identify when students are having difficulty in class, en-
abling the instructor to rapidly address those difficulties.
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ABSTRACT 
In recent years, student modeling has been extended from 
predicting future student performance on the skills being learned 
in a tutor to predicting a student’s preparation for future learning 
(PFL). These methods have predicted PFL from a combination of 
features of students’ behaviors related to meta-cognition. 
However, these models have achieved only moderately better 
performance at predicting PFL than traditional methods for latent 
knowledge estimation, such as Bayesian Knowledge Tracing. We 
propose an alternate paradigm for predicting PFL, using 
quantitative aspects of the moment-by-moment learning graph. 
This graph represents individual students’ learning over time and 
is developed using a knowledge-estimation model which infers 
the degree of learning that occurs at specific moments rather than 
the student's knowledge state at those moments. As such, we 
analyze learning trajectories in a fine-grained fashion. This new 
paradigm achieves substantially better student-level cross-
validated prediction of student’s PFL than previous approaches. 
Particularly, we find that learning which is spread out over time, 
with multiple instances of significant improvement occurring with 
substantial gaps between them, is associated with more robust 
learning than either very steady learning or learning characterized 
by a single “eureka” moment or a single period of rapid 
improvement. 

Keywords 

Moment-by-moment learning graph, preparation for future 
learning, student modeling. 

1. INTRODUCTION 
In recent years, there has been increasing emphasis in learning 
sciences research on helping students develop robust 
understanding that supports a student in achieving preparation for 
future learning (PFL) (cf. [9,15,17,26]), with evidence suggesting 
that differences in the design of educational experiences can 
substantially impact PFL [11,28]. Multiple approaches have now 
been found to be successful at supporting PFL. For example, 
learning-by-teaching when implemented with the use of 
“teachable agents”, computer characters that the student have to 
teach during the learning process, has been shown to support PFL 
[11,26,28]. Another approach shown to support PFL is the use of 
invention activities, during which students are asked to “invent” 

representation of a given problem (e.g., variance of a data set) 
[9,25-26].  

Given the existence of methods that can support PFL, there is 
increasing potential to enhance individualization within 
computer-based learning environments to optimize not just 
learning of the material being taught (cf. [10,12,24]), but PFL as 
well. However, individualization of this nature depends on 
student models that can effectively infer PFL.  

In the last two years, approaches that can infer PFL and other 
forms of robust learning have begun to emerge, but these 
approaches are still in their early stages, and are only modestly 
better than simply assessing student knowledge. In specific, 
models that leverage data on metacognitive and motivational  
aspects of student behavior (e.g., off-task, help-avoidance) have 
achieved cross-validated correlations about 0.05-0.1 higher than 
classical knowledge models (e.g. Bayesian Knowledge Tracing) 
to both PFL and transfer tests [4-5]. In addition, retention (another 
aspect of robust learning) has been effectively predicted using 
inferences of memory decay during periods of non-practice (e.g. 
forgetting; [16,29]). 
In this paper, we propose an alternate method for predicting PFL 
more precisely than the meta-cognitive/motivational behavior 
approach proposed in [4]: using quantitative aspects of the 
Moment-by-Moment Learning Graph. Similar to the classic 
learning curve (cf. [19,22]), a Moment-by-Moment Learning 
Graph (MBMLG) represents the probability that learning has 
occurred at a specific moment [3], for a given student and a given 
Knowledge Component (KC)/skill, at each step of the learning 
process. These probabilities are calculated based on a machine 
learned model that smoothes probabilities calculated using the 
probability that the student has learned the skill up to the point of 
a specific step, and the probability of their future actions given the 
probability that they learned the skill at that problem step. 

Earlier work (discussed in greater detail in Section 3.2) suggests 
that visual interpretations of the patterns of the MBMLG correlate 
to PFL [6]. This earlier work used human coders to interpret the 
visual characteristics of the MBMLG. In this work, we study 
whether an automated approach – based on quantitative analysis 
of features of the MBMLG – inspired by this earlier work can 
improve the prediction of PFL. 
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2. DATASET 
We use attributes of the form of individual student’s MBMLG to 
predict student preparation for future learning. We do so in a 
combined data set from three studies, in total comprising 181 
undergraduate and high-school students who used an intelligent 
tutoring system to learn Genetics. The students enrolled in 
Genetics courses at Carnegie Mellon University, or in high school 
biology courses in Southwestern Pennsylvania. 

Study 1 (College Undergraduates, Three-Factor Cross). 72 
undergraduates enrolled in a Genetics course or in an Introductory 
Biology course at Carnegie Mellon University were recruited to 
participate in the study for pay, at a point in the semester where 
the tutor software was relevant to their classroom learning. The 72 
students completed a total of 22,885 problem solving attempts 
across a total of 10,966 problem steps in the tutor. 

Study 2 (College Undergraduates, Gene Interaction). 53 
undergraduates enrolled in a Genetics course or in an Introductory 
Biology course at Carnegie Mellon University were recruited to 
participate in the study for pay, at a point in the semester where 
the tutor software was relevant to their classroom learning. The 53 
students completed a total of 33,643 problem solving attempts 
across a total of 22,126 problem steps in the tutor.  

Study 3 (High school students, Three-Factor Cross). 56 high 
school students who were enrolled in high school biology courses 
used the tutor. The students were recruited to participate in the 
study for pay through several methods, including advertisements 
in a regional newspaper and recruitment handouts distributed at 
two area high schools. The 56 students completed a total of 
21,498 problem solving attempts across a total of 9,204 problem 
steps in the tutor. 

 

2.1 Learning System and Learning Activity 
The data used in this paper was drawn from student use of the 
Genetics Cognitive Tutor [14]. This tutor consists of 19 modules 
that support problem solving across a wide range of topics in 
genetics (Mendelian transmission, pedigree analysis, gene 
mapping, gene regulation and population genetics). Various 
subsets of the 19 modules have been piloted at 15 universities in 
North America. 

This study focuses on two of these tutor modules. One employs a 
gene mapping technique called a Three-Factor Cross. The tutor 
interface for this reasoning task is displayed in Figure 1. In this 
technique two organisms are crossed (two fruit flies in the 
example) and the resulting distribution of offspring phenotypes is 
analyzed to infer the order of three genes on the chromosome and 
the relative distances between the three pairs of genes. 

The other module, Gene Interaction and Epistasis, engages 
students in extending basic Mendelian transmission to two genes. 
In this task, displayed in Figure 2, students cross three true-

breeding strains, perform intercrosses, and based on offspring 
phenotype frequencies, infer the genotypes of the true-breeding 
strains and each of the offspring phenotypes. 

 

 
Figure 1. Screenshot from the Three-Factor Cross lesson of 
the Genetics Cognitive Tutor 

 

 
Figure 2. Screenshot from the Gene Interaction lesson of the 
Genetics Cognitive Tutor 

2.2 Design 
The studies were conducted in computer clusters at Carnegie 
Mellon University. All students attended study sessions on two 
consecutive days; in studies 1 and 2, each of these lasted 2 hours, 
while in study 3, each lasted 2.5 hours. All students engaged in 
Cognitive Tutor-supported activities for about one hour in each of 
the two sessions. In studies 1 and 3 all students completed 
standard Three-Factor Cross problems, as depicted in Figure 1, in 
both sessions, while in study 2 all students completed standard 
Gene Interaction problems, as depicted in Figure 2, in both 
sessions. 
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During the first session of each study, some students were 
assigned to complete other cognitive-tutor activities designed to 
support deeper understanding; however, no significant differences 
were found between conditions for PFL or any other robust 
learning measure (this is reported for study 1 in [14]), so in this 
analysis we collapse across the conditions and focus solely on 
student behavior and learning within the standard problem-
solving Cognitive Tutor activities. 

All students completed a problem-solving pre-test at the 
beginning of the first session, and a problem-solving post-test 
immediately following the Cognitive Tutor activities in the 
second session. Following the problem-solving post-test in the 
second session, students also completed a transfer test and 
preparation-for-future-learning (PFL) test. Finally, students in 
studies 1 and 2 returned a week later to complete a problem-
solving retention test. Within this paper, we focus all analysis on 
the PFL test, as a particularly strong indicator that student 
learning is robust (cf. [9]). A PFL prediction model was built on a 
dataset combining the three studies. 

2.3 PFL Test 
This study examines student performance on preparation-for-
future-learning problem-solving tests. By definition, the reasoning 
in each of these two tests is related to solving Three-Factor Cross 
or Gene Interaction problems, respectively, but is sufficiently 
more complicated that a student could not be expected invent a 
solution method by direct transfer, and certainly not in a short 
period of time. Consequently, each of the PFL tests incorporated 
instructional text on the required reasoning, which students read 
prior to problem solving. The PFL tests were designed in 
collaboration between biology experts and a cognitive scientist 
(the fourth author).  

In the Three-Factor Cross studies, students were asked to solve 
parts of a four-factor cross problem; the PFL test presented a 2.5-
page description of the reasoning in a four-factor cross 
experiment, then asked students to solve some elements of a four-
factor cross problem: identifying the middle genes, identifying all 
the offspring groups with a crossover between two specific genes 
and finding the map distance between those two genes. 

In the Gene Interaction study, students were asked to reason about 
gene regulation problems. In these problems, three genes, an 
operator, a structural gene and a regulatory gene, act together to 
control DNA transcription. The test presented a 1.5 page 
description of several gene regulatory systems, then asked student 
to reason about the impact of dominant and recessive alleles of 
the component genes on transcription. 

PFL tests were completed by all students in the three studies, with 
an average percent correct of 0.89 (SD=0.15), 0.74 (SD=0.24), 
and 0.66 (SD=0.28) for Study 1, Study 2, and Study 3, 
respectively. 

3. MOMENT-BY-MOMENT LEARNING 
GRAPH 
3.1 Construction of the Graph 
The construction of the Moment-By-Moment Learning Graph 
(MBMLG) is based on a three-phase process, which first infers 
moment-by-moment learning using data from the future, then 
infers the same construct without data from the future, and then 
integrates across inferences over time to create a graph.  

The first step is to infer moment-by-moment learning using data 
from the future, based on an approach first proposed by [2]. To 
obtain this inference, a Bayesian Knowledge-Tracing (BKT) 
model [13] is used to calculate the probability that the student 
knows a specific skill at a specific time, based on the student’s 
history of success on problems or problem steps involving that 
skill. The BKT model is updated every time the student responds 
to a problem step, based on the correctness of the response, 
allowing for an aggregate estimate of student knowledge over 
time.  

Then, the estimation of student knowledge and the parameters of 
the BKT model are combined using Bayesian formulas (discussed 
in mathematical detail in [3]), to infer the probability that a 
student learned a skill or a concept at a specific step during the 
problem-solving process, by looking at the probability of future 
actions if the student had learned the skill at this point. This 
probability is referred to as P(J) (J stands for “just learned”). That 
is to say, instead of assessing the probability that a skill is known 
by the time the student reaches the Nth step that involves that 
skill, the model assesses the probability that the skill was learned 
between time N-1 and time N. At an intuitive level, high values of 
P(J) are seen when a student’s performance shifts from being 
mostly incorrect to mostly correct, but precise values are obtained 
using current estimates of the probability the student knows the 
skill, along with model estimates of the probability of correct 
answers being due to guessing, and incorrect answers being due to 
slipping or carelessness. This model uses information on past, 
current, and future performance, to predict the probability that 
learning occurred during each step of the student’s work within 
the computer-based learning environment. 

Once these predictions have been obtained, a machine-learned 
model is built, using a set of features of student data (such as the 
recent history of help and errors on this skill, and time taken on 
the current and recent attempts) to predict P(J) values based on 
past and current information only. Within the work presented 
here, the same feature set as was used for the Cognitive Tutor in 
[3] was used. The list of features inputted into the machine 
learning algorithm is: 

 Assessments of correctness:  
o Percent of all past problems that were wrong on this KC.  
o Total number of past problems that were wrong on this 

KC.  
o Number of last 5 problems that were wrong.  
o Number of last 8 problems that were wrong.  

 Measurements of time:  
o Time taken (SD faster/slower than average across all 

students).  
o Time taken in last 3 actions (SD off average) Time taken 

in last 5 actions (SD off average)  
o Total time spent on this KC across all problems  
o Time since the current KC was last seen.  

 Data on hint usage:  
o First response is a help request.  
o Bottom-out hint is used.  
o Number of last 8 problems that used the bottom-out hint.  
o Number of last 5 problems that included a help request.  
o Number of last 8 problems that included a help request.  

 Other measurements:  
o Total problems attempted in the tutor so far.  
o Total practice opportunities on this KC so far.  
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o Response is chosen from a list of answers (Multiple 
choice, etc).  

o Response is filled in (No list of answers available).  
 

This model serves the joint purposes of enabling the model to be 
used for eventual intervention, and smoothing the sometimes 
extreme values of P(J) that can be obtained when the BKT 
model’s parameters for guessing and slipping are low. The model 
used here is built using linear regression with M5’ feature 
selection [30], in RapidMiner Version 4.6 [20]. To validate the 
generalizability of our models, 6-fold cross-validation at the 
student level was used (i.e., detectors are trained on five groups of 
students and tested on a sixth group of students). By cross-
validating at this level, we increase confidence that detectors will 
be accurate for new students. 

The goodness of the models was assessed using the Pearson 
correlation coefficient between the training labels of P(J) for each 
opportunity to learn each KC, and the values predicted for P(J) for 
the same opportunity by the machine-learned models. As both set 
of values are quantitative, and there is a one-to-one mapping 
between training labels and predicted values, linear correlation is 
a reasonable metric.  

The P(J) model achieved solid correlations to the training labels 
under 6-fold student-level cross-validation, with values of 0.68 for 
Study 1 (college genetics 3-factor cross lesson; reported in [6]), 
0.65 for Study 2 (college genetics gene-interaction lesson), and 
0.48 for Study 3 (high school genetics 3-factor cross lesson). 
These values are moderately higher than those seen for P(J) 
models built for the Middle School Cognitive Tutor or 
ASSISTments, probably due to the more diverse collection of 
lessons used in these earlier studies (e.g. [3]). The difference in 
correlation between the college studies and the high-school study 
might suggest between-population differences; perhaps the high 
school students differed more from each other than the college 
students, all of whom had been accepted and chose to attend the 
same university.  

 

3.2 Previous Studies: Association with PFL 
In prior work, Moment-by-Moment Learning Graphs were created 
for the Genetics Tutor and then visually analyzed by human 
coders; the coders examined the graphs and chose for each 
instance the visual patterns that can be observed in it (either a 
single pattern or multiple patterns). In specific, seven specific 
visual patterns of the MBMLG were identified, coded by human 
coders (achieving high inter-rater reliability), and then those 
human labels were correlated with scores on a PFL test [7]. In that 
work, it was found that two patterns of the MBMLG are 
statistically significantly associated with PFL, specifically (see 
Figure 3): 1) Plateau - three or more sequential problem steps that 
have significantly higher values for P(J) than the rest of the 
student’s behavior. This form represents students who have steady 
learning (e.g., steady improvement in performance) during only 
part of the learning activity. The plateau visual form was found to 
be negatively associated with PFL (r=-0.27, statistically 
significant when controlling for multiple comparisons). 2) 
Immediate drop – the first problem step for the skill has a high 
value for P(J), which then immediately falls to low values for the 
rest of the learning. Immediate drop most likely represents a 
student who already knows the relevant skill and simply must 

transfer it into the learning system, or a student immediately 
mastering a very easy skill. Immediate drop is positively 
associated with PFL (r=0.29, statistically significant when 
controlling for multiple comparisons), suggesting that students 
who already know a skill are more likely to be prepared for future 
learning when they start the tutor, or that the over-practice that the 
tutor represents for these students may be enhancing their 
preparation for future learning. This suggests the hypothesis that 
over-practice can lead students to not only develop greater speed 
of performance [23] and lower probability of forgetting [24], but 
also to deeper conceptual knowledge required to prepare them for 
future learning. 

Additionally, “Spikiness” in the MBMLG – that is, the extent to 
which there is a prominent peak in the graph, which might 
indicate a “eureka” moment (cf. [3,4]) – was shown to be 
correlated with PFL and as a significant factor in a PFL machine-
learned prediction model [5]. These results suggested that the 
visual or functional form of the Moment-By-Moment Learning 
Graph can be highly associated with preparation for future 
learning. However, the results in [7], as they rely upon human 
labels, are not sufficient for use to improve the automatic adaptive 
behavior of educational software; also, human labels are not 
easily available at scale for larger studies. The model developed 
in [5] uses measures other than the MBMLG, and only simple 
measures of the MBMLG; hence it does not fully demonstrate the 
potential of the graph to individually predict PFL. In this paper, 
we attempt to extend these approaches by assessing the 
mathematical properties of the MBMLG in an automatic fashion, 
and developing a model that relies solely on these properties to 
predict PFL. 

 

 
Figure 3. Examples of MBMLG patterns that were found to 
be significantly related to PFL: plateau (top) and immediate 
drop (bottom) 
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4. FEATURE ENGINEERING 
In this paper, we attempted to distill quantitative features of the 
MBMLG to use in automated prediction of PFL. 15 features were 
computed for each MBMLG, and used as potential predictors of 
PFL. The full list of features is given here. Features included in 
the prediction model are highlighted in boldface; in square 
brackets, a short name is given for each variable, to be used later 
in the article: 

• Average moment-by-moment learning [avgMBML] 

• Sum of moment-by-moment learning values [sumMBML] 

• Number of opportunities to learn the KC [graphLen] 

• Area under the graph [area] 

• Height of the largest peak [peak] 

• Height of the 2nd-largest peak [2ndPeak] 

• Height of the 3rd-largest peak [3rdPeak] 

• First index of the largest peak (index = 1 equals the first step 
involving the skill, index = 2 equals the second step involving 
the skill, and so on) [peakIndex] 

• First index of the 2nd-largest peak [2ndPeakIndex]. 

• Distance (in terms of number of problem steps) between the 
largest and the 2nd-largest peaks [2PeaksDist] 

• Distance between the largest and the 2nd-largest peaks, divided 
by the total number of steps involving the KC [2PeakRelDist] 

• Decrease [%] of magnitude from largest to 2nd-largest peak 
[2PeakDecr] 

• Decrease [%] from largest to 2nd-largest peak, divided by the 
distance (# steps) between them [2PeakRelDecr] 

• Decrease [%] from largest to 3rd-largest peak [3PeakDecr] 

• Decrease [%] from largest to 3rd-largest peak, divided by 
the distance (# of steps) between them [3PeakRelDecr] 

5. PFL PREDICTION MODEL 
To predict the PFL test results using the 15 MBMLG features, we 
averaged values of these variables across the sets of genetics 
problem-solving skills in each of the two tutor modules. Using 
this data set, we built a model to predict the PFL test from the 
quantitative attributes of the MBMLGs, using linear regression 
with forward selection of model features (cf. [21]). The model 
was validated using student-level leave-one-out cross-validation. 
In addition, a first pass was conducted prior to model selection 
where features were eliminated if, taken individually, they had 
cross-validated correlation below zero. This procedure was 
adopted as an extra control and over-fitting. This first pass 
eliminated five variables ([peakIndex], [2ndPeakIndex], 

[graphLen], [2PeaksDist], [2PeakRelDist]). 

Goodness of fit was assessed using the Pearson correlation 
between the predicted PFL score and the actual score. The best-
fitting model has a cross-validated correlation of r=0.532 with 
actual PFL scores, substantially better than the cross-validated 
correlations previously found (e.g., [4]) for models based on 
meta-cognitive and behavioral features (0.360) or models 
assessing student skill within the software (0.285). The best 
model is presented in Table 1. 

Interestingly, the 3rd-largest learning peak is involved in three of 
the four variables selected into the best predictive model. In 
specific, the magnitude of the 3rd-largest learning peak is 
positively associated with PFL, and large gaps in the size between  

the largest and 3rd-largest learning peak (measured by decrease 
[%] from largest to 3rd-largest peaks) are positively associated 
with PFL. These relationships may suggest that single “eureka” 
moments might indeed be meaningful for robust learning. Having 
the steepness of the decrease between the largest and to the 3rd-
largest peaks (decrease [%] from largest to 3rd-largest peaks, 
divided by the distance between them) with a negative coefficient 
emphasizes the importance of multiple (though more minor than 
the most prominent one) learning events which are spread out 
over time (as opposed to occurring more rapidly). As such, the 
best pattern appears to be a pattern where the student has multiple 
substantial moments of learning (at least three) of comparable 
magnitude, spread out over time.  

 

Table 1. Best-fitting linear regression model predicting PFL 

Variable Coefficient 

Area under the graph [area] -8.459 

Height of the 3rd-largest peak [3rdPeak] +2.634 
Decrease [%] from largest to 3rd-largest peaks 
[3rdPeakDecr] +0.641 

Decrease [%] from largest to 3rd-largest 
peaks, divided by the distance between them 
[3rdPeakRelDecr] 

-0.296 

(Constant) +0.607 
 
 

Another finding worth discussing is the negative coefficient of 
total area under the graph, which indicates that students who have 
relatively higher learning in the environment have generally lower 
PFL (when controlling for the other features). While this finding 
is at a surface-level non-intuitive, it is worth noting that in an 
effective learning environment, most students learn the skills 
being taught if they do not already know them. As such, many or 
most of the students who do not learn the skills being taught 
already knew the skills to begin with. Indeed, problem-solving 
pre-test and area are statistically significantly negatively 
correlated in our study, as shown earlier. These students may have 
therefore been able to focus on developing more robust learning 
while using the environment, rather than needing to focus on the 
exact skills directly taught by the environment. 
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5.1 Correlations of MBMLG Feature with 
PFL 
Having built the full model, it may be worth examining the types 
of relationships between the individual MBMLG features and 
PFL score. In particular, some variables may reverse direction in 
a complex model. Therefore, in order to understand individual 
features’ relationship to PFL, we computed correlations between 
each feature the PFL score. In addition, we computed correlation 
with pre-test scores, in order to explore the possibility that some 
of these relationships might be explained by prior knowledge. 
Results are summarized in Table 2 (full names of the variables, 
along with their shortened names, appear in Section 4, Feature 
Engineering), and are discussed in this section. 

Three features that aggregate overall measures of moment-by-
moment learning were found to be significantly negatively 
correlated with both pre-test and PFL scores; these features are: 
average moment-by-moment learning [avgMBML], sum of 
moment-by-moment learning values [sumMBML], and area under 
the graph [area]. That is, low values of learning as reflected in 
the MBMLG are indicators of high prior knowledge, which is in 
turn a good predictor of PFL.  

The features that measure values of the largest peaks of the 
MBMLG are significantly negatively correlated with PFL. That 
is, the larger the values of the graph’s highest peaks, the lower the 
PFL score is. Interestingly, the correlation between the 2nd-largest 
peak and PFL is stronger than that of the largest peak; and the 
correlation between the 3rd-largest peak and PFL is stronger than 
that of the top two largest peaks. It is important to notice that 
height of the 3rd-largest [3rdPeak] is significantly (though 
mildly) negatively correlated with prior knowledge, while the 
height of the 2nd-largest peak [2ndPeak] is marginally negatively 
correlated with prior knowledge, and height of the largest peak 
[peak] is not significantly correlated with prior knowledge. 
Hence, based only on a few meaningful learning events (three, to 
be more specific), we can conclude that the student was not 
properly prepared to the learning to begin with, and as such – the 
student is probably not prepared for future learning as well.  

Lastly, the four features that measure the decrease in the graph 
largest peaks – both absolute and relative to the distant between 
the peaks – are significantly positively correlated with both pre-
test and PFL scores. It is important to first fully understand the 
meaning of these four features. The larger the absolute decrease 
between the largest peak values of the graph – measured by 
decrease [%] of magnitude from largest to 2nd-largest peaks 
[2PeakDecr], decrease [%] of magnitude from largest to 3rd-
largest peaks [3PeakDecr] – the more likely it is that there was a 
single meaningful learning event across the learning process. The 
higher the value of the relative decrease between the largest peak 
values – measured by decrease [%] from largest to 2nd-largest 
peaks, divided by the distance between them [2PeakRelDecr], 
decrease [%] from largest to 3rd-largest peaks, divided by the 
distance between them [3PeakRelDecr] – the more likely it is that 
the graph peaks are either different in value from each other, or 
that they are close to each other. So, these features’ positive 
correlations with PFL suggest that either single learning events, or 
temporally close multiple learning events are associated with 
robust learning. 

That said, there are two interesting sign-flips observed between 
the individual features’ correlations with PFL scores and their 
coefficients in the prediction model: the coefficient of the 3rd-

largest peak [3rdPeak] is positive in the model while it is 
negative when correlation is examined individually; and the 
coefficient of the steepness of the decrease from the largest to the 
3rd-largest peaks [3rdPeakRelDecr] is negative in the model 
while it is positive when correlation is examined individually. 
Considering these results along with the full model, we might 
conclude that when controlling for overall learning (area under 
the graph [area]) and for the prominence of the most meaningful 
learning event (measured by Decrease [%] from largest to 3rd-
largest peaks [3rdPeakDecr]), another pattern emerges as an 
indication to PFL, which is having multiple learning events 
spread over the learning process. 

Another interesting finding regarding the individual feature 
correlations is that Number of opportunities to learn the KC 
[graphLen] is significantly positively correlated with pre-test, but 
is not significantly correlated with PFL. This might suggest that 
over-practice within the tutor is not necessarily associated with 
robust learning; however, practice within the tutor after gaining 
knowledge in another fashion might be useful (as immediate drop 
was found to be positively associated with PFL in Baker, 
Hershkovitz, et al., in press). 

 

Table 2. Correlations between MBMLG features (N=179) and 
Pre-test, PFL scores; significant results (two-tailed) are 

boldfaced (* p<0.05, ** p<0.01), marginally significant results 
(p<0.1) are italicized 

Feature Pre-test PFL 

[avgMBML] -0.35** -0.48** 

[sumMBML] -0.19** -0.40** 

[graphLen] 0.30** 0.00 

[area] -0.35** -0.48** 

[peak] -0.09 -0.35** 

[2ndPeak] -0.13 -0.41** 

[3rdPeak] -0.20** -0.44** 

[peakIndex] -0.15 -0.09 

[2ndPeakIndex] -0.03 0.03 

[2PeaksDist] 0.15 0.05 

[2PeakRelDist] 0.14 0.07 

[2PeakDecr] 0.29** 0.45** 

[2PeakRelDecr] 0.26** 0.40** 

[3PeakDecr] 0.35** 0.49** 

[3PeakRelDecr] 0.21** 0.38** 

 
 

6. CONCLUSIONS AND DISCUSSION 
In this paper, we present a new method of predicting preparation 
for future learning (PFL), based on quantitative analysis of the 
Moment-by-Moment Learning Graph (MBMLG; [2-3]) the 
patterns of which were previously shown to be associated with 
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PFL [6]. Overall, we find that using MBMLG features in 
machine-learned prediction models outperforms previous attempts 
to predict PFL using BKT parameters and behavioral and 
metacognitive variables [4-5]. 

A crucial part of many EDM applications is the feature 
engineering. In this case, the features we defined and tested were 
derived from two main streams of literature. First, this work is a 
natural continuation of previous studies that showed that certain 
patterns of the MBMLG were strongly associated with PFL, or 
robust learning in general (cf. [6]). In particular, the presence of 
immediate drop and plateau were shown as good indicators of 
better/poorer PFL, respectively. Hence, the use of measures of the 
three largest peaks of the graph – the decrease in their values, and 
the distances between the first and the second. A second relevant 
line of work is the broader educational research of robust 
learning. As many studies suggest, learner characteristics have a 
strong influence on robust learning; of these characteristics, 
cognitive ability [1,18] can be easily measured via the student 
model, hence the use of learning measures (which are at the core 
of the MBMLG).  

Another potentially interesting line of future work might be to 
present MBMLG graphs to teachers and content developers to 
find irregularities in the learning process (an idea that had 
previously inspired the creation of learnograms, cf. [22]). 
Teachers and content developers may have insights about the 
meaning of the MBMLG graphs; they may also find ways to 
incorporate these graphs in their work to understand their students 
better.  

Overall, our findings suggest that the pattern most associated with 
a better PFL consists of a process where the student has at least 
three substantial moments of learning of comparable magnitude, 
spread out over time. One limitation of the current approach, as it 
is implemented here, is that PFL prediction is made only after 
practice has been completed. That is, data cannot be used in real-
time like it was used in [4]. However, truncated forms of the 
MBMLG might be explored for that purpose. 

Analyzing the MBMLG qualitatively and using its features to 
predict PFL is an instance of “discovery with models”, that is of 
using an existing model (in our case, the MBMLG) in a new 
analysis (predicting PFL). Discovery with models was suggested 
as a promising EDM approach in [7]. We build on previous 
studies involving the same model (e.g., [2-3,6]), and advance the 
potential automatization of the use of the MBMLG as a 
component in future studies. 
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ABSTRACT
We introduce InVis, a novel visualization technique and tool for
exploring, navigating, and understanding user interaction data. In-
Vis creates a interaction network from student-interaction data ex-
tracted from large numbers of students using educational systems,
and enables instructors to make new insights and discoveries about
student learning. Here we present our novel interaction network
model and InVis tool. We also demonstrate that InVis is an effective
tool for providing instructors with useful and meaningful insights
to how students solve problems.

1. INTRODUCTION
The advancement of personalized learning has been declared a Grand
Challenge by the National Academy of Engineers [12]. With in-
creasing use of the web in education and learning management
systems the amount of data that can be brought to bear on this
important challenge is growing rapidly. For example, the PSLC
DataShop, a repository for educational data, has collected logs from
over 42,000 students from different tutors with a wide range of top-
ics, from algebra to Chinese [8]. However, such large datasets can
be unwieldy, and deciding just how to use them to improve learning
is a challenge, as illustrated by the emergence of the new field and
conference on Educational Data Mining.

We have developed a visualization tool, called InVis, to enable ed-
ucators to interactively explore our novel interaction network rep-
resenting the interactions students perform in problem-solving en-
vironments. InVis displays student behavior across an entire class,
enabling educators to develop insights from common strategies and
mistakes that groups of students apply in a software tutoring envi-
ronment. While this work will concentrate on data from computer-
aided instructional environments, we have also used InVis for ex-
ploring user interactions in games and plan to use it for other appli-
cations that record sequential interactions.

Educational data mining tools require “good visualization facili-
ties to make their results meaningful to educators and e-learning
designers.” [15]. If done well, visualizing problem-solving inter-
action logs can provide insight into how users solve problems and

what errors they encounter; and provide more information than a
purely summative approach.

To address these issues, we have developed a model that represents
the interactions of large groups of users in problem-solving envi-
ronments, called the Interaction Network model. We developed In-
Vis to allow educators to visualize and interactively explore interac-
tion networks to better understand student interactions in problem-
solving software tutors. We used three methods of evaluation: 1)
a guidelines review, where we compare InVis to the commonly
accepted visualization guidelines; 2) a set of case-study like suc-
cess stories with expert users, and 3) a summative usability study,
where educators explored data from a university-level logic tutor
using guided tasks and completed a validated usability scale, and
reflected on their experience through a qualitative survey. Our ‘tri-
angulated evaluation’ is inspired by Plaisant’s aptly named paper,
the ‘Challenges of Visualization Evaluation’, where she described
the difficulties of performing evaluations with tools that can “an-
swer questions you didn’t know you had.” [13] Since there is no
single proven technique for visualization evaluation, Plaisant rec-
ommends using several complementary methods that can mitigate
the weaknesses of single techniques used alone. Our guidelines
review shows how InVis adheres to commonly accepted visualiza-
tion guidelines. In the case-studies, educators were able to generate
and confirm hypotheses, and discover insights into their data. The
results of the usability study showed that educators were able to
complete tasks at 85% accuracy with minimal training time.

We show that a Interaction Network is an effective and reason-
able description of student interaction data from computer-aided in-
structional software for problem solving. We also show that InVis,
an effective interactive visualization designed for visualizing Inter-
action Networks, can be made and can provide useful and mean-
ingful insights to student behavior in software tutors.

1.1 Related Work
InVis was inspired by work in exploring student data on solving
logic proofs. In 2007, Barnes and Stamper created a frequency-
annotated behavior graph and a method to convert it into a Markov
decision process (MDP) from student logic proof data, and loaded
this data into the GraphViz visualization tool to visualize student
problem solving sequences [1]. From this exploration, an experi-
enced logic instructor discovered surprising student behaviors and
unexpected difficulties with the logic tutor interface. The instructor
also found that some students demonstrated expert-like solutions,
and that students did not flounder as much as expected while solv-
ing problems.
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Student tutor-log data sets are large (representing hundreds of prob-
lem attempts with hundreds of problem states) and teachers, who
are not necessarily savvy with graphs, spreadsheets, or statistics,
need support in navigating these large domain models to learn about
student behavior. Ben-Naim and colleagues [3] have developed an
authoring tool that allows teachers to create simulators for science
and explore small graphs of student actions in the simulator. How-
ever, this visualization is restricted to teacher-created states, where
teachers label a step in the simulator as one of interest. It is not
fully derived from student data and does not facilitate exploration
of a large, diverse dataset from other tutors.

SpaceTree [14] is software that might enable educators to explore
our static interaction networks more interactively than graph vi-
sualization tools like GraphViz [7] and Gephi [2]. However, our
networks are not always trees and can contain cycles and loops.
The Spacetree layout also particularly highlights the children of a
node, while we are interested in the full path from start to finish for
problem-solving sequence, and in seeing a whole set of student be-
havior at once, to provide an overview and support pattern-finding.

CourseVis is a visualization tool produces graphical representations
of student tracking data collected by a Content Management Sys-
tem, and helps teachers gain an understanding of how students are
behaving in their online courses. In CourseVis, the focus is on the
behavior of a student over the course of an entire system, where as
in our work the focus is more fine grained, as we are interested in
the behavior of students in single problems. CourseVis does sup-
port some techniques to look at student performance but the focus
is on visualizing knowledge components and assessment perfor-
mance, not problem-solving behavior as in our work [10].

In VisMod students are provided with a visualization tool for repre-
senting and interacting with their own student-model allowing stu-
dents to develop their meta-cognitive skills [19]. The focus of this
tool is not the behavior of the students but instead what the students
think about their own behavior.

TADA-Ed is a tool designed for mining educational data generated
from digital tutors, much like our work. TADA-Ed’s focus is on
visualizing the results of several data-mining techniques, such as
k-means clustering and decision trees applied to educational data
[11]. Our work is different in that our focus is on student problem
solving behavior.

2. INTERACTION NETWORK MODEL
In this section we describe our novel Interaction Network Model,
which we believe can be used across many domains to describe se-
quences of user interactions in software interfaces. This is the first
work to model student problem-solving in a tutoring environment
in this way, and to use the Interaction Network model to better un-
derstand student tutor-log interactions. As we describe later, we’ve
applied the Interaction Network model to two widely different do-
mains (logic proofs and drawing pictures on a grid) to understand
student behavior. The novelty lies in the combination of several
ideas: 1) how to define a ‘state’ and ‘action’, 2) how to combine
multiple sequences into one Interaction Network, and 3) how to
represent actions that are valid within the interface (e.g. clicking
an active button) but not within the problem-solving context (e.g.
clicking the wrong button).

We model a solution attempt as a sequence of states (vertices) and
actions (edges). Case refers to a single student’s solution attempt.

Figure 1: An example of a small Interaction Network.

The interaction network for a problem is the conjoining set of all of
its solution attempts. State describes the state of the software en-
vironment, representing enough information so the program’s state
could be regenerated in the interface. Actions describe user interac-
tions and their relevant parameters, to move a user from one state to
the next. We also store the set of all cases who visited any particu-
lar state-vertex or action-edge, allowing us to count frequencies and
connect case specific information to the interaction network repre-
sentation. This representation results in a connected, directed, la-
beled multi-graph with states as vertices, actions as directed-edges
to connect the states, and cases that provide additional information
about states and edges. (See figure 1.)

This representation allows to us build a interaction network model
from any system that logs interactions in state, action, resulting-
state tuples. For the intelligent tutoring system community, we en-
courage the use of logging standards such as the PSLC’s Datashop
[8]. We recommend preservation of the action’s parameters and
results, since they are useful for labeling the visualization.

To build the interaction network for a problem we combine the in-
teraction sequences, from each case into a single network, where
states are combined when they are considered equal. In different
tutors and interfaces, two states could be considered equal as long
as the screen looks the same, or all the same actions have been per-
formed, regardless of order, but in other cases, states arrived at by
taking the same actions in any order could be considered distinct.

InVis will handle either case, and the logic data in our experiments
preserved order. Frequency information and information about which
cases have visited, is embedded into the edges and vertices. This
results in a network graph which shows the interactions of a large
number of users in a relatively small space.

The basic example is whether or not order matters. For example,
in the Deep Thought data should the state A,B be distinct from the
state B,A? An order-matters approach results in more distinct pro-
gram states, and thus more vertices. However, preserving the order
of premises derived increases the information of the visualization
by making the order of steps a student takes more obvious. By
contrast, an unordered approach reduces the number of states and
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reduces the size of the overall graph-layout. While the unordered
graph provides a more generalized view, it can be harder to follow
the precise steps of an individual case.

2.1 Visual Representation & Graph Layout
A graph is a natural representation for our Interaction Network
model. However, there are still a wide variety of graph layouts,
and the primary visualization view should be one that is easiest
for the novice user to understand. InVis uses a tree-like graph lay-
out to present Interaction Networks. The root node is the starting
state (the problem ‘givens’), and is placed at the top of the view,
with student interactions branching downward. This layout makes
it easy to follow a student’s individual solution-path, as the vertex
depth effectively preserves the number of (non-error) steps in the
solution-attempt.

State vertices can be labeled with the entire state description, or
simply the result of the latest interaction, since reading sequential
states should reveal the entire state description. If they exist in the
data, final or goal states are represented with a different color and
shape, a green rectangle here. Each edge is labeled by its action,
but not its parameters, to keep it more readable. Edge thickness is
determined by the frequency of observed interactions, with most-
frequent edges being thickest. InVis uses JUNG [18] to efficiently
place nodes in a graph layout.

2.2 Modeling Program States
We have successfully built interaction networks from a variety of
sequence oriented interaction data. Here we describe two systems
and concentrate on how we modeled the state description.

2.2.1 BeadLoom Game
The BeadLoom Game (BLG) [4] is a game extension of the CSDT:
Virtual Bead Loom, an educational tool for teaching Cartesian co-
ordinates to middle school students. The BLG added game ele-
ments in order to increase motivation and learning [4]. In the Bead-
Loom Game, players place beads in a 41x41 Cartesian grid using
six different tools and an undo command. All actions take a color
(12 different options) parameter. The loom starts empty and once
beads are added they cannot be removed, aside from the undo ac-
tion. However, beads can be overwritten by future actions. The
goal of the game is to create a target image with the tools available.
Figure 4 shows an example from the BeadLoom Game.

To gain a better understanding of the BLG data, we used the InVis to
explore player solutions. The state representation is a 41x41 array
containing the 12 color values. Actions are represented by the six
bead-placement tools and their parameters. We also store the set
of all cases who visited any particular state-vertex or action-edge.
We use an image depicting the player’s state as the state label. The
BLG does not have error data, meaning users cannot submit invalid
parameters as actions. However, users are able to undo previous
actions, which we can interpret as an unintended action.

2.2.2 The Deep Thought Tutor
Deep Thought is a propositional logic tutor in which students are
tasked with performing first-order logic proofs [6]. Students are
given a set of premises and a conclusion; students must use basic
logic axioms to prove the conclusion. As the student works through
the proof, the tutor records each interaction. We model the applica-
tion of axioms as the actions. We model the state of the logic tutor
as the conjoined set of each premise and derived proposition.

Figure 2: An example screenshot of the default view in InVis.

For example a student starts at state A∨D,A → (B∧C),¬D∧E,
where each premise is separated by a comma. The student performs
the interaction SIMP(¬D∧E), applying the simplification rule of
logic to the premise ¬D ∧ E and derives ¬D. This leads to the
resulting-state of A∨D,A → (B∧C),¬D∧E,¬D.

Errors are actions performed by students that are illegal operations
of logic and the tutor, so the student cannot exist in that error-state.
As a result they are returned to their previous state. In the case
where a student makes an error, the action is marked as an error. For
example: The student is in state A∨D,A → (B∧C),¬D∧E,¬D.
The student performs the interaction SIMP(A∨D) in an attempt
to derive A. The resulting-state would remain A ∨ D,A → (B ∧
C),¬D∧E,¬D, the log-file would mark this edge as an error.

3. DESIGN OF THE VISUALIZATION
Here we address the design of the interactive visualization, InVis.
The tool was designed with the visual information-seeking mantra
[16] as our guide, based on two reasons. First, Schneiderman states
from his own extensive experience that an effective visualization
contains those elements, and second Cairns has shown the sheer
number of examples where it has been used to guide visualization
design [5]. Thus we feel this to be a reasonable approach to de-
veloping such an interactive visualization. Note our visualization
is just one method for designing an interactive tool for exploring
Interaction Networks, and later we provide evidence that it is ef-
fective at its goal, but many different types of implementations for
exploring Interaction Networks are likely to exist.

Referring to figure 2 we will explain the major features of InVis.

1. Frequency filters allows the user to filter edges and nodes
based on the frequency. The filter removes nodes or edges
based on the range. Frequency is a useful metric for inves-
tigating the behavior of a large number of users. Nodes and
edges with high frequency identify common behaviors, while
low frequency nodes represent less common behaviors. Be-
cause frequency is an intuitive domain-independent metric
we choose to add this filter to the default view.

2. The selection filters, allow users to select states, actions, or
cases by entering a search string; the user can select to match
with contains or direct match. This provides an easy measure
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to select large numbers of specific states, and is powerful
when combined with the subgraph extraction feature.

3. Graph controls allow users to create subgraphs, which are
then loaded into a separate tab. The user can also remove
the hanging error nodes from the current graph, if they are
interested in correct behaviors more than errors. Creating
a subgraph, copies all of the currently selected nodes to a
new tab (in the interface) and re-applies the graph-layout to
the subgraph. This can be used to clear up clutter. By first
selecting desired states, edges, or cases with the selection fil-
ters, and then generating a subgraph a wide range of options
for exploring the data is possible. An example of the sub-
graph generation is shown in figure 3.

4. The interaction network is displayed here. This panel has
mouse controls for panning, zooming, and selecting, con-
trolled by right-click, mouse-wheel, and left-click respec-
tively. Multiple graphs or subgraphs can be loaded at once,
each placed in a separate tab.

5. A Mini-map, helps users stay oriented even in large data sets
and provides context for the user. The mini-map provides
a white box which represents the current view of the main
visualization panel described above, and updates as the user
pans and zooms.

6. In figure 2 the interaction network is shown using the default
graph layout; however, there are several layouts available via
this drop down menu.

7. Additional information about the states, actions, and cases
are available here. Users are able to view the complete state
of the node and a list of all case IDs who visited the state or
edge. Other information, such as tutor hint messages or test
scores can also be displayed here.

3.1 Guidelines Review
Our visualization was designed with the visual information seek-
ing mantra in mind. As such the tool supports functionality for
overview, zooming and filtering, details on demand, view relation-
ships, and extraction. We are going to describe why the element is
important to viewing interaction networks, how each element was
included and supported, and improvements which can be made.
Craft and Cairns state that many other developers cite the mantra as
their guiding source for the development of their visualization but
often forgo explaining how and where they used it [5]. We use this
evaluation to find strengths and weaknesses in our approach, and
confirm we have an implementation based on these principles.

3.1.1 Overview First
The hierarchical graph offers an overview representation of the stu-
dents’ behavior as they work through a single problem. Combined
with the edge width representing frequency we provide a quick un-
derstanding of student behavior trends. In addition the mini-map
consistently orients the user within the context they are working,
always providing an overview for the user to reference as they navi-
gate the Interaction Network graph. A possible improvement would
be to apply other visual components to other variables, future stud-
ies will show the affects of these changes.

3.1.2 Zoom and Filter
Zooming and filtering on the interaction network means users can
focus on specific behaviors they are interested in. Zooming is not

only physically zooming in on the graph-layout, but also zooming
in on students who performed a specific action, or visited a par-
ticular state. Zoom and filter are supported through a variety of
filter and selection tools which allow manipulation based on states,
student-IDs and actions. Additionally selection combined with cre-
ating subgraphs allows for alternative approaches for filtering and
zooming, while the mouse wheel allows the user to zoom on the
graph layout. Frequency based filters allow users to focus on ei-
ther common trends or atypical behaviors exhibited by the students.
Identifying common sequences in the interaction network could
help identify sub-goals to problems and is one type of improvement
that could be made to filtering and selection.

3.1.3 Detail on Demand
The details tab is where the user can find specific information re-
garding a state, action or student. Details are available in a set of
tabs, displaying text information about the selected node. Includ-
ing students who visited the node, the frequency of the state, actions
leading from the node, whether the state is a goal or error state and
the description of the state. These details are the finest granularity
we can provide from the log data which was read in. One improve-
ment for details is to provide aggregate user statistics regarding the
current graph, for example number of error states, total number of
states, number of actions, average actions per student, and more.

3.1.4 View Relationships
To relate in our tool is to compare behaviors between students and
to compare sub-graphs of the interaction network. Students can be
compared to other students by selecting their nodes via the student
selection tool and generating sub-graphs. Sub-graphs allow users
to compare, at once, all the times a specific action was used from
all the students. Viewing the sub-graphs of two frequent paths let a
user view how two different strategies were applied to solving the
problem. View relationships is supported through the selection and
filtering tools combined with creating new sub-graphs in separate
tabs. An example of this type of comparison is shown in figure 3.
Multiple problems can be loaded into separate tabs and problems
can be compared, as well as Interaction Networks for groups of
students. Much of the Interaction Network maintains a hierarchical
structure, so it is possible to do slight comparison between similar
approaches, but a desirable improvement for comparing could be
to allow users to more easily compare strategies between students,
more on this in the discussion section.

3.1.5 History
Shneiderman notes that History is the most often ignored element
due to its high cost of development and is rare in prototypes [16]. In
our prototype interface this feature is weakly supported. In InVis,
when users edit the main graph in significant ways, such as filtering
vertices, the new graph is placed in a new tab. Users are able to keep
track of each in the tabbed interface. This allows some measure of
preserving the history of the user actions. However, this could be
improved further by allowing users to undo and redo actions such
as selection even when they do not generate new subgraphs.

3.1.6 Extract
Sharing ones findings about student behavior is important, partic-
ularly for teachers, so challenging issues for students can be ad-
dressed. In InVis users can save the image of the visualization panel
so that it can be shared. Teachers can show the sequence of steps to
their students and highlight situations where errors were common.
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Figure 3: Left) The user has selected several nodes. By constructing a sub-graph, InVis presents the selected nodes in a new tab,
shown on the Right. Below is an example of the mini-map, with the white box representing the view frame of the left hand image.
Note the size of the graph when visualizing 170 students.

Improved sharing between colleagues could be supported by sav-
ing the current layouts, subgraphs, and graph annotations, so they
can be stored and shared with others easily and they too can interact
with the data via InVis.

4. CASE STUDIES AND SUCCESS STORIES
Plaisant comments on the usefulness of case studies and success
stories in her work, ’The Challenge of Information Visualization
Evaluation’ [13]. These methods are common ways to aid in the
evaluation of visualizations. These evaluations provide useful in-
formation from experts and can help address whether a user was
able to find answers to questions they did not know they had. As
mentioned by Plaisant, evaluation of tools meant to discover fea-
tures which you did not know existed is difficult. Tory and Moller
offer some support for ways in which this can be done [17]; and ar-
gue that expert reviews are useful because they can identify aspects
of systems which non-experts may not recognize. In order for tools
like InVis, to be adopted it is important to have success stories so
that the early majority will adopt the tool [13], for this reason we
provide four InVis success stories.

We met with the developers of two separate propositional logic tu-
tors. Both developers are University professors of logic and have
extensive knowledge about how their tutors and their logs. We
modeled their logic tutor data and provided each with InVis. We
observed as they used the visualization tool to explore their tutor
log-data. We also met with the developers of an educational game
and visualized student-player data in a similar way.

4.1 Case 1: Deep Thought
We visualized data from Deep Thought [6] and interviewed the pro-
fessor responsible for its development. We met for one hour and
had him explore tutor data and inform us of different insights and
hypothesis he was able to discover or confirm from using InVis.

We prepared a data set of thirty students, representing a classroom
of students. The professor noticed a student had performed addition
rather than conjunction in order to derive A∧B, which is an incor-
rect application of the rule. After he recognized this, he mentioned
that it was a common mistake made by students; this was his hy-
pothesis. He then used the action selector and entered ADD which

selected all instances of students performing the ADD action in his
logic tutor. Next he built a sub-graph, moving all those actions and
their corresponding nodes to a new tab. Last, he was able to con-
firm his hypothesis; the data showed that eight of nine applications
of the addition rule (ADD) were errors, five of which would have
been correct had the student performed conjunction instead, the ac-
tion the student actually needed. With the same hypothesis in mind,
a larger separate data set of Deep Thought tutor data was loaded,
this time 170 students.

Again all addition actions were selected, a sub-graph generated,
and the hypothesis confirmed. This time, 16 out of 18 applica-
tions of the addition rule were in fact errors, and 8 of the 16 would
have been correct had the students used conjunction instead. Within
minutes, our user was able to identify a hypothesis, check the data
using InVis and confirm the hypothesis. In the second data set, the
task certainly would have been time prohibitive had he scoured the
170 student logs of the data.

4.2 Case 2: Proof Solver
In this example, the professor was interested in the general behav-
ioral trends of students. By including frequencies on nodes and
edges, we are able to identify strategies that students perform in or-
der to solve problems. In this case the hypothesis was that students
who change all the implications into ‘ORs’ likely had no true strat-
egy for completely solving the problem. The reason for this is over
the years the professor has recognized students who employ this
strategy often have difficulty actually solving the problem and thus
students are explicitly instructed in class not to use this approach.

After loading that data into InVis, the professor looks for the two
main strategies performed by the students. The strategies being
the two most frequent sets of steps performed. The first strategy,
having the highest frequency, is the strategy which she teaches to
her students in class, we call the professor’s strategy, the first node
in this strategy has 74 students. The next most common first step
has 29 students, and is the start of the prohibited strategy, that is
to change an implication into an OR. Next the professor selected
the first node of a strategy and performed the select sub-tree ac-
tion, which selected all states derived after the current state, effec-
tively selecting all the different variations of the professor’s strat-
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egy. Then she created a sub-graph. The same was done for the
prohibited strategy. Next she selected all of the goal nodes of each
sub-graph in turn and looked at the combined frequency of the goal
nodes for each sub-graph. For the 74 students who applied the
professor’s strategy, 55 of those students arrived at the goal, giv-
ing a 74% success rate. For the prohibited strategy approach, the
sub-graph has a combined goal node frequency of 17 out of the 29
students, resulting in a 59% success rate which is noticeably lower.
In total there are 174 students, and the two strategies highlighted
above are the most common. The next two most common strategies
have frequencies of 11 with 9 and 7 students successfully solving
the problem with their respective strategies. Again suggesting the
prohibited strategy approach has a particularly low success rate.

4.3 Case 3: Debugging Tutors
One interesting application of InVis is found in the debugging of tu-
tors. In the previous examples, the Interaction Network uncovered
bugs in the tutor systems; that is, places where the recorded interac-
tions should not have been legal actions. This is interesting, as both
of these tutors have been used for many years and their data have
been subject to extensive analysis. However, these bugs were not
discovered until their data were visualized with InVis. Viewing the
entire group of user behaviors at once improves the ability to spot
’peculiar’ behaviors. In ProofSolver several solutions were notice-
ably shorter than the average, or skipped to the goal in ‘strange’
and invalid ways. After examining the series of actions these stu-
dents performed, the professor confirmed that the interactions were
illegal and should not have been permitted.

In the case of Deep Thought, some students were able to reach the
goal by repeatedly performing the same action. In this case, the
students were able to use the instantiation-action inappropriately to
add any proposition to the proof. As a result of this, students could
simply add items directly to the proof rather than use the axioms,
allowing them to game the system and illegally solve the problem.

4.4 Case 4: BeadLoom Game
We collected game log-files from a study performed on the Bead-
Loom Game (BLG) in 2010. Data came from a total of 6 classes,
ranging from 6th to 8th grade; for a total of four sessions. There
were 132 students, and 2,438 game-log files. The students were
split into two groups (called A-day and B-day) and were presented
with BLG features in different orders. The A-Day students were
given access to custom puzzles (a free play option,) while B-Day
students were given a competitive game element in the form of a
leader board. Due to differences in student time lines some B-Day
classes missed session three. These students followed an abbrevi-
ated A-Day schedule during session four. In order to investigate
whether or not there were different problem solving patterns be-
tween the groups, we colored vertices based on the percentage of
students who visited from each group. The values were normalized
from green (A-Day) to red (B-Day.) We loaded the data into InVis
and presented it to the BeadLoom Game developers.

Next we met with the BeadLoom Game developers and asked them
to explore their log data using our prototype visualization tool. In
figure 4 we have a set of students who worked on the same prob-
lem on two different days, the first and third day of the study. By
looking at the number of states we can see a more diverse set of at-
tempts on the first day. As mentioned before, edge width represents
frequency, green vertices are from one set of students and red ver-
tices are from another set based on how the study was run, the goal
has a square vertex. At the start of our investigation we colored the

(a) Students on Day One

(b) Students on Day Three

Figure 4: This image shows the students attempt on the first
day on the top, and their third day attempt on the bottom. This
image suggests that as students become more familiar with the
tool they are better at solving the problem and make fewer mis-
takes, thus fewer states are visited.

vertices to see if we could discover differences but it does not seem
the classes had any significant differences between them. It is pos-
sible that the change in the number of states over time is the visual
representation of learning, which figure 4 might suggest, additional
research will be necessary to determine if that is so. The designers
were able to identify a variety of design changes they would like to
make to the game after spending roughly 20 minutes using InVis.
The most surprising detail the developers were interested in was the
number of students who seemed to participate in off-task behavior.
Off-task behavior is easily identified as student solution-paths with
low frequency and unusual length. For example, a student may opt
to draw a picture rather than solve the puzzle. This will result in a
path visually jutting out of the interaction network.

5. USABILITY STUDY
One goal of InVis is to make complex interaction data accessible to
non-experts in the field of user-modeling. To test the usability of
InVis we created a quantitative task-based test as a measure of sum-
mative usability testing. We developed 15 tasks based on the propo-
sitional logic tutor interaction data. These questions were designed
based on common use-cases, and cover the range of features in the
tool. Noting the inherent difficulties involved with evaluating a vi-
sualization tool, we ran a user study consisting of three sections, a
quantitative portion, usability portion and qualitative portion, each
supporting different types of evidence that the tool is effective at
allowing users to make discoveries about their data.
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5.1 Methods and Materials
For the design of the quantitative portion we created 15 questions
which were atomic and had a set of correct responses, we deter-
mined how well users were able to answer the questions in this
portion of the survey. Table 1 highlights 10 of the 15 questions as
a representative sample of the nature of the tasks.

For the usability portion, we used a validated survey written by
James Lewis at IBM [9]. Questions 9, 10 and 11 from his survey
CSUQ were removed because they were deemed irrelevant to InVis
because it does not contain any error messages. One difference be-
tween Lewis’ survey and ours was in our CSUQ, the score has high
scores being preferable rather than low scores; Strongly Agree is
equal to seven instead of one. Our overall CSUQ score was 4.65.
CSUQ stands for The Computer System Usability Questionnaire,
and is divided into four scores, an Overall CSUQ score, a SYSUSE,
INFOQUAL, and INTERQUAL scores. SYSUSE stands for sys-
tem use, INFOQUAL is information quality and INTERQUAL is
interface quality. The qualitative portion of the survey allowed
users to provide open ended responses directed towards functional-
ity that they would like to see in future versions of InVis.

We ran a user study with seven participants to determine the level
of usability of our design of InVis for understanding interaction net-
works. In our study we used the logic domain as our target audi-
ence, so we collected data from how undergraduate students simpli-
fied problems in the logic domain using a computerized logic tutor.
All teaching material was conducted in the classroom, and the logic
tutor is strictly used for conducting homework. The students were
given a set of premises, [(A → B),(C → D),¬(A → D)], and were
tasked with generating a first-order logic proof for the conclusion
of B∧¬C. Next we duplicated or removed students to ensure each
task-question had a single correct answer.

Of the seven participants, we met with four individually and they
used our computer with InVis and target dataset loaded. We gave
them a brief overview of how the tool worked, how to zoom, pan
and select. We also demonstrated how to generate a subgraph (a
GUI button), and how to use the selection tools (text boxes). The
demonstration lasted 5–10 minutes. Due to logistical issues, the
other three participants were emailed a 2.5 page description of how
the interactive elements of the tool works. This document served as
the resource for the 5–10 minute demonstration. These three par-
ticipants conducted the study by themselves via the Internet. Par-
ticipants were instructed to contact us if any issues arose that they
felt were unintended or prevented them from conducting the study.
If any task took more than five minutes, they were asked to stop
and move to the next one. Participants were instructed not to ask
how to complete any of the tasks. After the quantitative section
was complete they were asked to do the usability survey then the
qualitative survey. Notably, a sample size of seven is low, but we
recruited educators who have taught a course which uses the Deep
Thought logic tutor, so we are limited by aspect. This decision
is based on the assumption that a person who is unfamiliar with a
domain, and related tutor, would not understand the logs of the tu-
tor environment well enough to recognize meaningful tutor-based
student behaviors.

5.2 Results
In the quantitative portion of the study the group of participants
completed 85% of the tasks successfully (M = 12.71,SD = 2.66).
From the questions in table 1 the most commonly missed questions
were Q4, 64% success and Q6, 71% success. Participants spent

Table 1: Quantitative Questions/Tasks
Q1 Find the shortest correct solution-path to this problem.
Q3 Find the most frequent solution-path to this problem.
Q4 Find the error(s) with the highest frequency and write

the State ID(s).
Q7 Write the action-label and the corresponding final state

ID for the last action of student X?
Q9 After filtering nodes and edges to frequency 5 and

greater, how many complete solution paths exist?
Q11 What is the student ID of the student(s) with longest

solution to the goal?
Q12 Who are the students on the node with the following

node label: –a*-d (note the label is: minus minus a *
minus d)

Q14 Highlight the node with node-label: ¬¬A∧¬D and se-
lect the sub-tree, then build a sub-graph. How many
error nodes exist in this sub graph?

Q15 Answer yes or no, did student 81 find a goal solution?

an average of about 43 minutes on the quantitative survey, with a
SD of about 20 minutes, from survey start and end time stamps.
However, participants reported the tasks taking an average of 23
minutes, with a SD of 13 minutes.

To evaluate the relationship between the quantitative skills test and
the usability survey we submitted the results to a bivariate correla-
tion analysis. The quantitative skills test strongly correlated(M =
12.71,SD = 2.70),r = 0.87,n = 7, p = 0.01, with the overall us-
ability survey(M = 4.65,SD = 1.89). With an r-squared of 0.76,
which means that 76% of the variance in the quantitative skills test-
scores is accounted for by variance in usability scores. We exam-
ined the three subsections of the usability survey. The quantita-
tive skills test strongly correlated, r = 0.78,n = 7, p = 0.04, with
the Sysuse score(M = 4.84,SD = 2.04); it also strongly correlated,
r = 0.90,n = 7, p < 0.01, with the Infoqual score(M = 4.54,SD =
1.98); and it strongly correlated, r = 0.96,n = 7, p < 0.01, with the
Interqual score(M = 4.39,SD = 1.70).

This result provides evidence for the validity of using the quanti-
tative test as a measure of the visualization quality. This provides
insight into what functionalities the developers should focus on in
future development of InVis. We cannot make strong casual infer-
ences between the quantitative test and the usability scale, i.e., were
participants able to complete the skills test because InVis was us-
able, or did they report that it was usable because they were able to
complete the tasks? The fact that 85% of the tasks were correctly
completed, with little time spent on training, provides evidence that
our technique is usable by our target population. The questions that
were most commonly missed, were tasks related to understanding
the most frequent error, and the state from which the most unique
errors were made. This highlights a potential problem with the cur-
rent error-state representation; which seems to make differentiation
between unique errors and frequent errors difficult to separate. It is
difficult to interpret the results of the CSUQ survey, however this
score is useful for comparing to future versions of InVis.

5.2.1 Qualitative
In the qualitative section of the study we asked participants about
specific ways to improve InVis. We mention some of the most im-
portant suggestions we received from their experiences. These sug-
gestions are from the conclusions we can make from their qualita-
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tive survey results and the comments made while using InVis.

An important issue to address is graph layouts, two issues regarding
the layout were raised. First the layout would be more intuitive
if it were possible to order the layout in some manner along the
breadth (x-axis), either based on frequency, or other metric. By
applying a more informed layout to the graph, we could order the
states in some manner along the X-axis, for example making the
most frequent path on the left, and the least frequent on the right.

The second problem is in regard to strategies, sub-strategies and
ordered states. Participants mentioned they would like the layout
to group or cluster approaches based on similar strategies. If two
students each have nine identical steps, but the first step in each
approach is different, then the layout does not necessarily put the
states from these two approaches close to one another. When look-
ing at 100 plus students, this makes understanding the number of
strategies difficult to understand. A graph layout which places sim-
ilar paths next to each other could provide a more intuitive visual-
ization of the interaction network.

All participants reported a positive response for whether or not
they would use the tool to augment their understanding of current
classes’ behavior and learning. This suggests a need for these types
of tools for exploring, and understanding student behaviors in soft-
ware tutors. We will conclude with a quote from one user who said,
’The tool provides a sense of how broadly varying students are in
their approaches, how many get stuck, and how many make similar
mistakes.’ Which we feel is a good representation of the kinds of
insights InVis was designed for detecting.

6. CONCLUSION
The main contribution of this work is the discovery and implemen-
tation of visualization techniques for user-interaction data from ed-
ucational systems. This led to new insights into problem-solving
in the deep thought logic tutoring environment, for example the
conclusions drawn in the case studies. The use of interactive visu-
alization techniques combined with a interaction network model in
InVis allows users to explore and gain insight from interaction-log
data. We performed a user study on InVis to show that users can
successfully complete relevant tasks, and paired these results with
a standardized method for testing the usability of a software tool.
Users were able to explore an entire class’ set of interactions and
were able to confirm some of the hypothesis they had about stu-
dents, which was a primary goal. This suggests that our technique
is effective at allowing users to explore and learn information from
the data. This is the first step in creating a domain independent
visualization tool for understanding student behavior in software
tutors, and our initial results seem promising for the future devel-
opment of InVis.
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ABSTRACT
Machine learning offers novel ways and means to design
personalized learning systems wherein each student’s edu-
cational experience is customized in real time depending on
their background, learning goals, and performance to date.
SPARse Factor Analysis (SPARFA) is a novel framework
for machine learning-based learning analytics, which esti-
mates a learner’s knowledge of the concepts underlying a
domain, and content analytics, which estimates the rela-
tionships among a collection of questions and those con-
cepts. SPARFA jointly learns the associations among the
questions and the concepts, learner concept knowledge pro-
files, and the underlying question difficulties, solely based
on the correct/incorrect graded responses of a population
of learners to a collection of questions. In this paper, we
extend the SPARFA framework significantly to enable: (i)
the analysis of graded responses on an ordinal scale (partial
credit) rather than a binary scale (correct/incorrect); (ii)
the exploitation of tags/labels for questions that partially
describe the question–concept associations. The resulting
Ordinal SPARFA-Tag framework greatly enhances the in-
terpretability of the estimated concepts. We demonstrate
using real educational data that Ordinal SPARFA-Tag out-
performs both SPARFA and existing collaborative filtering
techniques in predicting missing learner responses.

Keywords
Factor analysis, ordinal regression, matrix factorization, per-
sonalized learning, block coordinate descent

1. INTRODUCTION
Today’s education system typically provides only a “one-
size-fits-all” learning experience that does not cater to the
background, interests, and goals of individual learners. Mod-
ern machine learning (ML) techniques provide a golden op-
portunity to reinvent the way we teach and learn by making
it more personalized and, hence, more efficient and effective.
The last decades have seen a great acceleration in the de-
velopment of personalized learning systems (PLSs), which
can be grouped into two broad categories: (i) high-quality,
but labor-intensive rule-based systems designed by domain
experts that are hard-coded to give feedback in pre-defined
scenarios [8], and (ii) more affordable and scalable ML-based
systems that mine various forms of learner data in order to
make performance predictions for each learner [15, 18, 30].

1.1 Learning and content analytics
Learning analytics (LA, estimating what a learner under-
stands based on data obtained from tracking their inter-

actions with learning content) and content analytics (CA,
organizing learning content such as questions, instructional
text, and feedback hints) enable a PLS to generate auto-
matic, targeted feedback to learners, their instructors, and
content authors [23]. Recently we proposed a new frame-
work for LA and CA based on SPARse Factor Analysis
(SPARFA) [24]. SPARFA consists of a statistical model and
convex-optimization-based inference algorithms for analyt-
ics that leverage the fact that the knowledge in a given sub-
ject can typically be decomposed into a small set of latent
knowledge components that we term concepts [24]. Leverag-
ing the latent concepts and based only on the graded binary-
valued responses (i.e., correct/incorrect) to a set of ques-
tions, SPARFA jointly estimates (i) the associations among
the questions and the concepts (via a “concept graph”), (ii)
learner concept knowledge profiles, and (iii) the underlying
question difficulties.

1.2 Contributions
In this paper, we develop Ordinal SPARFA-Tag, a signif-
icant extension to the SPARFA framework that enables
the exploitation of the additional information that is often
available in educational settings. First, Ordinal SPARFA-
Tag exploits the fact that responses are often graded on
an ordinal scale (partial credit), rather than on a binary
scale (correct/incorrect). Second, Ordinal SPARFA-Tag ex-
ploits tags/labels (i.e., keywords characterizing the underly-
ing knowledge component related to a question) that can be
attached by instructors and other users to questions. Ex-
ploiting pre-specified tags within the estimation procedure
provides significantly more interpretable question–concept
associations. Furthermore, our statistical framework can
discover new concept–question relationships that would not
be in the pre-specified tag information but, nonetheless, ex-
plain the graded learner–response data.

We showcase the superiority of Ordinal SPARFA-Tag com-
pared to the methods in [24] via a set of synthetic “ground
truth”simulations and on a variety of experiments with real-
world educational datasets. We also demonstrate that Ordi-
nal SPARFA-Tag outperforms existing state-of-the-art col-
laborative filtering techniques in terms of predicting missing
ordinal learner responses.

2. STATISTICAL MODEL
We assume that the learners’ knowledge level on a set of ab-
stract latent concepts govern the responses they provide to
a set of questions. The SPARFA statistical model charac-
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terizes the probability of learners’ binary (correct/incorrect)
graded responses to questions in terms of three factors: (i)
question–concept associations, (ii) learners’ concept knowl-
edge, and (iii) intrinsic question difficulties; details can be
found in [24, Sec. 2]. In this section, we will first extend
the SPARFA framework to characterize ordinal (rather than
binary-valued) responses, and then impose additional struc-
ture in order to model real-world educational behavior more
accurately.

2.1 Model for ordinal learner response data
Suppose that we have N learners, Q questions, and K under-
lying concepts. Let Yi,j represent the graded response (i.e.,
score) of the jth learner to the ith question, which are from a
set of P ordered labels, i.e., Yi,j ∈ O, where O = {1, . . . , P}.
For the ith question, with i ∈ {1, . . . , Q}, we propose the fol-
lowing model for the learner–response relationships:

Zi,j = wT
i cj + µi, ∀(i, j), (1)

Yi,j = Q(Zi,j + εi,j), εi,j ∼ N (0, 1/τi,j) , (i, j) ∈ Ωobs,

where the column vector wi ∈ RK models the concept as-
sociations; i.e., it encodes how question i is related to each
concept. Let the column vector cj ∈ RK , j ∈ {1, . . . , N},
represent the latent concept knowledge of the jth learner,
with its kth component representing the jth learner’s knowl-
edge of the kth concept. The scalar µi models the intrin-
sic difficulty of question i, with large positive value of µ
for an easy question. The quantity εi,j models the uncer-
tainty of learner j answering question i correctly/incorrectly
and N (0, 1/τi,j) denotes a zero-mean Gaussian distribution
with precision parameter τi,j , which models the reliability of
the observation of learner j answering question i. We will
further assume τi,j = τ , meaning that all the observations
have the same reliability.1 The slack variable Zi,j in (1)
governs the probability of the observed grade Yi,j . The set
Ωobs ⊆ {1, . . . , Q} × {1, . . . , N} contains the indices asso-
ciated to the observed learner–response data, in case the
response data is not fully observed.

In (1), Q(·) : R → O is a scalar quantizer that maps a real
number into P ordered labels according to

Q(x) = p if ωp−1 < x ≤ ωp, p ∈ O,

where {ω0, . . . , ωP } is the set of quantization bin bound-
aries satisfying ω0 < ω1 < · · · < ωP−1 < ωP , with ω0 and
ωP denoting the lower and upper bound of the domain of
the quantizer Q(·).2 This quantization model leads to the
equivalent input–output relation

Zi,j = wT
i cj + µi, ∀(i, j), and (2)

p(Yi,j = p | Zi,j) =

∫ ωp

ωp−1

N (s|Zi,j , 1/τi,j) ds

= Φ(τ(ωp−Zi,j))−Φ(τ(ωp−1−Zi,j)) , (i, j)∈Ωobs,

where Φ(x) =
∫ x
−∞N (s|0, 1)ds denotes the inverse probit

function, with N (s|0, 1) representing the value of a standard
normal distribution evaluated at s.3

1Accounting for learner/question-varying reliabilities is
straightforward and omitted for the sake of brevity.
2In most situations, we have ω0 = −∞ and ωP =∞.
3Space limitations preclude us from discussing a correspond-
ing logistic-based model; the extension is straightforward.

We can conveniently rewrite (1) and (2) in matrix form as

Z = WC, ∀(i, j), and

p(Yi,j | Zi,j) = Φ(τ(Ui,j − Zi,j)) (3)

− Φ(τ(Li,j − Zi,j)) , (i, j) ∈ Ωobs,

where Y and Z are Q × N matrices. The Q × (K + 1)
matrix W is formed by concatenating [w1, . . . ,wQ]T with
the intrinsic difficulty vector µ and C is a (K+1)×N matrix
formed by concatenating the K×N matrix [c1, . . . , cN ] with
an all-ones row vector 11×N . We furthermore define the
Q×N matrices U and L to contain the upper and lower
bin boundaries corresponding to the observations in Y, i.e.,
we have Ui,j =ωYi,j and Li,j =ωYi,j−1, ∀(i, j) ∈ Ωobs.

We emphasize that the statistical model proposed above is
significantly more general than the original SPARFA model
proposed in [24], which is a special case of (1) with P = 2 and
τ = 1. The precision parameter τ does not play a central role
in [24] (it has been set to τ = 1), since the observations are
binary-valued with bin boundaries {−∞, 0,∞}. For ordinal
responses (with P > 2), however, the precision parameter τ
significantly affects the behavior of the statistical model and,
hence, we estimate the precision parameter τ directly from
the observed data.

2.2 Fundamental assumptions
Estimating W, µ and C from Y is an ill-posed problem, in
general, since there are more unknowns than observations
and the observations are ordinal (and not real-valued). To
ameliorate the illposedness, [24] proposed three assumptions
accounting for real-world educational situations:

(A1) Low-dimensionality : Redundancy exists among the
questions in an assessment, and the observed graded
learner responses live in a low-dimensional space, i.e.,
K � N , Q.

(A2) Sparsity : Each question measures the learners’ knowl-
edge on only a few concepts (relative to N and Q), i.e.,
the question–concept association matrix W is sparse.

(A3) Non-negativity : The learners’ knowledge on concepts
does not reduce the chance of receiving good score on
any question, i.e., the entries in W are non-negative.
Therefore, large positive values of the entries in C rep-
resent good concept knowledge, and vice versa.

Although these assumptions are reasonable for a wide range
of educational contexts (see [24] for a detailed discussion),
they are hardly complete. In particular, additional informa-
tion is often available regarding the questions and the learn-
ers in some situations. Hence, we impose one additional
assumption:

(A4) Oracle support : Instructor-provided tags on questions
provide prior information on some question–concept
associations. In particular, associating each tag with
a single concept will partially (or fully) determine the
locations of the non-zero entries in W.

As we will see, assumption (A4) significantly improves the
limited interpretability of the estimated factors W and C
over the conventional SPARFA framework [24], which relies
on a (somewhat ad-hoc) post-processing step to associate in-
structor provided tags with concepts. In contrast, we utilize
the tags as “oracle” support information on W within the
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model, which enhances the explanatory performance of the
statistical framework, i.e., it enables to associate each con-
cept directly with a predefined tag. Note that user-specified
tags might not be precise or complete. Hence, the proposed
estimation algorithm must be capable of discovering new
question–concept associations and removing predefined as-
sociations that cannot be explained from the observed data.

3. ALGORITHM
We start by developing Ordinal SPARFA-M, a generaliza-
tion of SPARFA-M from [24] to ordinal response data. Then,
we detail Ordinal SPARFA-Tag, which considers prespeci-
fied question tags as oracle support information of W, to
estimate W, C, and τ , from the ordinal response matrix Y
while enforcing the assumptions (A1)–(A4).

3.1 Ordinal SPARFA-M
To estimate W, C, and τ in (3) given Y, we maximize the
log-likelihood of Y subject to (A1)–(A4) by solving

(P) minimize
W,C,τ

−
∑

i,j:(i,j)∈Ωobs
log p(Yi,j |τwT

i cj)

+ λ
∑

i ‖wi‖1 subject to W ≥ 0, τ > 0, ‖C‖ ≤ η.

Here, the likelihood of each response p(Yi,j |τwT
i cj) is given

by (2). The regularization term λ
∑

i‖wi‖1 imposes sparsity
on each vector wi to account for (A2). To prevent arbitrary
scaling between W and C, we gauge the norm of the ma-
trix C by applying a matrix norm constraint ‖C‖ ≤ η. For
example, the Frobenius norm constraint ‖C‖F ≤ η can be
used. Alternatively, the nuclear norm constraint ‖C‖∗ ≤ η
can also be used, promoting low-rankness of C [9], moti-
vated by the facts that (i) reducing the number of degrees-
of-freedom in C helps to prevent overfitting to the observed
data and (ii) learners can often be clustered into a few groups
due to their different demographic backgrounds and learning
preferences.

The log-likelihood of the observations in (P) is concave in
the product τwT

i cj [36]. Consequently, the problem (P) is
tri-convex, in the sense that the problem obtained by hold-
ing two of the three factors W,C, and τ constant and op-
timizing the third one is convex. Therefore, to arrive at
a practicable way of solving (P), we propose the following
computationally efficient block coordinate descent approach,
with W, C, and τ as the different blocks of variables.

The matrices W and C are initialized as i.i.d. standard nor-
mal random variables, and we set τ = 1. We then itera-
tively optimize the objective of (P) for all three factors in
round-robin fashion. Each (outer) iteration consists of three
phases: first, we hold W and τ constant and optimize C;
second, we hold C and τ constant and separately optimize
each row vector wi; third, we hold W and C fixed and op-
timize over the precision parameter τ . These three phases
form the outer loop of Ordinal SPARFA-M.

The sub-problems for estimating W and C correspond to
the following ordinal regression (OR) problems [12]:

(OR-W) minimize
wi :Wi,k≥0 ∀k

−
∑

j log p(Yi,j |τwT
i cj)+λ‖wi‖1 ,

(OR-C) minimize
C:‖C‖≤η

−
∑

i,j log p(Yi,j |τwT
i cj).

To solve (OR-W) and (OR-C), we deploy the iterative first-
order methods detailed below. To optimize the precision
parameter τ , we compute the solution to

minimize
τ>0

−
∑

i,j:(i,j)∈Ωobs

log
(
Φ
(
τ
(
Ui,j −wT

i cj
))
− Φ

(
τ
(
Li,j −wT

i cj
)))

,

via the secant method [26].

Instead of fixing the quantization bin boundaries
{ω0, . . . , ωP } introduced in Sec. 2 and optimizing the
precision and intrinsic difficulty parameters, one can fix
τ = 1 and optimize the bin boundaries instead, an approach
used in, e.g., [21]. We emphasize that optimization of the
bin boundaries can also be performed straightforwardly
via the secant method, iteratively optimizing each bin
boundary while keeping the others fixed. We omit the
details for the sake of brevity. Note that we have also
implemented variants of Ordinal SPARFA-M that directly
optimize the bin boundaries, while keeping τ constant; the
associated prediction performance is shown in Sec. 4.3.

3.2 First-order methods for regularized
ordinal regression

As in [24], we solve (OR-W) using the FISTA framework [4].
(OR-C) also falls into the FISTA framework, by re-writing
the convex constraint ‖C‖ ≤ η as a penalty term δ(C :
‖C‖ > η) and treat it as a non-smooth regularizer, where
δ(C : ‖C‖ > η) is the delta function, equaling 0 if ‖C‖ ≤ η
and ∞ otherwise. Each iteration of both algorithms con-
sists of two steps: A gradient-descent step and a shrink-
age/projection step. Take (OR-W), for example, and let
f(wi) = −

∑
j log p(Yi,j |τwT

i cj). Then, the gradient step is

given by4

∇f = ∇wi(−
∑

j log p(Yi,j |τwT
i cj)) = −Cp. (4)

Here, p is a N × 1 vector, with the jth element equal to

N (τ(Ui,j −wT
i cj))−N (τ(Li,j −wT

i cj))

Φ(τ(Ui,j −wT
i cj)− Φ(τ(Li,j −wT

i cj))
,

where Φ(·) is the inverse probit function. The gradient step
and the shrinkage step for wi corresponds to

ŵ`+1
i ← w`

i − t`∇f, (5)

and

w`+1
i ← max{ŵ`+1

i − λt`, 0}, (6)

respectively, where t` is a suitable step-size. For (OR-C),
the gradient with respect to each column cj is given by sub-
stituting WT for C and cj for wi in (4). Then, the gradient
for C is formed by aggregating all these individual gradient
vectors for cj into a corresponding gradient matrix.

For the Frobenius norm constraint ‖C‖F ≤ η, the projection
step is given by [7]

C`+1 ←
®

Ĉ`+1 if ‖Ĉ`+1‖F ≤ η
η Ĉ`+1

‖Ĉ`+1‖F
otherwise.

(7)

4Here, we assume Ωobs = {1, . . . , Q} × {1, . . . , N} for sim-
plicity; a generalization to the case of missing entries in Y
is straightforward.
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(a) Impact of the number of learners, N ∈ {50, 100, 200}, with the number of questions Q fixed.
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Figure 1: Performance comparison of Ordinal SPARFA-M vs. K-SVD+. “SP” denotes Ordinal SPARFA-M
without given support Γ of W, “SPP” denotes the variant with estimated precision τ , and “SPT” denotes
Ordinal SPARFA-Tag. “KS” stands for K-SVD+, and “KST” denotes its variant with given support Γ.

For the nuclear-norm constraint ‖C‖∗ ≤ η, the projection
step is given by

C`+1 ← Udiag(s)VT , with s = Projη(diag(S)), (8)

where Ĉ`+1 = USVT denotes the singular value decompo-
sition, and Projη(·) is the projection onto the `1-ball with
radius η (see, e.g., [16] for the details).

The update steps (5), (6), and (7) (or (8)) require a suitable
step-size t` to ensure convergence. We consider a constant
step-size and set t` to the reciprocal of the Lipschitz con-
stant [4]. The Lipschitz constants correspond to τ2σ2

max(C)
for (OR-W) and τ2σ2

max(W) for (OR-C), with σmax(X) rep-
resenting the maximum singular value of X.

3.3 Ordinal SPARFA-Tag
We now develop the Ordinal SPARFA-Tag algorithm that
incorporates (A4). Assume that the total number of tags
associated with the Q questions equal K (each of the K
concepts correspond to a tag), and define the set Γ = {(i, k) :
question i has tag k} as the set of indices of entries in W
identified by pre-defined tags, and Γ̄ as the set of indices
not in Γ, we can re-write the optimization problem (P) as:

(PΓ) minimize
W,C,τ

−
∑

i,j:(i,j)∈Ωobs
log p(Yi,j |τwT

i cj)

+ λ
∑

i ‖w
(Γ̄)
i ‖1 + γ

∑
i

1
2
‖w(Γ)

i ‖
2
2

subject to W ≥ 0, τ > 0, ‖C‖ ≤ η.

Here, w
(Γ)
i is a vector of those entries in wi belonging to the

set Γ, while w
(Γ̄)
i is a vector of entries in wi not belonging

to Γ. The `2-penalty term on w
(Γ)
i regularizes the entries

in W that are part of the (predefined) support of W; we
set γ = 10−6 in all our experiments. The `1-penalty term

on w
(Γ̄)
i induces sparsity on the entries in W that are not

predefined but might be in the support of W. Reducing the
parameter λ enables one to discover new question–concept
relationships (corresponding to new non-zero entries in W)
that were not contained in Γ.

The problem (PΓ) is solved analogously to the approach de-
scribed in Sec. 3.2, except that we split the W update step
into two parts that operate separately on the entries indexed
by Γ and Γ̄. For the entries in Γ, the projection step corre-
sponds to

w
(Γ),`+1
i ← max{ŵ(Γ),`+1

i /(1 + γt`), 0}.

The step for the entries indexed by Γ̄ is given by (6). Since
Ordinal SPARFA-Tag is tri-convex, it does not necessarily
converge to a global optimum. Nevertheless, we can lever-
age recent results in [24, 35] in order to show that Ordinal
SPARFA-Tag converges to a local optimum from an arbi-
trary starting point. Furthermore, if the starting point is
within a close neighborhood of a global optimum of (P), then
Ordinal SPARFA-Tag converges to this global optimum.

4. EXPERIMENTS
We first showcase the performance of Ordinal SPARFA-Tag
on synthetic data to demonstrate its convergence to a known
ground truth. We then demonstrate the ease of interpreta-
tion of the estimated factors by leveraging instructor pro-
vided tags in combination with a Frobenius or nuclear norm
constraint for two real educational datasets. We finally com-
pare the performance of Ordinal SPARFA-M to state-of-
the-art collaborative filtering techniques on predicting un-
observed ordinal learner responses.
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Figure 2: Performance comparison of Ordinal SPARFA-M vs. K-SVD+ by varying the number of quantization
bins. “SP” denotes Ordinal SPARFA-M, “KSY” denotes K-SVD+ operating on Y, and “KSZ” denotes K-
SVD+ operating on Z in (3) (the unquantized data).

4.1 Synthetic data
In order to show that Ordinal SPARFA-Tag is capable of
estimating latent factors based on binary observations, we
compare the performance of Ordinal SPARFA-Tag to a non-
negative variant of the popular K-SVD dictionary learning
algorithm [1], referred to as K-SVD+, which we have detailed
in [24]. We consider both the case when the precision τ is
known a-priori and also when it must be estimated. In all
synthetic experiments, the algorithm parameters λ and η are
selected according to Bayesian information criterion (BIC)
[17]. All experiments are repeated for 25 Monte-Carlo trials.

In all synthetic experiments, we retrieve estimates of all

factors, Ŵ, Ĉ, and µ̂. For Ordinal SPARFA-M and K-

SVD+, the estimates Ŵ and Ĉ are re-scaled and permuted
as in [24]. We consider the following error metrics:

EW =
‖W−Ŵ‖2F
‖W‖2F

, EC =
‖C−Ĉ‖2F
‖C‖2F

, Eµ =
‖µ−µ̂‖22
‖µ‖22

.

We generate the synthetic test data W, C, µ as in [24,
Eq. 10] with K = 5, µ0 = 0, vµ = 1, λk = 0.66 ∀k, and
V0 = IK . Y is generated according to (3), with P = 5 bins
and {ω0, . . . , ω5} = {−∞,−2.1,−0.64, 0.64, 2.1,∞}, such
that the entries of Z fall evenly into each bin. The num-
ber of concepts K for each question is chosen uniformly in
{1, 2, 3}. We first consider the impact of problem size on
estimation error in Fig. 2. To this end, we fix Q = 100 and
sweep N ∈ {50, 100, 200} for K = 5 concepts, and then fix
N = 100 and sweep Q ∈ {50, 100, 200}.

Impact of problem size: We first study the performance
of Ordinal SPARFA-M versus K-SVD+ while varying the
problem size parameters Q and N . The corresponding box-
and-whisker plots of the estimation error for each algorithm
are shown in Fig. 1. In Fig. 1(a), we fix the number of ques-
tions Q and plot the errors EW, EC and Eµ for the number
of learners N ∈ {50, 100, 200}. In Fig. 1(b), we fix the num-
ber of learners N and plot the errors EW, EC and Eµ for the
number of questions Q ∈ {50, 100, 200}. It is evident that
EW, EC, and Eµ decrease as the problem size increases for
all considered algorithms. Moreover, Ordinal SPARFA-M
has superior performance to K-SVD+ in all cases and for all
error metrics. Ordinal SPARFA-Tag and the oracle support
provided versions of K-SVD outperform Ordinal SPARFA-

M and K-SVD+. We furthermore see that the variant of
Ordinal SPARFA-M without knowledge of the precision τ
performs as well as knowing τ ; this implies that we can ac-
curately learn the precision parameter directly from data.

Impact of the number of quantization bins: We now
consider the effect of the number of quantization bins P
in the observation matrix Y on the performance of our
algorithms. We fix N = Q = 100, K = 5 and gener-
ate synthetic data as before up to Z in (3). For this ex-
periment, a different number of bins P is used to quan-
tize Z into Y. The quantization boundaries are set to
{Φ−1(0),Φ−1(1/P ), . . . ,Φ−1(1)}. To study the impact of
the number of bins needed for Ordinal SPARFA-M to pro-
vide accurate factor estimates that are comparable to algo-
rithms operating with real-valued observations, we also run
K-SVD+ directly on the Z values (recall (3)) as a base-line.
Figure 2 shows that the performance of Ordinal SPARFA-M
consistently outperforms K-SVD+. We furthermore see that
all error measures decrease by about half when using 6
bins, compared to 2 bins (corresponding to binary data).
Hence, ordinal SPARFA-M clearly outperforms the conven-
tional SPARFA model [24], when ordinal response data is
available. As expected, Ordinal SPARFA-M approaches the
performance of K-SVD+ operating directly on Z (unquan-
tized data) as the number of quantization bins P increases.

4.2 Real-world data
We now demonstrate the superiority of Ordinal SPARFA-
Tag compared to regular SPARFA as in [24]. In particular,
we show the advantages of using tag information directly
within the estimation algorithm and of imposing a nuclear
norm constraint on the matrix C. For all experiments, we
apply Ordinal SPARFA-Tag to the graded learner response
matrix Y with oracle support information obtained from
instructor-provided question tags. The parameters λ and η
are selected via cross-validation.

Algebra test: We analyze a dataset from a high school
algebra test carried out on Amazon Mechanical Turk [2], a
crowd-sourcing marketplace. The dataset consists of N = 99
users answering Q = 34 multiple-choice questions covering
topics such as geometry, equation solving, and visualizing
function graphs. The questions were manually labeled with
a set of 13 tags. The dataset is fully populated, with no
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Figure 3: Question–concept association graph for a
high-school algebra test with N = 99 users answer-
ing Q = 34 questions. Boxes represent questions; cir-
cles represent concepts. We furthermore show the
unique tag associated with each concept.
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show the unique tag associated with each concept.

missing entries. A domain expert manually mapped each
possible answer to one of P = 4 bins, i.e., assigned partial
credit to each choice as follows: totally wrong (p = 1), wrong
(p = 2), mostly correct (p = 3), and correct (p = 4).

Figure 3 shows the question–concept association map esti-
mated by Ordinal SPARFA-Tag using the Frobenius norm
constraint ‖C‖F ≤ η. Circles represent concepts, and
squares represent questions (labelled by their intrinsic diffi-
culties µi). Large positive values of µi indicate easy ques-
tions; negative values indicate hard questions. Connecting
lines indicate whether a concept is present in a question;
thicker lines represent stronger question–concept associa-
tions. Black lines represent the question–concept associa-
tions estimated by Ordinal SPARFA-Tag, corresponding to
the entries in W as specified by Γ. Red, dashed lines repre-
sent the “mislabeled” associations (entries of W in Γ) that
are estimated to be zero. Green solid lines represent new
discovered associations, i.e., entries in W that were not in Γ
that were discovered by Ordinal SPARFA-Tag.

By comparing Fig. 3 with [24, Fig. 9], we can see that Or-
dinal SPARFA-Tag provides unique concept labels, i.e., one
tag is associated with one concept; this enables precise inter-
pretable feedback to individual learners, as the values in C
represent directly the tag knowledge profile for each learner.
This tag knowledge profile can be used by a PLS to pro-
vide targeted feedback to learners. The estimated question–
concept association matrix can also serve as useful tool to
domain experts or course instructors, as they indicate miss-
ing and inexistent tag–question associations.

Grade 8 Earth Science course: As a second example of
Ordinal SPARFA-Tag, we analyze a Grade 8 Earth Science
course dataset [31]. This dataset contains N = 145 learners
answering Q = 80 questions and is highly incomplete (only
13.5% entries of Y are observed). The matrix Y is binary-
valued; domain experts labeled all questions with 16 tags.

The result of Ordinal SPARFA-Tag with the nuclear norm
constraint ‖C‖∗ ≤ η on Y is shown in Fig. 4. The esti-
mated question–concept associations mostly matches those
pre-defined by domain experts. Note that our algorithm
identified some question–concept associations to be non-
existent (indicated with red dashed lines). Moreover, no new
associations have been discovered, verifying the accuracy of
the pre-specified question tags from domain experts. Com-
paring to the question–concept association graph of the high
school algebra test in Fig. 3, we see that for this dataset, the
pre-specified tags represent disjoint knowledge components,
which is indeed the case in the underlying question set. In-
terestingly, the estimated concept matrix C has rank 3; note
that we are estimating K = 16 concepts. This observation
suggests that all learners can be accurately represented by
a linear combination of only 3 different “eigen-learner” vec-
tors. Further investigation of this clustering phenomenon is
part of on-going research.

4.3 Predicting unobserved learner responses
We now compare the prediction performance of ordinal
SPARFA-M on unobserved learner responses against state-
of-the-art collaborative filtering techniques: (i) SVD++
in [20], which treats ordinal values as real numbers, and
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Figure 5: Prediction performance on the Mechanical
Turk algebra test dataset. We compare the collabo-
rative filtering methods SVD++ and OrdRec to vari-
ous Ordinal SPARFA-M based methods: “Nuc” uses
the nuclear norm constraint, “Fro” uses the Frobe-
nius norm constraint, “Bin” and “BinInd” learn the
bin boundaries, whereas “Bin” learns one set of
bin boundaries for the entire dataset and “BinInd”
learns individual bin boundaries for each question.

(ii) OrdRec in [21], which relies on an ordinal logit model.
We compare different variants of Ordinal SPARFA-M: (i)
optimizing the precision parameter, (ii) optimizing a set of
bins for all learners, (iii) optimizing a set of bins for each
question, and (iv) using the nuclear norm constraint on C.
We consider the Mechanical Turk algebra test, hold out 20%
of the observed learner responses as test sets, and train all
algorithms on the rest. The regularization parameters of
all algorithms are selected using 4-fold cross-validation on
the training set. Figure 5 shows the root mean square error

(RMSE)
»

1
|Ω̄obs|

∑
i,j:(i,j)∈Ω̄obs

‖Ŷi,j − Yi,j‖22 where Ŷi,j is

the predicted score for Yi,j , averaged over 50 trials.

Figure 5 demonstrates that the nuclear norm variant of Ordi-
nal SPARFA-M outperforms OrdRec, while the performance
of other variants of ordinal SPARFA are comparable to
OrdRec. SVD++ performs worse than all compared meth-
ods, suggesting that the use of a probabilistic model con-
sidering ordinal observations enables accurate predictions
on unobserved responses. We furthermore observe that the
variants of Ordinal SPARFA-M that optimize the precision
parameter or bin boundaries deliver almost identical perfor-
mance.

We finally emphasize that Ordinal SPARFA-M not only de-
livers superior prediction performance over the two state-
of-the-art collaborative filtering techniques in predicting
learner responses, but it also provides interpretable factors,
which is key in educational applications.

5. RELATED WORK
A range of different ML algorithms have been applied in ed-
ucational contexts. Bayesian belief networks have been suc-
cessfully used to probabilistically model and analyze learner
response data in order to trace learner concept knowledge
and estimate question difficulty (see, e.g., [13, 22, 33, 34]).

Such models, however, rely on predefined question–concept
dependencies (that are not necessarily accurate), in contrast
to the framework presented here that estimates the depen-
dencies solely from data.

Item response theory (IRT) uses a statistical model to ana-
lyze and score graded question response data [25, 29]. Our
proposed statistical model shares some similarity to the
Rasch model [28], the additive factor model [10], learn-
ing factor analysis [19, 27], and the instructional factors
model [11]. These models, however, rely on pre-defined
question features, do not support disciplined algorithms to
estimate the model parameters solely from learner response
data, or do not produce interpretable estimated factors. Sev-
eral publications have studied factor analysis approaches on
learner responses [3, 14, 32], but treat learner responses
as real and deterministic values rather than ordinal values
determined by statistical quantities. Several other results
have considered probabilistic models in order to characterize
learner responses [5, 6], but consider only binary-valued re-
sponses and cannot be generalized naturally to ordinal data.

While some ordinal factor analysis methods, e.g., [21], have
been successful in predicting missing entries in datasets from
ordinal observations, our model enables interpretability of
the estimated factors, due to (i) the additional structure
imposed on the learner–concept matrix (non-negativity com-
bined with sparsity) and (ii) the fact that we associate unique
tags to each concept within the estimation algorithm.

6. CONCLUSIONS
We have significantly extended the SPARse Factor Analysis
(SPARFA) framework of [24] to exploit (i) ordinal learner
question responses and (ii) instructor generated tags on
questions as oracle support information on the question–
concept associations. We have developed a computationally
efficient new algorithm to compute an approximate solution
to the associated ordinal factor-analysis problem. Our pro-
posed Ordinal SPARFA-Tag framework not only estimates
the strengths of the pre-defined question–concept associa-
tions provided by the instructor but can also discover new
associations. Moreover, the algorithm is capable of imposing
a nuclear norm constraint on the learner concept knowledge
matrix, which achieves better prediction performance on un-
observed learner responses than state-of-the-art collabora-
tive filtering techniques, while improving the interpretability
of the estimated concepts relative to the user-defined tags.

The Ordinal SPARFA-Tag framework enables a PLS to pro-
vide readily interpretable feedback to learners about their la-
tent concept knowledge. The tag-knowledge profile can, for
example, be used to make personalized recommendations to
learners, such as recommending remedial or enrichment ma-
terial to learners according to their tag (or concept) knowl-
edge status. Instructors also benefit from the capability to
discover new question–concept associations underlying their
learning materials.
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ABSTRACT
One of the key factors that affects automated tutoring sys-
tems in making instructional decisions is the quality of the
student model built in the system. A student model is a
model that can solve problems in various ways as human
students. A good student model that matches with student
behavior patterns often provides useful information on learn-
ing task difficulty and transfer of learning between related
problems, and thus often yields better instruction on intel-
ligent tutoring systems. However, traditional ways of con-
structing such models are often time consuming, and may
still miss distinctions in content and learning that have im-
portant instructional implications. Automated methods can
be used to find better student models, but usually require
some engineering effort, and can be hard to interpret. In this
paper, we propose an automated approach that finds student
models using a clustering algorithm based on automatically-
generated problem content features. We demonstrate the
proposed approach using an algebra dataset. Experimental
results show that the discovered model is as good as one
of the best existing models, which is a model found by a
previous automated approach, but without the knowledge
engineering effort.

Keywords
student model, machine learning, learner modeling

1. INTRODUCTION
A student model is an essential component in intelligent tu-
toring systems. It encodes how to solve problems in various
ways as human students do. One common way of represent-
ing such student models is a set of knowledge components
(KC) encoded in intelligent tutors to model how students
solve problems. As defined in [9], a knowledge component
is an acquired unit of cognitive function or structure that
can be inferred from performance on a set of related tasks.
The set of KCs includes the component skills, concepts, or
percepts that a student must acquire to be successful on

the target tasks. For example, a KC in algebra can be how
students should proceed given problems of the form Nv=N
(e.g. 3x = 6). A student model provides automated tu-
toring systems with important information on how to make
instructional decisions. Better student models are capable
of predicting task difficulty and transfer of learning between
related problems. Thus, intelligent tutoring systems with
better student models often provide more effective learning
experience.

Traditional ways to construct student models include struc-
tured interviews, think-aloud protocols, rational analysis,
and so on. However, these methods are often time-consuming,
and require domain expertise. More importantly, they are
highly subjective. Previous studies [11] have shown that hu-
man engineering of these models often miss components of
knowledge acquisition (e.g., that learning to read algebraic
sentences is difficult) that have important instructional im-
plications. Other methods that apply machine learning tech-
niques to generate student models [16, 27] can find models
that are better than human-generated ones, but may suf-
fer from challenges in interpreting the results. For exam-
ple, Learning Factor Analysis (LFA) [6] apply an automated
search technique to discover student models. Nevertheless,
one key limitation of LFA is that it carries out the search
process only within the space of human-provided factors. If
a better model exists but requires unknown factors, LFA
will not find it. Another approach is to use a learning agent,
SimStudent, to automatically discover student models [15].
Although this method is less dependent on human-provided
factors, it still needs some knowledge engineering effort in
constructing the learning agent.

To address this issue, we formulate the student model discov-
ery approach as a clustering problem, and propose another
automated method that discovers student models using a
machine learning algorithm, k-means, based on automatically-
generated features. To accommodate for both the perfor-
mance prediction accuracy and the interpretability of the
discovered model, the features include both problem content
features and performance features, so that problem steps in
the same cluster are of similar forms and are associated with
similar performance on human students. Each cluster corre-
sponds to a KC that students need to learn. We evaluated
the approach in algebra using real student data. Experiment
results show that the discovered model fits with real student
data as good as the model found by SimStudent.
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Table 1: An Example List of Steps with Their Content Features.

Step Tokenized Step -N Nv v= =N -Nv Nv= v=N v+ +N N= Nv+ v+N +N= N=N
-3x = 6 -Nv=N 1 1 1 1 1 1 1 0 0 0 0 0 0 0
2y+5=7 Nv+N=N 0 1 0 1 0 0 0 1 1 1 1 1 1 1

In the following sections, we start by describing how to sta-
tistically evaluate the quality of a student model. Then,
we explain how to generate features and to apply a cluster-
ing algorithm to find student models that meet such crite-
ria. Next, we report experimental results on the compar-
ison between the clustering-based model and the SimStu-
dent model, along with an in-depth study using a recently
developed analysis technique, Focused Benefits Investiga-
tion (FBI) [10]. After this, we discuss the generality of the
proposed approach, and possible improvements that can be
made using SimStudent. In closing, we describe some re-
lated work as well as conclusions drawn from this work.

2. STATISTICAL EVALUATION OF STUDENT
MODEL QUALITY

As we have mentioned before, a student model can be repre-
sented by a set of knowledge components, where each prob-
lem step is associated with one KC that encodes how to
proceed given the current step. Therefore, the problems we
have is that given a dataset recording how human students
solve problems in one domain, how to find a set of KCs that
matches with student behavior well.

There are various ways of matching a student model with
student data. Although other models are also possible (e.g. [8],
in our case, we use the Additive Factor Model (AFM) [6] to
measure the quality of a student model. AFM is an instance
of logistic regression that models student success using each
student, each KC, and the KC by opportunity interaction
as independent variables,

ln
pij

1− pij
= θi +

∑
k

βkQkj +
∑
k

βkQkj(γkNik)

Where:

i represents a student i.

j represents a step j.

k represents a skill or KC k.

pij is the probability that student i would be correct on step
j.

θi is the coefficient for proficiency of student i.

βk is coefficient for difficulty of the skill or KC k.

Qkj is the Q-matrix cell for step j using skill k.

γk is the coefficient for the learning rate of skill k.

Nik is the number of practice opportunities student i has
had on the skill k.

Hence, the better the student model is; the more accu-
rate the predictions are. To train the parameters, we use
maximum-likelihood estimation (MLE). In order to avoid
overfitting, we use cross-validation (CV) to validate the qual-
ity of the student model.

3. STUDENT MODEL DISCOVERY USING
A MACHINE LEARNING ALGORITHM

Given the above evaluation method, we would like to note
that our task here is not only to find a model that predicts
student behavior well, we also want to find a model that is
conceptually meaningful. In other words, steps within the
same KC should be both conceptually similar and performance-
wise similar. In fact, finding a student model over a set
of problem steps is a clustering task, where the algorithm
groups a set of problem steps in a way that steps in the
same group (called cluster) are more similar in some sense
to each other than to those in other groups (clusters). In our
case, each cluster corresponds to a KC in the student model.
From this clustering point of view, if the metric of similarity
measures both content similarity and performance similar-
ity, the KCs that the algorithm finds would have the desired
properties we discussed above. Therefore, we use two types
of features for clustering, content features and performance
features.

3.1 Preprocessing
Before generalizing the features, we first tokenize the prob-
lem steps, so that all numbers are replaced by N , and all
variables are represented as v. For example, the tokenized
representation of −3x = 6 is −Nv = N . In fact, the level
of tokenization affects the result of the discovered model,
since this preprocessing step removes the difference among
steps that are of the same form but with different numbers.
This may cause problems in some cases. For instance, solv-
ing −3x = 6 can be potentially much easier than solving
−452x = 904, but the preprocessing step gives both steps
the same tokenized representation −Nv = N . As we will
discuss later, by making use of SimStudent, we could auto-
matically get different levels of tokenization.

3.2 Feature Generation
After preprocessing, we now generate features for these to-
kenized steps. There are two types of features, content fea-
tures and performance features.

3.2.1 Content Features
Content features are defined based on the problem content
information of the tokenized steps. More specifically, we
generate all of the bigrams and trigrams in each of the tok-
enized steps. For each bigram or trigram, we set the value
of that feature to be 1 if the bigram or trigram appears in
the current step, and 0 otherwise.
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Table 2: The List of Performance Features Used for Clustering.

Feature Meaning
Avg. Incorrects Average number of incorrect attempts for the current step
Avg. Hints Average number of the student asking for a hint for the current step
Avg. Corrects Average number of correct attempts for the current step
% First Attempt Incorrects The percentage of times that the first attempt is incorrect
% First Attempt Hints The percentage of times that the first attempt is asking hint
% First Attempt Corrects The percentage of times that the first attempt is correct
Avg. Step Duration (sec) Average number of seconds the student spending on this step
Avg. Correct Step Duration (sec) Average number of seconds the student spending on this step when the

student gets this step correct
Avg. Error Step Duration (sec) Average number of seconds the student spending on this step when the

student gets this step incorrect
Total Students Average number of total students working on this step
Total Opportunities Average number of total opportunities that the student has in solving

the current step

For example, for step −Nv = N , all of the bigram features it
generates are −N , Nv, v =, and = N , and all of the trigram
features it generates are −Nv, Nv =, and v = N . Consid-
ering a bigram feature Nv, and a trigram feature +N =, for
step −Nv = N , the value of the feature Nv is 1, whereas
the value of the feature +N = is 0, since +N = does not
appear in −Nv = N . But for another step Nv + N = N ,
both the value of Nv and the value of +N = are 1, since
both of them appear in Nv +N = N . The trigram feature
+N = here can be used to identify the steps for subtracting
both sides with N . Table 1 shows an example list of steps
with their content features.

By using these content features, we make sure that the steps
in the same cluster share some common content features, and
thus look similar to each other. This satisfies the property of
having conceptually-similar steps in the same cluster. More-
over, by having steps that share content features clustered
in one KC, it is easier for human to interpret the results.

3.2.2 Performance Features
The second set of features we used in the algorithm are per-
formance features. These features measure the average per-
formance of human students on each format of the tokenized
steps. Examples of such measurements are the time to re-
sponse, and whether the student’s first attempt was correct.
Table 2 shows the full list of performance features used for
clustering.

Note that performance features are only used to create the
clusters of the training data. Since we are predicting the
performance of human students, performance data should
not be used in testing. For testing data, we only use the
content features to assign the cluster of the current step. In
other words, for each testing data point, we calculate the
distance of the data point to all of the training data points
based on perceptual features, and assign the testing data
point to the cluster associated with the closest training data
point.

3.3 Principal Component Analysis
Before clustering, we normalize all the features to range from
0 to 1. Then, we perform a principal component analysis

Algorithm 1: K-Means

Input: Points to be clustered P , Number of clusters k
Output: Cluster centroids C, cluster membership M .

1 initialize C with k randomly selected data points in P
2 forall the pi ∈ P do
3 mi := argminj∈1..kdistance(pi, cj)
4 end
5 while m changed do
6 foreach i ∈ {1..n} do
7 Recompute ci as the centroid of {pj |mj = i}
8 end
9 sum ratios := 0

10 forall the p ∈ c ∩ d do
11 sum ratios += wc(p)/wd(p)
12 end
13 forall the pi ∈ P do
14 mi := argminj∈1..kdistance(pi, cj)
15 end

16 end
17 return C, M

over the features we generated. Principal component analy-
sis is a mathematical procedure that projects a set of obser-
vations of possibly correlated variables into a set of values of
linearly uncorrelated variables. These linearly uncorrelated
variables are called principal components. The first prin-
cipal component points to the direction that accounts for
the largest possible variance. The succeeding components
are orthogonal to the previous components, and account for
smaller variance.

After this transformation process, all of the features in the
projected space are orthogonal to each other. Moreover,
in order to remove less informative features, we only select
the first 40 principal components in the projected space. It
covers approximately 95% of the variance in the data.

3.4 Student Model Discovery with a Cluster-
ing Algorithm

To discover student models, we use k-means to cluster the
data over the automatically-generated features. The dis-
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Table 3: Cross Validation Results on the Clustering-
Based Model and the SimStudent Model.

SimStudent RMSE Clustering RMSE
Run 1 0.4105 0.4102
Run 2 0.4109 0.4106
Run 3 0.4113 0.4105
Run 4 0.4107 0.4111
Run 5 0.4106 0.4095
Run 6 0.4109 0.4102

Average 0.4108 0.4104

tance between data points is measured by the Euclidean
distance in the feature space.

The algorithm uses an expectation-maximization style ap-
proach. Algorithm 1 shows the psuedocode of the clustering
procedure. Fristly, the algorithm randomly selects k points
as the initial centers of each cluster. Then, in the assignment
step, the rest of the points are assigned to the cluster whose
mean is closest to it among all of the existing clusters. Next,
in the update step, the algorithm calculates the new means
of the new clusters as the centroids of the data points. This
process continues until converge.

K-means needs the number of clusters k to be given as input.
Since we do not know how many clusters are there, we set
the number of clusters to be 20, 25, and 30. The algorithm
then picks the one with the best cross validation result1.
Note that even with the same number of clusters, different
initialization of the clusters can lead to different clustering
results. In this study, we just run k-means once for each
value k. In future study, we could run the clustering algo-
rithm multiple times, and select the clusters that have the
smallest intra-cluster difference and the largest inter-cluster
difference.

4. EXPERIMENT STUDY
In order to evaluate the effectiveness of the proposed ap-
proach, we carried out a study using an algebra dataset.
We compared the clustering-based model with a SimStudent
model. The SimStudent model is discovered by a learning
agent, which is also one of the best student models we have
in the database.

4.1 Method
To generate the SimStudent model, SimStudent was tu-
tored on how to solve linear equations by interacting with
a Carnegie Learning Algebra I Tutor like a human student.
We selected 40 problems that were used to teach real stu-
dents as the training set for SimStudent. Given all of the
acquired production rules, for each step a real student per-
formed, we assigned the applicable production rule as the
KC associated with that step. In cases where there was
no applicable production rule, we coded the step using a
human-generated KC model (Balanced-Action-Typein). The
human-generated model is the best model constructed by
domain experts. It has been shown that the SimStudent

1We tried smaller numbers, but it turns out that when k is
between 20 and 30, the cross validation result is often better.
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Figure 1: Error rates of human students and pre-
dicted error rates of two student models. S stands
for a signed number, N represents an integer, and v
is a variable.

model is better than the human-generated model, and pro-
vides useful instructional implications.

The clustering-based model was discovered using the ap-
proach described above. Each time a student encounters a
step using some KC is considered as an “opportunity” for
that student to show mastery of that KC. In both models,
a total of 6507 steps are coded.

In order to get a better understanding on how the clustering-
based model differs from other student models, we further
utilized DataShop, a large repository that contains datasets
from various educational domains as well as a set of associ-
ated visualization and analysis tools, to facilitate the process
of evaluation, which includes generating learning curve visu-
alization, AFM parameter estimation, and evaluation statis-
tics including AIC (Akaike Information Criterion) and cross
validation.

4.2 Dataset
We analyzed data from 71 students who used an Carnegie
Learning Algebra I Tutor unit on equation solving. The stu-
dents were typical students at a vocational-technical school
in a rural/suburban area outside of Pittsburgh, PA. The
problems varied in complexity, for example, from simpler
problems like 3x=6 to harder problems like x/-5+7=2. A
total of 19,683 transactions between the students and the
Algebra Tutor were recorded, where each transaction repre-
sents an attempt or inquiry made by the student, and the
feedback given by the tutor.

4.3 Measurements
To test whether the generated model fits with real student
data, we used 10-fold cross validation. The cross validation
was performed over ten folds with the constraint that each
of the three training sets must have data points for each stu-
dent and KC. For the clustering-based model, performance
features of the testing steps were not used in constructing the
KCs. We calculated the root mean-squared error (RMSE)
averaged over ten test sets. Due to the random nature of
the fold generation process in cross validation, we repeated
this process six times.
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Table 4: FBI Results on Selected KCs That Are Improved in the Clustering-Based Model.

SimStudent KCs SimStudent Model
RMSE

Clustering-Based
Model RMSE

% change of RMSE

ctat-divide 0.5289 0.3984 -24.67
ctat-distribute 0.4292 0.3553 -17.21
ctat-multiply 0.4634 0.3962 -14.50
ctat-clt 0.3757 0.3445 -8.325
ctat-divide-typein 0.3674 0.3368 -8.321

In order to better understand this machine learning ap-
proach, we carried out an in-depth study using FBI [10]
on the clustering-based model and the SimStudent. FBI is
a recently developed technique. It is designed to analyze
which of the differences between the models improves the
prediction the most, and by how much.

4.4 Experimental Results
As shown in Table 3, in five out of the six runs, the clustering-
based models get lower RMSEs than the SimStudent model,
which indicates that the clustering-based model is at least
as good as the SimStudent model. Averaged over the six
runs, the clustering-based models get an average RMSE of
0.4104, while the SimStudent model gets a slightly higher
RMSE (i.e., 0.4108).

As you may have noticed, the difference between the RM-
SEs of the two models is small, but this does not mean
that the difference between the two models is small. In-
stead of using cross validation to measure the quality of the
model as a whole, we applied FBI to evaluate the difference
at the knowledge component level. Table 4 shows the top
five KCs in the SimStudent model that are improved in the
clustering-based model. As we can see that all of these KCs’
names start with “ctat”, which means these KCs are from
the human-generated model. Recall that in the SimStudent
model, if SimStudent could not find any applicable produc-
tion rule to a step, the step would be coded by the human-
generated model. This suggests that the clustering-based
approach is more general than the SimStudent approach in
the sense that it is able to code steps that are not supported
by SimStudent. Among the nine KCs generated by SimStu-
dent, three of them were improved in the clustering-based
student model.

In these five KCs, the clustering-based model successfully
reduced the RMSE by at least 8%. In the KC “ctat-divide”,
the RMSE was reduced by around 25%. This indicates that
the clustering-based approach is able to find KCs that are
better than the existing ones. We can inspect the data more
closely to get a better qualitative understanding of how the
two models are different and what implications there might
be for improved instruction.

We took a closer look at the KC “ctat-divide-typein”. In
the SimStudent model, all steps that require division are
assigned to the “ctat-divide-typein” skill. However, there
are differences among these steps. We checked the KCs in
the clustering-based model associated with these steps, and
found out that these steps were split into different KCs in
the clustering-based model. Table 5 shows the five biggest
KCs associated with the“ctat-divide-typein”steps. Since we

used problem content based features, the KCs in the model
were relatively easy to interpret. Each KC name (e.g., 25)
in the table is followed by the most common form of the
division steps in the KC (e.g., S.N = Sv/S), where N rep-
resents an integer, S means a signed number, and v stands
for a variable. We calculated the average error rate of hu-
man students solving these steps, as well as the predicted
error rates of the steps based on the two student models.
As presented in Figure 1, the predicted error rates of the
clustering-based model are closer to human students’ actual
error rates than the predicated error rates of the SimStu-
dent model. Since the SimStudent model considers all these
steps correspond to one KC, it predicts that they should
have similar error rates, which is reflected by the flat line in
Figure 1. The clustering-based model, on the other hand,
predicts different error rates for problem steps of different
forms.

More specifically, according to human student performance,
steps associated with KC 25 are easier than problem steps
from other KCs. A careful inspection at the data shows
that KC 25 is associated with problem steps of the form
S.N = Sv/S, which means that the left side of the equation
is a decimal number. On the other hand, the problem steps
in other KCs are associated with fractions. For steps with
fractions, human students may have to simplify the fractions
in order to get the final solution, whereas for steps with
decimal numbers, students only need to copy the decimal
numbers as the solution. Therefore, steps associated with
KC 25 have a lower error rate than the other steps, which are
correctly modeled by the clustering-based model. Moreover,
among KC 6, KC 22, and KC 29, human students have a
higher error rate when the variable is on the right side of
the equation (i.e., steps associated with KC 6). This is also
correctly captured by the clustering-based model, while the
SimStudent model again incorrectly predicts similar error
rates.

These results are confirmed in the FBI study as well. As
shown in Table 5, the largest improvement comes from KC
25 reaches 40%, partially because it separates divide-typein
problems with decimal numbers from problems with frac-
tions. KC 15 further models problem steps that have the
variable with coefficients from the other steps that have the
single variable in one side of the equation. This contributes
to an improvement around 8%. The other three KCs differ-
entiate problem steps that have the variable in the left side
of the equation from the ones that have the variable in the
right side of the equation. Two out of these three KCs get
better RMSE. The third KC’s increase in RMSE is mainly
caused by other none divide-typein steps.
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Table 5: Selected KCs in the Clustering-Based Model That Correspond to KC “ctat-divide-typein”.

Clustering KCs Clustering-Based
Model RMSE

SimStudent Model
RMSE

% change of RMSE

25 (S.N = Sv/S) 0.1547 0.2170 40.34
6 (S/N=v) 0.4654 0.5516 18.54
15 (Sv/-N = S/S or S/S = Sv/-N) 0.2969 0.3205 7.939
22 (v = S/-N) 0.4194 0.4279 2.016
29 (v = S/N) 0.4238 0.4073 -3.898

3 x

MinusSign Number

SignedNumber

Expression

Variable

x

MinusSign

Expression

Variable

Figure 2: Different parse trees for -3x and -x.

The clustering algorithm’s split of the original divide-typein
KC into five KCs suggests that human students should be
taught separately on each type of problems. More specif-
ically, intelligent tutors cannot make the assumption that
if students have learned the divide-typein KC for decimal
problems, they will also know how to solve the fraction prob-
lems. Furthermore, the tutoring system should teach human
students not only with problems that have the variables on
the left side, but also with problems that have the variables
at the right side of the equation, so that students get famil-
iar with the concept that variables can be at the either side
of the equation.

5. DISCUSSION
Given the promising results, we would like to further discuss
some interesting future steps for this algorithm.

5.1 Automated vs. Manual Model Discovery
One question we should ask is that why we should use auto-
mated student model discovery approach rather than man-
ual construction. This is mainly due to the fact that much
of human expertise is only tacitly known. In many of the
cases, we know how to solve the problems, while it can be
hard to explain how we solved the problem. For instance,
in language learning, native speakers can accurately select
the correct article in a sentence, but do not know why they
pick that article. Similarly, most algebra experts have no
explicit awareness of subtle transformations they have ac-
quired. Even though such instructional designers may be
experts in a domain, they may still have some blind spots
regarding subtle perceptual differences like this one, which
may make a real difference for novice learners. A machine
learning approach can help get past such blind spots by re-
vealing challenges in the learning process that experts may
not be aware of. In addition, these discovered KCs can serve
as a basis for traditional ways of student model discovery.

5.2 Feature Generation Using SimStudent
Furthermore, in this paper, we simply use bigrams and tri-
grams of the tokenized steps as the content features. Some

of these features may not be very helpful in differentiating
KCs needed for the steps. Moreover, it is possible that differ-
ent tokenization procedures and longer n-grams would lead
to better results in other domains. We can, of course, keep
adding new features in the feature space, and let the learn-
ing algorithm search through the larger space. However,
this is not ideal due to the curse of dimensionality. In pre-
vious work, we have shown that hierarchical representations
of the problem steps as shown in Figure 2 can be acquired
by grammar induction techniques [14]. These hierarchical
representations capture “deep features” in solving problems
at different levels of abstractions. In the future, it would be
interesting to see that whether we can make use of such rep-
resentations to automatically generate high-quality content
features, and lead to the discovery of better student models.

Moreover, the problem content features used in this paper
are perceptual features. This is sufficient for domains like
algebra, since the structure of the problem steps is enough
to decide which skill to apply. But in other domains such
as fraction addition, deciding whether two numbers are co-
primed or not is impossible if using only perceptual features.
In these cases, being able to generate operational features is
required.

In response to this, we propose to use SimStudent to gen-
erate these features. SimStudent is an intelligent learning
agent that uses machine learning techniques to acquire skills.
It has three sets of prior knowledge, a perceptual hierarchy,
a set of operator functions, and a set of feature predicates.
Previous work has shown that by integrating representation
learning with skill learning, instead of manually encoding
this prior knowledge, the learning agent can learn, automat-
ically generate, or partially reduce the need of such prior
knowledge. The extended learning agent becomes a better
model of student learning. To get a more general approach,
we plan to make use of the acquired prior knowledge as well
as the learned skills to generate both perceptual features and
operational features.

5.3 Objective Function Guided Clustering
In this paper, the student model is discovered purely based
on the clustering procedure. The discovered model is then
used to fit with student data in the AFM model. In other
words, the student model does not change once the cluster-
ing process is completed. Another interesting approach is
to guide the student model discovery / clustering process
by the fit to student performance data. Since the second
approach is fully guided by the objective function, presum-
ably, we could get a model with better predictions than the
approach proposed in this paper.

However, there are two major issues with this objective func-
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tion guided approach. As mentioned before, each knowledge
component in a student model is an acquired unit of cognitive
function or structure that can be inferred from performance
on a set of related tasks [9]. If the student model is discov-
ered purely based on the fit to student performance data,
the KCs discovered may not be able to provide meaningful
instructional insights. For example, if human students found
both problems of the form −v = N and −N/v = N hard,
does that mean that the tutor should teach these problem
steps together? One possible way to address this issue is to
also include the problem content similarity measurement in
the objective function, so that the search is guided not only
by performance, but also by task similarity.

Another issue is that this objective function guided approach
often takes longer, as it has to fit the model with the data
on each node expansion during the search. Therefore, in
this paper, we take the clustering approach since it is more
efficient, and can find KCs that are easier to interpret. In the
next study, it would be interesting to compare the proposed
approach with the objective function guided approach.

5.4 Other Clustering Techniques
One additional possible study is to try other clustering tech-
niques. In this work, we only applied k-means to discover
student models. There are other clustering algorithms such
as hierarchical agglomerative clustering and spectral cluster-
ing [19]. These clustering algorithms have different proper-
ties, and may be better fit with the student model discovery
task. In the future, we would like to further explore in this
direction with other clustering techniques.

5.5 Generality
The last study we are interested in carrying out is to test
the generality of the proposed approach. The Pittsburgh
of Science of Learning Center’s DataShop contains over 200
datasets in algebra and other domains that could be used for
such cross-dataset or cross-domain validation. The current
study used a single dataset in a single domain. The general-
ity and validity of the proposed student-modeling technique
could be extended by clustering problem steps in one dataset
and applying the discovered KC model to other datasets.
For example, the dataset we used is associated with students
in one high school. It would be interesting to see whether
the generated student model applies to other high schools
at the same level.

In addition, we plan to apply this approach in other do-
mains such as stoichiometry, fraction addition and so on.
As we have mentioned above, it is possible that operational
features are also needed in these domains. In this case, ex-
tending the current approach with other learning techniques
such as SimStudent would be a promising future step. On
the other hand, the language learning domain does not re-
quire complex problem solving, but needs complex percep-
tual knowledge and large amounts of background knowledge.
An interesting future work is to apply existing linguistic
tools to English sentences, and then automatically generate
problem content features based on the parsed sentences.

6. RELATED WORK
The objective of this paper is using a clustering algorithm
to automatically construct student models. A lot of efforts

have also been put toward comparing the quality of alterna-
tive student models. LFA automatically discovers student
models, but is limited to the space of the human-provided
factors. SimStudent is less dependent on human-provided
factors, but still needs some knowledge engineering effort
in constructing the agent. Moreover, as we have shown in
the experiments, the clustering based algorithm is able to
find KCs that are better than those found by SimStudent.
Other works such as [16, 27] are less dependent on human
labeling, but may suffer from challenges in interpreting the
results. In contrast, the clustering-based approach has the
benefit that the acquired KCs usually have a straightforward
interpretation. Baffes and Mooney [2] apply theory refine-
ment to the problem of modeling incorrect student behavior.
Other systems [23, 3] use Q-matrix to find knowledge struc-
ture from student response data. Our approach also uses
machine learning algorithms to discover student models. In
addition to model student performance, we emphasize on the
interpretability of the models by adding content features to
the clustering approach.

There has also been considerable amount of research on us-
ing artificial intelligence and machine learning techniques to
model human students. Langley and Ohlsson’s [13] ACM
applies symbolic machine learning techniques to automat-
ically construct student models. Brown and Burton’s [5]
DEBUGGY, and Sleeman and Smith’s [20] LMS also make
use of artificial intelligent tools to construct models that ex-
plain student’s behavior in math domains. VanLehn’s [25]
Sierra models the impasse-driven acquisition of hierarchical
procedures for multi-column subtraction from sample solu-
tions. Research on models of high-level learning [12, 1, 22,
21, 24, 18] is also closely related to our work, but to the best
of our knowledge, has not been evaluated by the fit to stu-
dent learning curve data as we do in this work. In addition,
most of these work took a more symbolic approach, while
our algorithm is more statistical based.

Other research on creating simulated students [26, 7, 17] also
share some resemblance to our work. VanLehn [25] created
a learning system and evaluated whether it was able to learn
procedural “bugs” like real students. Biswas et al.’s [4] sys-
tem learns causal relations from a conceptual map created
by students. None of the above approaches except for the
SimStudent model discovery approach compared the system
with learning curve data. To the best of our knowledge, our
work is the very few who combines the two whereby we use
cognitive model evaluation techniques to assess the quality
of a simulated learner.

7. CONCLUSION
In this paper, we introduced an innovative application of a
machine learning algorithm for an automatic discovery of
student models. In order to discover KCs that are effective
in predicting human student performance, while being easy
to interpret, we added problem content features in the fea-
ture space, and applied a clustering algorithm to find student
models. Our evaluation demonstrated that discovering stu-
dent models based on problem content features was able to
produce models of good prediction accuracies, and showed
how the discovered model could provide important instruc-
tional implications. We further discussed possible extensions
to the existing approach, and described how a learning agent
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such as SimStudent can be used to automatically generate
content features as well as operational features to improve
the generality of the proposed approach. This work is one
step forward in applying machine learning techniques to con-
struct student model. We believe that there are a lot of of
fruitful future steps in this direction. They are natural ex-
tensions under the current framework.
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ABSTRACT
Open-ended educational tools can encourage creativity and
active engagement, and may be used beyond the classroom.
Being able to model and predict learner performance in such
tools is a critical component to assist the student, and enable
tool refinement. However, open-ended educational domains
typically allow an extremely broad range of learner input.
As such, building the same kind of cognitive models often
used to track and predict student behavior in existing sys-
tems is challenging. In addition, the resulting large spaces
of user input coupled with comparatively sparse observed
data, limits the applicability of straightforward classifica-
tion methods. We address these difficulties with a new algo-
rithm that combines Markov models, state aggregation, and
player heuristic search, dynamically selecting between these
methods based on the amount of available data. Applied
to a popular educational game, our hybrid model achieved
greater predictive accuracy than any of the methods alone,
and performed significantly better than a random baseline.
We demonstrate how our model can learn player heuristics
on data from one task that accurately predict performance
on future tasks, and explain how our model retains param-
eters that are interpretable to non-expert users.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games; H.5.0
[Information interfaces and presentation]: General

Keywords
Educational games, user modeling

1. INTRODUCTION
Open-ended learning environments offer promises of in-
creased engagement, deep learning, transfer of skills to new
tasks, and opportunities for instructors to observe the learn-
ing process. One example of such environments is educa-
tional games, where players have an opportunity to explore
and experiment with a particular educational domain [12].

However, many of these exciting potential applications re-
quire low-level behavioral models of how players behave. For
example, if we can predict that a player will struggle with
a particular concept, we could try to preempt this confu-
sion with tutorials or choose specific levels designed to ad-
dress those problems. Additionally, as forcing players to
complete an explicit knowledge test often breaks the game
flow and causes many players to quit, we could estimate a
player’s knowledge of target concepts by predicting perfor-
mance on test levels that are carefully designed to measure
understanding of those concepts. Finally, we might even
be able to compare user populations by examining models
learned from their data and hypothesize optimal learning
pathways for each population.

Accurate predictions of user behavior have been achieved in
existing educational software such as intelligent tutors [10,
9, 11]. However, we cannot directly apply such methods to
educational games for two reasons. First, educational games
often have very large state and action spaces. For instance,
a game involving building one of 10 different structures on
100 locations has a state space of size 10100. Second, games
often increase engagement through the addition of game me-
chanics that are not directly linked to the main educational
objectives. One option is to use expert insight to define skills
and behavior associated with these skills for the educational
game. However, doing so can be extremely labor intensive:
for intelligent tutors for structured domains that often in-
clude activities labeled with skills, it has been estimated
that 200-300 hours of expert development are necessary to
produce one hour of content for intelligent tutors [4]. As
educational games are more open-ended, allowing students
to input a much wider variety of input compared to many
popular intelligent tutoring systems, we expect that tagging
and building structure models for them would be even more
time consuming than for structured topics such as Algebra.

Given these limitations, we would like a method requiring
minimal expert authoring, capable of inferring likely user be-
havior based on collected data. One popular approach with
these properties from the field of recommendation systems is
collaborative filtering [18, 21]. Collaborative filtering can be
effective with no expert authoring at all if there is enough
data; however, the large state space of many educational
games often results in high degrees of data sparsity. To
maintain accuracy in spite of such sparsity, there has been
an emergence of hybrid models that supplement collabora-
tive filtering with limited context-specific information when
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there is not enough data [16, 24]. Though we are inspired by
this work, such methods are not applicable to educational
games: we cannot ask users for ranked preferences and are
restricted to using behavioral models only, making our task
significantly more difficult.

To address these challenges, we create a new ensemble al-
gorithm that leverages the various strengths of multiple dis-
parate models for predicting player behavior. We propose
a tripartite methodology that combines elements of collab-
orative filtering with state-space clustering and modeling
players as parameterized heuristic searchers. Using all three
methods, we are able to achieve better performance than
using any one of these approaches individually. The model
reduces the log-likelihood to 68% of a random baseline, out-
performing any of its components, which achieve between
73% and 80% log-likelihood of random. Because it uses both
a mix of data-driven and model-based approaches, we are
able to predict how people will react to any situation in the
game, a capability that continues to improve as we observe
more players. The model also retains interpretable parame-
ters which we demonstrate by discovering differences in be-
havior between populations from different websites. Finally,
we show that unlike pure collaborative filtering approaches,
we can train our model on data from one level and use it to
accurately predict behavior on future levels. This allows us
to predict how players will respond in situations where we
have no data at all, opening up a host of new applications
such as adaptive level ordering or invisible assessment based
on prediction of player performance on test levels.

2. RELATED WORK
2.1 Educational Technology
There has been substantial research on predicting student
outcomes on tests. Some of these methods are based on dy-
namic assessment, an alternative testing paradigm in which
the student receives assistance while working on problems
[8, 13]. Intelligent Tutoring Systems (ITSs) include built-in
scaffolding and hinting systems, and are therefore an ideal
platform for studying dynamic assessment [10]. Studies have
shown that this data has strong predictive power. Feng et al.
show that 40 minutes of dynamic assessment in the ASSIST-
ment system is more predictive of grades on an end-of-year
standaradized test than the same amount of static assess-
ment [9]. Feng et al. also showed that longitudinal dynamic
assessment data is more effective at predicting strandard-
ized test scores for middle school students than short-term
dynamic assessment data [10]. Fuchs et al. showed that dy-
namic assessment data from third-grade students was useful
for predicting scores on far-transfer problem-solving ques-
tions [11]. These methods are useful for predicting student
outcomes on tests. However, we require much finer granu-
larity for applications such as predicting how students will
respond to new levels without any training data or offering
just-in-time hints only when we predict the player is about
to make a particular type of move.

2.2 Collaborative Filtering
Machine learning classification is often used to predict user
behavior. However, many standard classification techniques
are ill-suited for the educational game domain, due to the
enormous set of possible inputs (classes) from which a player

can choose. We also require a way to predict a player may
make a new move that is possible, but has not been done by
any previous player.

Another promising approach for predicting user behavior is
collaborative filtering. It relies on the assumption that if two
users have a similar state, and one user behaves in a par-
ticular way in response to a new situation, the other user
will likely show the same behavior. A good survey of col-
laborative filtering approaches can be found in [21]. Several
researchers have used these methods in the educational data
mining domain, including using matrix or tensor factoriza-
tion models to predict student item responses [7], or student
performance on problems [22]. Unfortunately, their methods
do not easily transfer to our problem, which involves pre-
dicting choices of transitions between game states instead of
performance on problems given out one at a time; our data
is simply much more sparse.

Of course, data sparsity is known to offer a key challenge
to collaborative filtering, making it unable to issue accurate
positions given very limited data [21]. Data sparsity is par-
ticularly problematic in our domain, an educational puzzle
game with a large search space, because users diverge very
quickly and most states are rarely visited. One way of allevi-
ating data sparsity is to combine collaborative filtering with
external information. Content-based approaches, which con-
sider users or items to be similar if they share similarity in
respect to features selected by a designer [19], can be used to
augment collaborative filtering in situations where there is
not enough data. For example, Melville et al. [16] use collab-
orative filtering in situations where there is enough data and
look for similarities in content in cases where data is lacking.
Ziegler et al. [24] propose a different model in which items
are categorized into a taxonomy, and recommendations are
made not only through user ratings but also categories of
demonstrated interest. These methods do not directly ap-
ply in our domain, where we have only behavioral data and
must predict transitions between states instead of rankings
of items. However, we are inspired by their general ideas;
more specifically, our method allows the designer to spec-
ify similarity functions to combat data sparsity and takes
advantage of our domain structure by modeling players as
heuristically guided probabilistic searchers.

2.3 Modeling Players in Interactive Games
Game reseachers have tried to estimate player preferences,
skills, and behaviors based on in-game activities [6, 20].
Many of these approaches rely on expert-authored player
models, although some have used data-driven techniques.
For example, Pedersen et al. tried to predict the player’s
emotional state in Super Mario Bros by training a neural
network on features such as number of deaths [17]. Weber
et al. modeled player retention in a sports game with regres-
sions to rank expert-chosen features such as playing style
[23]. Our method differs by modeling low-level actions di-
rectly, a significantly more complicated task on which stan-
dard classification techniques are difficult to apply.

Some work has tried to predict low-level actions. Albrecht et
al. used Dynamic Belief Networks to predict players’ next
actions, next locations, and current goals in an adventure
game [3]. This work only applies to games with a very spe-

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 107



www.manaraa.com

cific structure involving locations and quests, which we lack.
Our work is probably closest to that of Jansen et al [15], who
predicted moves of chess grandmasters by modeling them as
low-depth heuristic searchers. Unfortunately, this method
alone is not very accurate, and as we show later does not
tend to improve as we collect more data. Our ensemble
method relies on collected data wherever possible and mod-
els players as heuristic searchers only as a last resort, giving
us significantly better predictive power.

3. GAME DESCRIPTION
We will first describe the game used in our analysis. Refrac-
tion is a educational fractions game that involves splitting
lasers into fractional amounts. The player interacts with a
grid that contains laser sources, target spaceships, and aster-
oids, as shown in Figure 1. The goal is to satisfy the target
spaceships and avoid asteroids by placing pieces on the grid.
Some pieces change the laser direction and others split the
laser into two or three equal parts. To win, the player must
correctly satisfy all targets at the same time, a task that re-
quires both spatial and mathematical problem solving skills.
Some levels contain coins, optional rewards that can be col-
lected by satisfying all target spaceships while a laser of the
correct value passes through the coin.

At any point in a level, the player may pick up a piece on the
board or drop a piece currently not in play onto the board on
any location. Let b be the number of open board locations
(about 100), and p the number of available pieces (usually at
least 6). Then the size of the state space is approximately
b permute p, the number of permutations of open board
locations for the pieces, and has a branching factor of about
bp. Thus the overwhelming majority of game states and
transitions have never been observed, a situation common
in open-ended educational environments.

In the analysis that follows, we primarily use player data
gathered from level 8 of Refraction, the first non-tutorial
level. This level was chosen because it was the non-tutorial
level for which we had the most data. The layout of the
level can be seen in Figure 1.

4. PREDICTIVE TASK
Our objective is to predict player behavior in the educa-
tional game Refraction, similar to how student models in
intelligent tutoring systems can be used to predict student
input. We now define some of the notation we use in the rest
of the paper. For a given level, our task is the following. Let
S be the set of all possible game states on the level. A game
state is a particular configuration of pieces on the board,
independent of time. Each player i in a set of players P of a
level goes through a series of game states. We are concerned
with predicting the next substantive move class the player
will try, so we preprocess the data to eliminate consecutive
duplicate states, leaving us with the list of player’s states,
Si,1, . . . , Si,mi . We define a set of collapsed states, C, and a
collapse function mapping S→ C. These are selected by the
designer to reduce states to features of interest, as in Table
1. For s ∈ S, define succ(s) to be the set of collapsed states
reachable in one action from s, i.e., succ(s) = {collapse(s′) |
s′ is reachable in one move from s}. The predictive model
M assigns a probability that the player will enter a col-
lapsed state depending on his history. Given player i’s

sequence of states up to time j ≤ mi, Si,1, . . . , Sj−1, we
want to predict the probability of them entering a col-
lapsed state at time j, Pr(collapse(Si,j) | Si,1, . . . , Si,j−1),
where

∑
c∈succ(Si,j−1)

Pr(c | Si,1, ..., Si,j−1) = 1. The to-

tal probability of the player’s sequence of states, Pi, under
the model is then Pr(Pi | M) =

∏mi
j=1 Pr(collapse(Si,j) |

Si,1, . . . , Si,j−1). The total probability of the set of players’
traces P is Pr(P |M) =

∏
i∈P Pr(Pi |M).

The choice of collapse is left up to the designer and depends
on the intended application. Prediction of player search be-
havior in a game with maze-like elements, for example, may
only require the model to predict where the player will move
to next. Or, a system designed to give mathematical hints
might only require a model capable of predicting the value of
the next fraction the player will produce. In Refraction, we
are primarily concerned with how the player will use pieces
and manipulate the laser. This gives us good, though in-
complete, overall information on their playing ability, and is
described in Table 1.

Figure 1: A game state from level 8 of Refraction,
on which we will perform most of our analysis. The
pieces are used to split lasers into fractional amounts
and redirect them to satisfy the target spaceships.
All ships must be satisfied at the same time to win.

Feature Value
Fringe lasers 2 1/2,East
Pieces used 1 W-NS, 2 S-E, 1 N-E, 1 W-N
Ship values satisfied (none)
Pieces blocking lasers Benders: 1 S-E
% coins satisfied 0.0

Table 1: The collapse function we use in Refraction,
applied to the state in Figure 1. States that share
all feature values are considered the same. Pieces
are listed as (input)-(outputs) in cardinal directions,
such that W-NS is a splitter with a westward input
and north-south outputs. Fringe lasers are those at
the edge of the laser graph either entering the wrong
kind of ship or not entering a piece at all.

5. METRICS
In this section we explain how we will evaluate the perfor-
mance of our predictive model. Our aim is to build models
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that accurately reflect how populations behave in Refraction
levels. We use a similar evaluation metric as [15] and [5] by
measuring the information content, in bits, of the population
under our predictive model. This number is easily calculated
as: I(P |M) = log2 Pr(P |M). We then compare the infor-
mation content of the data under our model as compared to
the information content of the data under a random model,

Compression(P | M) = I(P |M)
I(P |Random)

. In general, the goal

is to find M maximizing Pr(P | M), which corresponds to
minimizing Compression(P | M). We choose this metric
as it offers some interpretability, with 0 indicating perfect
ability to predict every move and 1 indicating no compres-
sion. This metric also retains the same meaning and scale
regardless of the number of players. Unless otherwise stated,
all evaluations of goodness of fit are done with 5-fold cross-
validation on 1000 players, drawn at random from players
from the website Kongregate from a period of August 2011
to September 2012.

6. HYBRID BEHAVIOR PREDICTOR
Here, we describe the three portions of our hybrid predic-
tive model and describe the conditions under which each
is used. Each individual method has different benefits and
drawbacks and is suitable at a different level of data. We use
a combination of them to keep all their benefits, giving us
good predictive power, interpretability, and generalizability.
At the end, we describe the full model in detail.

6.1 Markov
Collaborative filtering models, which search for similar play-
ers and use their data to predict the behavior of new players,
are an attractive approach for our problem space because
they are data-driven and model-free. There are a number of
methods for determining the similarity of two players. We
describe and compare two methods: a simple Markov model
with no knowledge of player history and a model with full
awareness of player history.

In the simple Markov model, we compute the probability of
a state transition based only on the player’s current state.
To estimate these state transitions, we use our prior data,
aggregating together any examples which start in the same
initial state. To prevent the probability of a player from go-
ing to 0 when they make a transition that we have not seen
before, we add a smoothing parameter r. With r probability,
the player will choose between the possible successor states
succ(Si,j−1) randomly, and with the remaining 1 − r prob-
ability, the player will move according to the Markov model
as outlined above. We empirically determine that the best
performance is achieved with r = 0.3.

One weakness of this similarity metric is that it ignores
player history. We also attempted other collaborative fil-
tering models. For example, we could consider using only
the transitions from other players with the same full history
of moves on that level when issuing predictions, reverting
to Markov if data is sparse. In the limit of infinite data, we
would expect this model to outperform all others based only
on order of visits to game states.

We found, however, that the performance of the second
history-aware model is worse than the performance of the

simple Markov model. The comparison is shown in Figure
2. The underlying issue is that for most observed paths, no
previously observed player has followed the exact same path
of results. The history-aware model can perform no better
than random in these cases. After experimenting with sev-
eral different collaborative filtering-based models, we settled
on the pure Markov model as the most straightforward and
accurate approach, achieving a base compression of 0.756.
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Figure 2: Effect of collaborative filtering models
where players are non-Markovian. We create a hy-
brid model where we first attempt to find similar
players under exact path matching, and if there are
fewer than n of them, we consult a simple Markov
model instead. The Markov model is the same or
better at predicting player moves.

6.2 State Aggregation
In the limit of infinite data, we would expect the Markov
model to outperform all other methods that make the same
assumption that players are history-free. However, the
amount of data required for good performance can be quite
high. In our case, this problem is compounded by the fact
that puzzle game state spaces are difficult to search by de-
sign. As a result, most states are visited infrequently, as is
shown in Figure 3. It is challenging to predict how new play-
ers will behave when they reach these uncommonly-visited
states.

One way to address this data sparsity problem is to aggre-
gate data from states that are similar, and use this aggre-
gated data to make predictions. This requires only a mi-
nor modification to the original Markov model: instead of
looking at the distribution of transitions from the player’s
current state, we look at the distribution of transitions from
all states similar to the player’s current state. Here, we use
collapse to find similar states, though the designer could
substitute other functions if desired. To determine when to
use this state aggregation approach, we introduce a back-
off parameter ba. When a state has been visited by fewer
than ba players, we switch from the Markov model to the
aggregation model.

The aggregated states are not exactly the same as the cur-
rent state because the collapse function throws away some
amount of useful data. Thus, we would expect this approach
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Figure 3: Many moves occur in locations where we
have little data, even with 1000 players.
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Figure 4: Selection of ba, the backoff parameter con-
trolling when to consult transitions from all similar
states instead of exact states.

to be most beneficial when data is extremely sparse, and
become progressively less beneficial as we gather more data.
This is exactly the effect we observe, as seen in Figure 4.
In general, the best value of ba depends on the similarity of
player’s traces through the state space. For Refraction, the
optimal value is ba = 4. The overall compression drops from
0.756 to 0.682 when using an approach that combines state
aggregation and the Markov model, compared to using the
Markov model alone. Applying state aggregation blindly in
all cases erases most of the improvement and results in a
compression of 0.732, so it is important to tune this param-
eter correctly.

6.3 Player Heuristic Search
Both of the previously described models have certain ad-
vantages. They both require minimal designer input: state
space and transition functions for the Markov model, and a
similarity function for the aggregation model. Both models
also only improve as more data is gathered. Unfortunately,
these methods also have two significant drawbacks: they
perform poorly when there is very little data available, and
they have parameters that are difficult to interpret. An ed-

ucator trying to determine whether a game level teaches a
particular math strategy, for example, would have difficulty
learning this from the transition probabilities of a graph with
tens of thousands of states.

In order to address these shortcomings, we use a method
that models how players explore the game space in cases
where data is particularly sparse. We assume that play-
ers are heuristically-guided probabilistic searchers. This as-
sumption is reasonable given that players are attempting to
solve fraction puzzles which are fun precisely because the
solution is not obvious. This allows us to utilize informa-
tion from every game state and generalize that information
to new states. In comparison, the Markov with state aggre-
gation approach can only utilize data from similar states.
We expect this heuristic search approach to be most effec-
tive when data is scarce. Since the search model is only
an approximation of player behavior, this method will be-
come worse relative to the Markov with state aggregation
approach as data become more plentiful, since the Markov
approach has the power to precisely fit player behavior with
enough data.

We provide a brief summary of the player heuristic search
algorithm here, but for a full formalization of the algorithm
please refer to Jansen et al. [15]. Note that we make a few
modifications to the Jansen algorithm, described below. Our
search algorithm assumes that users select moves by follow-
ing a heuristic function v, which determines the likelihood
that a player will visit a particular collapsed state. The func-
tion v is a weighted linear sum of simple designer-specified
functions a1, . . . , an that operate on collapsed states c ∈ C:
v(c) =

∑n
k=1 λkak(c). Players, when they make a move,

apply the heuristic to each possible collapsed successor in
c ∈ succ(Si,j−1) and assign it probability mass ev(c) to pre-
vent negative probabilities, given by (1).

Pr(collapse(Si,j) | Si,j−1, λ1, . . . , λn) =
ev(collapse(Si,j))∑

i

ev(Ci)

(1)
We optimize the weights λk to maximize the log-likelihood
of the data using Covariance Matrix Adaptation: Evolution-
ary Strategy, an optimizer designed to run on noisy functions
with difficult-to-compute gradients [14]. Our algorithm dif-
fers from the original in that both the possible successor
states and the state that the heuristic operates on are col-
lapsed states, since we want to predict the general type of
move players will make rather than their exact move. As
before, we also introduce a backoff parameter bh. When
searching for transitions from aggregated players, if there
are fewer than bh datapoints, we switch from the Markov
with aggregation model to the heuristic model. Empirically
we discover that the optimal value is achieved at bh = 4.

The base heuristics a1, . . . , an are designer-specified, and
should reflect the components of the game that players pay
attention to while choosing between moves. The heuristics
we use for Refraction are listed in Table 2. In practice, the
selection of heuristics is closely related to the definition of
the collapse function used to project raw game states in the
prediction task, since both are chosen according to the game
features that the designer views as important.
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Table 2: Basic heuristics and values in Figure 1

Heuristic Value in above state
% ships satisfied 0
% ships matching fringe laser values 1
% pieces used 5/6
% pieces blocking lasers 1/6
% coins satisfied 0

The model of player heuristic search allows us to predict
subsequent moves even when a player is visiting a state that
has never been seen before. Furthermore, the weights λk

that are optimized in this model are interpretable; they tell
us how the population of players values each of the game fea-
tures defined in the heuristics a. This information can help
designers learn about their games, as described in Section 8.

6.4 Full Hybrid Model
Tying all the components together, we now provide a de-
scription of the full hybrid prediction model for Refraction,
which combines the simple Markov model, state aggregation,
and player heuristic search.

1. Assume a player is currently in state sa.

2. Consult the Markov model for all other players’ tran-
sitions to collapsed states from state sa. If there are ba
or more transitions, predict the observed distribution
with the random action smoothing parameter of r.

3. Otherwise, apply the state aggregation function to all
the nodes in the graph, and count all transitions from
all states with collapsed value collapse(sa). If there are
bh or more transitions, take the observed distribution,
remove any states impossible to reach from sa, and
predict the resulting distribution smoothed by r.

4. Otherwise, apply the heuristic with parameters learned
from the training set to each of the successors using
Equation (1) to get the probability of each transition.

7. EXPERIMENTS
We now evaluate the performance of our predictive model.
The performance of the full backoff model, from Markov to
state aggregation to player heuristic search depending on
the available data, is shown in Figure 5(a). Some features
of the graph are worth noting.

• The full model is superior to any of the individual mod-
els at nearly all tested levels of data, with the Markov
with state aggregation a close second.

• The data-driven approaches continuously improve as
more data as added.

• The heuristic function is superior at the start, but
its performance does not improve very much as more
players are added. This is almost certainly because
the model makes very strong assumptions about how
players behave that allow it to take advantage of ex-
tremely sparse data; however, because the model is not
completely accurate, it contains inherent bias that no
amount of data will remove.

• The gap between Markov, Markov with state aggrega-
tion, and the full backoff model narrow as the amount
of data increases. As we gather more players, the
amount of probability mass on players in uncommonly
visited states shrinks, so the Markov model is used to
predict player behavior in more and more situations.

While the heuristic portion of the model seems to offer only
incremental improvements, its true power can be seen when
we attempt to generalize our models to future levels, as
shown in Figure 5(b). Using 1000 players, we first learn
heuristic parameters from level 8. We then use the learned
heuristic to predict player behavior on levels 9, 10, and 11,
comparing these to a Markov with state aggregation model
trained on level 8. To get a sense of what “good” perfor-
mance might look like, we also train player search heuristics
and full models learned on the transfer levels and evalu-
ate their compression values with 5-fold cross-validation as
usual. We note some features of the graph here.

• We see immediately that the Markov with aggregation
portion of the model has no generalization power at
all. The state space and possible transitions via succ
are completely different on future levels, so it’s impos-
sible to find similar players and use their transitions to
predict moves later on.

• The heuristic portion of the model, on the other hand,
allows it to predict what players will do in future levels.
When compared to full models fit directly to player
data from those levels, it is very good at predicting
behavior on level 9, somewhat good at predicting be-
havior on level 10, and not very good at predicting
behavior on level 11. Educational games are explicitly
designed to teach players new and better strategies as
they play, so we would expect performance to decrease
over time.

• In addition, we can see that by level 11 even a heuristic
trained on player data from that level is losing power.
This means that the features of the state space play-
ers pay attention to is no longer being captured by the
component heuristic functions a1, . . . , an. As the game
introduces new concepts such as compound fractions,
equivalent fractions, and fraction addition, players will
need to pay attention to more features of the state
space than are represented in our choice of a1, . . . , an.
This speaks to the importance of choosing these com-
ponent heuristics for the method’s performance.

We caution that the generalization power of our model in
these open-ended learning domains can only reasonably be
expected to be high for the next few tasks and will be poor
if those tasks have radically different state spaces from the
training tasks. These caveats notwithstanding, these are
promising results that suggest the learned heuristic cap-
tures something fundamental about how players navigate
the search space of a Refraction level. This might allow de-
signers to guess how players at a certain point in time will
behave on levels without needing to release updated versions
of the game, or allow educators to simulate and evaluate user
performance on assessment levels without needing to inter-
rupt player engagement by actually giving these tasks.
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Figure 5: Performance and generalization power of our model. The full model is superior to the other models
at most amounts of data. In addition, the full model learned from level 8 data is able to generalize to predict
behavior in future levels due to the heuristic component.

Table 3: Heuristic parameters learned on different player populations

Population % ships % ships matching % correct pieces % incorrect pieces % coins Compression
Kongregate 2.529 0.116 0.317 -13.391 0.937 0.782
BrainPOP 1.868 -0.149 1.584 -8.527 0.665 0.862

8. INTERPRETABILITY
One of the key drawbacks of model-free methods are that
their results are extremely difficult to interpret, even for
experts. The Markov model with state aggregation suffers
from this problem, as it is essentially a black box that pre-
dicts distributions of transitions. The learned heuristic pa-
rameters, on the other hand, offer some glimpses into player
behavior. We demonstrate this capability by analyzing some
ways in which players differ between two populations. The
first is Kongregate, a website whose main demographic is
age 18-24 males [2], whose data we have been using up un-
til this point. The second is BrainPOP, a website aimed at
schools whose main demographics are children and middle-
aged women (who are likely teachers) [1]. We learned heuris-
tic weights on 1000 randomly selected players from each
population, shown in Table 3. The goal is not to study
how different populations interact with educational puzzle
games, so we will not dwell on these results; we simply want
to show how these parameters can lead to interesting hy-
potheses about player behavior.

Two interesting differences are immediately apparent based
on these parameters. First, Kongregate players have a
stronger negative weight on states with incorrectly used
pieces as compared to BrainPOP players, suggesting they
are less prone to placing pieces incorrectly. Second, Brain-
POP players seem more interested in merely placing pieces
down given the relatively high weight on used pieces pa-
rameter. Given that they also compress more poorly, one
possible explanation is that they have less coherent plans
and so place pieces more randomly. These hypotheses can-
not be verified merely by looking at the heuristic values,
but are sufficiently concrete that we can now run statistical

tests to check their validity. For the following analyses, we
use the non-parametric Wilcoxon rank-sums test due to the
non-normality of our data. As we perform two tests on a
dataset after learning parameters from that same dataset,
we use the Bonferroni correction to avoid false positives;
thus the threshold significance value is set at α = 0.025. We
report effect sizes as r values, with 0.1 considered small, 0.3
medium, and 0.6 large.

To see if Kongregate players understand piece directional-
ity better than BrainPOP players, we assign to each player
the proportion of piece placements such that a laser hits the
dropped piece from an incorrect side. We discard players
who place no pieces. We find a statistically significant effect
of Population on Proportion Drops Incorrect (W=728148,
Z=-18.06, r=0.4, p <0.0001), with Kongregate players hav-
ing a median 0% incorrect drops (N=973) and BrainPOP
players having a median of 12% incorrect drops (N=969).

Next, to see if BrainPOP players act with less foresight,
we ask how often players make a move, only to take it
back immediately. More precisely, for a player who tra-
verses states sa, sb, sc, sb, sc, sa, we look at all the triples
of moves: (sa, sb, sc), (sb, sc, sb), (sc, sb, sc), and (sb, sc, sa).
We then assign to this player the proportion of triples in
which the first and third state are the same, discarding play-
ers who visit fewer than three states. We find a statisti-
cally significant effect of Population on Proportion Take-
backs (W=651589, Z=-23.35, r=0.53, p < 0.0001), with
Kongregate players having a median of 13% takeback moves
(N=968) and BrainPOP players having a median of 32%
takeback moves (N=971).
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These analyses show that the learned parameters in our hy-
brid model can be valuable tools for game designers, edu-
cators, and researchers for analyzing how populations use
their systems. For instance, because Kongregate players are
primarily adults and BrainPOP players are primarily chil-
dren, we might wonder if children have more difficulty un-
derstanding piece directionality and spatial reasoning and
plan their moves less carefully than adults do. A researcher
might attempt to generalize these results to other strategic
tasks, while a game designer might create a different version
of Refraction with easier levels, fewer pieces, and clearer
graphics for children. Either way, the learned parameters
are a useful tool to help understand how players behave.

9. CONCLUSION
Predicting player behavior in open-ended learning environ-
ments is an interesting and complex problem. This ability
could be used for a host of automatic applications to bolster
engagement, learning, or transfer. In this paper, by using a
combination of data-driven and model-based approaches, we
presented a “best-of-all-worlds” model able to predict player
behavior in an educational game. First, our hybrid model’s
performance is better than any individual component’s. Sec-
ond, the learned weights of the sub-heuristics are human-
readable and can give insights into how players behave. We
used these parameters to formulate hypotheses about how
two populations behave differently and confirmed them with
strong statistical results. Finally, we demonstrated how the
heuristic portion of the model allows us to generalize and
predict how players will behave on levels in which we have
no data at all, opening the door to many adaptive applica-
tions involving problem ordering and choice.

There are many possible avenues for future work. On a
lower level, we could use more powerful collaborative fil-
tering models taking advantage of timestamps in order to
find similar players. Automatic generation of state aggre-
gation functions and autotuning the ba and bh parameters
would remove the need for some expert authoring. On a
higher level, trying the same method on other open-ended
educational environments, not necessarily games, could tell
us how well the method generalizes. Using the model for
applications such as dynamic hinting systems just when we
predict players will quit or make egregious errors could in-
crease player engagement and learning. Finally, the ability
to estimate behavior on future, unseen problems could be
used to increase transfer by selecting tasks which specifi-
cally target incorrect strategies or concepts we believe the
player has, reflected in the heuristics they use.
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ABSTRACT 

In this paper, we use sensor-free affect detection [4] and a 

discovery with models approach to explore the relationship 

between affect occurring over varying durations and learning 

outcomes among students using Cognitive Tutor Algebra. 

Researchers have suggested that the affective state of confusion 

can have positive effects on learning as long as students are able 

to resolve their confusion [10, 22], and recent research seems to 

accord with this hypothesis [17]. However, there is some room for 

concern that some of this earlier work may have conflated 

frustration and confusion. We replicate these analyses using 

sensor-free automated detectors trained to distinguish these two 

affective states. Our analyses suggest that the effect may be 

stronger for frustration than confusion, but is strongest when these 

two affective states are taken together. Implications for these 

findings, including the role of confusion and frustration in online 

learning, are discussed. 

Keywords 

Affect, confusion, frustration, affect sequences, affect detection, 

learning outcomes, discovery with models, affective persistence 
 

1. INTRODUCTION 
Affect has become an area of considerable interest within research 

on interactive learning environments [1, 10, 11, 18, 23]. Though 

findings relating boredom and engaged concentration to learning 

have largely accorded to prior hypotheses, there have been 

surprising patterns of results for other affective states, with 

unstable effects for confusion between studies and often no effects 

for frustration [7, 21]. 

However, many of these early studies investigated overall 

proportions of affective states, rather than considering the 

potential differential impacts of affect manifesting in different 

ways. It may be important to consider the multiple ways a specific 

affective state can manifest, especially considering that there can 

be considerable variance in how long an affective state lasts [8], 

affect may be influenced by behavior and vice-versa [3, 5] and 

some affective states may not be unitary in nature (for example, 

[12] refers to “pleasurable frustration,” which is presumably 

different in nature than the non-pleasurable frustration often 

discussed in the research literature). 

This puzzle is of particular interest for the affective state referred 

to as confusion. While relationships between boredom and 

learning, and engaged concentration and learning, often follow 

hypothesized patterns [7, 21], confusion appears to manifest in 

unstable ways across studies. For example, while [7] and [9] find 

a positive relationship between confusion and learning, with an 

experimental intervention in the case of [9], [21] finds a negative 

relationship. Frustration, somewhat surprisingly, routinely does 

not appear to be correlated with differences in learning outcomes 

[7, 21]. 

One possibility is that these results — particularly the results for 

confusion — may be based on insufficient information.  That is, 

the overall prevalence of an affective state may not accurately 

predict its impact; how it manifests matters. As [22] notes, 

students who become confused may either deliberate until they 

resolve their confusion or become hopelessly “stuck” in 

unresolved confusion; the former situation has been hypothesized 

to help learning while the latter undercuts student achievement 

[22]. As such, the duration of a student’s state of confusion may 

be meaningful. Under this hypothesis, the longer a student 

remains confused, the less likely they are to resolve that confusion 

[22]. [10] suggests that confusion may have a dual nature when 

considered as an affective state: it is possible for it to trigger either 

persistence (engagement) or resistance to the learning process. 

These hypotheses were investigated in Lee et al. [17], who 

analyzed students’ affect over time as the students learned 

introductory computer programming. Lee and colleagues broke 

down students’ compilation behaviors within this context into 

sequences of 8 compilations within the learning software, and 

used text replays [2] to label student behavior in terms of whether 

the student was thought to be confused. They then developed a 

data-mined model based on these labels, and distilled its outputs 

into sequences of two or three consecutive affective states 

(confused or not confused). They then correlated each student’s 

proportion of these sequences with the student’s mid-term exam 

scores. This test was given after the learning activity studied. 

Lee et al. found evidence that short-term confusion that resolves 

seems to impact learning positively, whereas prolonged confusion 

affects learning negatively [17]. They found a fairly strong 

negative relationship between prolonged confusion (three 

measurements of confusion in a row) and learning (r=-0.337), 

while students who had brief periods of confusion followed by 

extended periods where the student was not confused had more 

positive learning (r=.233). 

The results in [17] are intriguing, and show the benefits of this 

type of fine-grained analysis. However, there are some limitations 

to this study that may reduce confidence in its findings and 

therefore call for replication and clarification. (These limitations 

 

 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 114



www.manaraa.com

were pointed out by the anonymous reviewers at the time of 

submission of [17]). One key potential limitation was that the 

operational definition of confusion used in [17] differs 

substantially from that used in prior research on affect and 

learning [3, 7, 21]. In [17], clips were coded as confused based on 

extended student difficulty, for example when a student failed to 

resolve an error on several consecutive programming 

compilations. It is not clear that these inferences capture 

confusion in the same sense that is traditionally described in the 

affect literature. In particular, this behavior and other aspects of 

the operational definition of confusion in [17] may have 

incorporated instances of frustration as well as confusion.  This 

potential limitation was due to the approach used to label 

confusion; the human coders in [17] inferred and hand-labeled 

affect solely from a fairly limited subset of the information 

available in log files, as opposed to the field observations or video 

observations used in other work, each of which leverage more 

information to discriminate affect. While the text replay method 

has been shown to be reliable for inferring behaviors [2, 24], its 

use in affect labeling is relatively more experimental and may be 

more open to question. 

Another limitation in this early work is that the measure of 

learning used (a mid-term exam) was not grounded in any 

measure of students’ knowledge prior to the learning activity. As 

such, this work assumes that specific affective patterns led to 

student success, but it is equally possible that student prior 

knowledge led both to those affective patterns and to high scores 

on the mid-term. 

In this paper, we build on this work, replicating it but extending it 

to address these concerns by incorporating models specifically 

tailored to distinguish confusion and frustration and by adding a 

pre-test. By doing so, we can better understand the relationship 

between duration of affect and student learning outcomes. In these 

analyses, we consider confusion and frustration taken 

independently, as well as the union of these two affective states 

(which in our current view may have been what was assessed in 

[17]). 
 

2. METHODS 

2.1 Tutor Studied 
The learning system used in this study was Cognitive Tutor 

Algebra I, an interactive learning environment now used by 

approximately 500,000 students a year in the USA. The students  

 
Figure 1: The Systems of Equations A lesson, from 

Cognitive Tutor Algebra I, used in this study. 

in this study used a lesson on systems of algebraic equations as 

part of their regular mathematics curriculum. In Cognitive Tutors, 

students solve problems with exercises and feedback chosen based 

on a model of which skills the student possesses. Cognitive Tutor 

Algebra has been shown to significantly improve student 

performance on standardized exams and tests of problem-solving 

skill [14]. 

2.2 Data Set 
Data were collected from 89 students in rural Western 

Pennsylvania (the data presented here was also discussed in [4], 

where affect detectors were presented for this data; these affect 

detectors are in turn used in this paper, in “discovery with 

models” analyses). Compared with the state’s average, students at 

this high school had a higher average on the PSSA standardized 

exam, were less likely to be a member of ethnic minority group, 

and were less likely to be eligible for free or reduced-price lunch. 

They were well-balanced for gender. 

Each student in this study participated in a learning session using 

the Systems of Equations A lesson of Cognitive Tutor Algebra, 

which focuses on learning to graph and solve systems of 

equations. Each student used the tutor software for two class 

sessions. Tutor activities were preceded and followed by pre-test 

and post-test measures of learning. (Four students who did not 

complete all three of these activities were later excluded.) The 

average pre-test score was 75.2% (SD = 25.3%), and the average 

post-test score was 79.8% (SD = 23.5%). 

During the learning session, two expert field observers coded 

students’ affect following the protocol outlined in [19]. Within 

this protocol, holistic observations are conducted based on a 

combination of facial expression, posture, actions within the 

software, context, and other factors. Confusion and frustration are 

distinguished, with a key difference being that frustration involves 

negatively-valenced affect often combined with expressions of 

dissatisfaction or anger, whereas confusion is a less negative 

experience. Though the two states are relatively similar 

conceptually, typically they have not been challenging for 

observers to distinguish within this protocol; boredom and 

confusion have more often been the source of disagreement 

between coders [19]. Observations are conducted in a pre-

determined order, with an approach designed to minimize 

observer effects and to sample evenly across students during the 

period of observation, both in terms of number of observations per 

student, and the time when observations occur. 

After field observations were collected, they were synchronized 

with features distilled from interaction log data, and detectors 

were constructed and validated for several affect categories, two 

of which (confusion and frustration) will be used in this study. 

Complete detail on the automated detectors is given in [4]. In 

brief, the frustration detector was generated at using the REPTree 

algorithm, achieving a Kappa of 0.23 and an A’ of 0.64, under 

student-level cross-validation. The confusion detector was 

produced using JRip, achieving a Kappa of 0.40 and an A’ of 

0.71, under student-level cross-validation. Note that the values of 

A’ given here are lower than in [4]; these represent the exact same 

detectors, but the values of A’ given in that earlier work were 

computed using the implementation in RapidMiner 4.6, which 

was afterwards discovered to be buggy. The values given here are 

re-computed using the Wilcoxon interpretation of A’ rather than 

the AUC interpretation, using code at 

http://www.columbia.edu/~rsb2162/computeAPrime.zip. 
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In the study presented in the current paper, automated detectors 

were used in order to achieve repeated measurements of a 

student’s affect over relatively brief periods of time, while 

avoiding observer effects (although the protocol in [19] is 

designed to be non-intrusive, and to reduce observer effects, 

continually observing a student over extended periods of time 

increases the probability that the student will notice that they are 

being observed and change their behavior). Labels were generated 

by automated detectors at the level of 20-second intervals of 

student behavior, termed clips. The grain-size of 20-seconds was 

selected because this matches the original length of the field 

observations used to create the detectors. Problem boundaries and 

other events were not considered when clips were created. While 

it could be argued that it is better to avoid allowing clips to extend 

across problem boundaries, affect may extend across these events, 

and avoiding these transitions may give a less representative 

picture of overall student affect. A total of 29,777 clips were 

generated across the students’ use of the tutoring software. 

Three applications of these detectors are studied.  The first 

application uses only the confusion detector, labeling clips as 

either confused (C) or not (N), splitting students based on a 50% 

confidence cut-off. The second application uses only the 

frustration detector, labeling clips as either frustrated (F) or not 

(N), also splitting students based on a 50% confidence cut-off. 

The third applies both detectors simultaneously, and considers a 

clip as confused/frustrated (referred to as A for “Any” below) if 

either detector had confidence over 50%.  This third application, 

in our view, may map best to the approach taken in [17]. 

Once clips were labeled, they were segmented into sequences of 

three consecutive states.  These sequences were chosen to be 

comparable to the 3-step sequences in [17], but represent a finer 

level of granularity because of the shorter duration of clips in this 

work (20 seconds versus 8 compilations, which can take several 

minutes). Potential sequences for each application are included 

with their frequencies in Tables 1-3. 

 

Table 1. Possible Sequences for Confusion, with 

Frequencies (%) 

 

 

Table 2. Possible Sequences for Frustration, with 

Frequencies (%) 

 

 

Table 3. Possible Sequences for “Any” (Unified 

Confusion/Frustration), with Frequencies (%) 

 
 

Once detectors were applied, the relative frequency of each 

sequence was compared to several learning measures, including 

pretest scores, posttest scores, and the difference between the two. 

Because the number of tests introduces the potential of spurious 

effects, the Benjamini & Hochberg (B&H) adjustment [6] is used 

as a post-hoc control. This method does not guarantee each test’s 

significance, but it does guarantee a low overall proportion of 

false positives, while preventing the substantial over-

conservativism found in methods such as the Bonferroni 

correction [cf. 20]. 

In this study, we consider two levels of baseline statistical 

significance (α=0.05 or 0.1) for the Benjamini & Hochberg 

adjustment. The 0.05 level reflects full statistical significance, 

whereas 0.1 reflects marginal significance. Within the B&H 

adjustment, each test retains its original statistical significance, 

but the α value cutoff for significance changes depending on the 

order of the test in significance among the tests run. For 

understandability, adjusted significance cutoffs are given in tables 

below for all tests run. 
 

3. RESULTS 

3.1 Duration of Affect and Learning Gains 
In this section, we compare the relative frequency of sequences of 

confusion and frustration to assessments of gains in student 

learning over time. Learning gains are computed as post-pre; the 

alternate metric of (post-pre)/(1-pre) is difficult to interpret when 

some students obtain pre-test scores of 100%, which were seen in 

this data set. In order to understand the importance of individual 

patterns, we apply separate significance tests for each pattern 

(with post-hoc controls as discussed below), rather than building a 

unitary model to predict learning gains from a student’s 

combination set of sequences. 

Results for confusion diverged considerably from what might be 

predicted based on previous research.  As shown in Table 4, only 

three of eight possible sequences showed marginal significance 

when correlated with confusion, and all of these effects 

disappeared after post-hoc controls were applied.  That is, 

contrary to theoretical predictions [10, 22], and the interpretation 

of the findings in [17], differences in sequences of affective state 

of confusion do not appear to be associated with learning gains in 

this data. 

 

Table 4. Confusion vs. Learning Gains (No results 

remain significant after post-hoc control)  

 
 

By contrast, frustration (Table 5) shows several correlations with 

learning gains that remain marginally statistically significant after 

post hoc adjustments. Interestingly, the patterns for frustration 

match those reported for confusion in [17]. Namely, extended (3-

step) periods of no frustration (NNN) are negatively correlated 

with learning gains. That is, 60 seconds without frustration 

NNN NNC NCN NCC CNN CNC CCN CCC 

93.78 1.91 1.74 0.23 1.84 0.09 0.23 0.16 

 

NNN NNF NFN NFF FNN FNF FFN FFF 

96.20 1.16 1.09 0.14 1.15 0.08 0.14 0.04 

 

NNN NNA NAN NAA ANN ANA AAN AAA 

90.25 2.94 2.70 0.41 2.86 0.20 0.40 0.24 

 

3-step 

- diff 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NNC 0.21 0.054
 
 0.00625 0.0125 

CNC 0.198 0.070
 
 0.0125 0.025 

NNN -0.181 0.097
 
 0.01875 0.0375 

NCN 0.179 0.101 0.025 0.05 

CNN 0.157 0.151 0.03125 0.0625 

NCC 0.149 0.173 0.0375 0.075 

CCN 0.131 0.231 0.04375 0.0875 

CCC -0.049 0.654 0.05 0.1 
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negatively impacts learning. Introducing one 20-second interval of 

frustration (as in NFN, NNF, FNN, and FNF) seems to improve 

learning outcomes (r=0.273, 0.25, 0.248, and 0.208, respectively), 

but this effect is reduced or eliminated if the sequence contains 

two intervals of frustration. Only one sequence with two intervals 

of frustration (FNF) remains marginally significant after post-hoc 

adjustment, but with a lower effect-size (r=0.208) than those with 

only one interval of frustration.  These results accord with those 

for confusion in [17]. 

As such, one possible explanation is that the construct primarily 

being inferred in [17] was frustration. The findings seen here 

match well if that assumption is made; they do not match well, if 

the codes in [17] genuinely reflected the affective state of 

confusion. We will discuss this possibility further in section 3.3. 

 

Table 5. Frustration vs. Learning Gains  

(Significant results are in dark gray; marginally 

significant results are in light gray) 

 
 

3.2  Duration of Affect and Pre-test/Post-test 
In the previous section, we saw evidence that brief frustration is 

associated with positive learning gains, but that lengthier  

 

Table 6. Confusion vs. Pretest Scores 

(Significant results are in dark gray; marginally 

significant results are in light gray) 

 

 

frustration is associated with poor learning gains. In this section, 

we break down the learning gain measure into its constituent 

parts, the student’s pre-test score and post-test score. Results 

shown in Tables 6-7 show that pretest scores can predict the 

frequencies of both confusion and frustration during the learning 

session. Specifically, lower pretest scores are more likely to co-

occur with sequences containing at least one instance of that 

particular affect (as in CNN, NCN, and NNC when only the 

confusion detector is applied in Table 6 or in FNN, NFN, or NNF 

when only the frustration detector is applied in Table 7). Similar 

effects are found for sequences where two instances of either 

affect have been detected (as in CCN and NCC, or FFN and NFF). 

Further, higher pretest scores correlate with higher frequencies of 

prolonged states of not-confused and not-frustrated (both of which 

are represented as NNN in Tables 6-7). All the significant r-values 

in Tables 6-7 remain significant or marginally significant after the 

post-hoc control. 

 

Table 7. Frustration vs. Pretest Scores 

(Significant results are in dark gray; marginally 

significant results are in light gray) 

 

Surprisingly, correlating the affective sequences to post-test 

scores shows essentially no relationships. As Tables 8-9 show, 

neither confusion nor frustration sequences are significantly 

correlated with posttest results. In other words, low pre-test results 

predict confusion and frustration will occur during the learning 

session, but presence of these affective states does not predict 

post-test performance.  These results suggest either that the tutor 

was effective at bringing all students up to mastery, or that there 

was a ceiling effect in test performance.   In other words, students 

who were confused or frustrated during the learning session 

because they began with low domain knowledge caught up to 

students who, because they began with high domain knowledge, 

experienced little confusion or frustration. However, it is notable 

that as was found when compared to learning gains and to pre-test 

results, confusion and frustration have the same pattern for post-

test results. 
  

3-step 

- diff 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NFN 0.273 0.011 0.00625 0.0125 

NNN -0.262 0.016 0.0125 0.025 

NNF 0.25 0.021 0.01875 0.0375 

FNN 0.248 0.022 0.025 0.05 

FNF 0.208 0.056 0.03125 0.0625 

FFF 0.174 0.111 0.0375 0.075 

NFF 0.136 0.215 0.04375 0.0875 

FFN 0.136 0.215 0.05 0.1 

 

3-step 

- pre 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NCC -0.295 0.006 0.00625 0.0125 

CCN -0.283 0.009 0.0125 0.025 

NNC -0.26 0.016 0.01875 0.0375 

NNN 0.255 0.018 0.025 0.05 

CNN -0.226 0.037 0.03125 0.0625 

NCN -0.195 0.074
 
 0.0375 0.075 

CNC -0.161 0.141 0.04375 0.0875 

CCC -0.005 0.967 0.05 0.1 

 

3-step 

- pre 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NNN 0.277 0.010 0.00625 0.0125 

NNF -0.273 0.011 0.0125 0.025 

FNN -0.27 0.012 0.01875 0.0375 

NFN -0.267 0.014 0.025 0.05 

NFF -0.231 0.033 0.03125 0.0625 

FFN -0.231 0.033 0.0375 0.075 

FNF -0.125 0.253 0.04375 0.0875 

FFF -0.02 0.854 0.05 0.1 
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Table 8. Confusion vs. Posttest Scores (No results 

remain significant after post-hoc control) 

 

Table 9. Frustration vs. Posttest Scores (No results 

remain significant after post-hoc control) 

 
 

3.3 Unifying Confusion and Frustration 
Confusion and frustration have some theoretical similarities, 

although they are often considered separately in affective 

research.  Both are affective states that occur when a student is 

struggling with difficult material and has not yet achieved 

understanding. As discussed earlier, one way to interpret the work 

in [17] is that their model of confusion may also have included 

instances of frustration. Hence it may be worth studying these two 

constructs in a unified fashion – treating them as if they are the 

same construct during analysis. Also, as discussed in previous 

sections, the relationships between confusion and learning, and 

frustration and learning, were qualitatively similar in our data set. 

They were of different magnitudes (frustration had higher 

correlations than confusion) but were generally pointing in the 

same direction. This trend also warrants a joint analysis of the two 

states. 

In order to do so, we applied both detectors (which operate 

independently) to the data at the same time. Any instance that was 

labeled as either confused (C) or frustrated (F) in previous 

sections was now labeled as “any” (A), including the rare 

instances where a single clip was labeled by the detectors as 

indicating both confusion and frustration. Instances of A are 

contrasted with instances where neither (N) affect was detected. 

Table 10 shows the correlations between learning gains and 3-step 

any/neither (A/N) sequences. 

 

Table 10. Correlations between 3-step “Any” sequences 

and Learning Gains. (Significant results are in dark 

gray; the marginally significant, in light gray.) 

 
 

Several findings from this analysis are similar to the findings 

presented earlier in this paper, but obtain higher correlations than 

are seen for confusion or frustration alone. Extended periods of 

“neither” (i.e., NNN) during the learning session are negatively 

correlated with learning gains (r = -0.279). All 3-step sequences of 

short term “any” (i.e., NNA, NAN, and ANN) are found to be 

positively correlated with learning gains, (r=0.295, 0.284, and 

0.262, respectively). Moreover, ANA, NAA, and AAN are found 

to be positively correlated at a marginally significant level 

(r=0.213, 0.204, and 0.19, respectively). 

Compared with the significant r-values of 3-step frustration and 

learning gains in Table 5, the r-values for “any” have larger 

magnitudes, meaning that combining confusion and frustration 

yields stronger correlations with learning gains than frustration 

does alone. 
 

4. CONCLUSION AND DISCUSSION 
In this paper, we discussed correlations between student test 

scores and sequences of two affective states—confusion and 

frustration—during learning with Cognitive Tutor Algebra. These 

affective states were studied both independently and in 

combination.  

A decade ago, key theoretical models of confusion and frustration 

during learning and interaction hypothesized that confusion leads 

to frustration [16] as part of a process where students fail to learn. 

In line with this theory, researchers suggested that identifying and 

responding to frustration was essential [13, 15]. However, 

research looking at overall proportions of student affect (e.g., 

confusion or frustration) found inconsistent patterns for confusion 

and null results for frustration (e.g., [7, 21], leading one paper to 

argue that frustration is significantly less important to learning 

than other affective states such as boredom [3]). 

Research that followed this suggested that the dynamics of affect 

over time might play an important role in learning outcomes. 

Confusion that led to frustration, for example, was hypothesized 

to lead to poorer learning outcomes than confusion that resolved 

[10, 22]. 

In this paper, we find a pattern that accords broadly with [17], 

where confusion and frustration are associated positively with 

learning for brief episodes and negatively for lengthy episodes. 

Somewhat contrary to expectations (but consistent with the work 

in [17]), this effect is strongest if the two affective states are 

considered together, and weakest if confusion is considered alone 

3-step 

- post 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

CCN -0.155 0.157 0.00625 0.0125 

NCC -0.147 0.180 0.0125 0.025 

NNN 0.068 0.539 0.01875 0.0375 

CNN -0.064 0.561 0.025 0.05 

CCC -0.061 0.579 0.03125 0.0625 

CNC 0.052 0.635 0.0375 0.075 

NNC -0.04 0.716 0.04375 0.0875 

NCN -0.005 0.966 0.05 0.1 

 

3-step 

- post 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

FFF 0.177 0.106 0.00625 0.0125 

FNF 0.102 0.351 0.0125 0.025 

NFF -0.093 0.396 0.01875 0.0375 

FFN -0.093 0.396 0.025 0.05 

NFN 0.025 0.822 0.03125 0.0625 

NNF -0.009 0.937 0.0375 0.075 

FNN -0.008 0.946 0.04375 0.0875 

NNN 0 1.000 0.05 0.1 

 

3-step 

- diff 
r p 

p cutoff 

(sig) 

p cutoff 

(marginal)  

NNA 0.295 0.006 0.00625 0.0125 

NAN 0.284 0.008 0.0125 0.025 

NNN -0.279 0.010 0.01875 0.0375 

ANN 0.262 0.015 0.025 0.05 

ANA 0.213 0.050
 
 0.03125 0.0625 

NAA 0.204 0.061
 
 0.0375 0.075 

AAN 0.19 0.081
 
 0.04375 0.0875 

AAA 0.01 0.931 0.05 0.1 
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(with frustration in the middle). This finding is not inconsistent 

with the prior literature (differing relations between frustration 

and learning based on the length of frustration are quite consistent 

with overall null effects) but does reinterpret it somewhat. 

One important limitation to the research presented here is that the 

length of the affective sequences differs from that found in [17], 

complicating comparisons between the two. It is known that 

different affective states often have different durations [8]. 

However, these durations are likely to be determined by the 

population and learning context as well. In other words, brief 

frustration in one context may be lengthy frustration in another. 

(This possibility may explain the similarity in results between this 

paper and [17]. Although the time per affective observation was 

different, the times used in each environment may have matched 

the general time for a student to make progress in the different 

environments, as computer programming is a more time-

consuming activity than completing highly scaffolded 

mathematics problems.) Understanding what the “tipping point” is 

between brief and lengthy confusion or frustration, in different 

contexts, may be a valuable step for future research. 

Overall, this paper’s results suggest that attempting to understand 

overall relationships between affective states and learning is prone 

to conflating multiple phenomena. Affective states are not unitary; 

it matters at minimum how long they are, it matters what follows 

them [23], and probably other factors matter as well (such as 

culture, for instance). Researchers have also considered the 

possibility of multiple types of frustration (for instance, [12] 

speaks of “pleasurable frustration”). Our results show temporal 

effects for frustration that are highly similar to those hypothesized 

for confusion, results that deserve more careful consideration in 

future research. Though a student’s overall degree of frustration 

has often been associated with null effects [e.g., 7, 21], it appears 

that frustration is associated with differences in learning when 

considered in a finer-grained fashion. It may be that the conditions 

that lead to both frustration and confusion (the struggle associated 

with learning material that is not immediately apparent) are 

necessary components of the learning process, and both 

frustration and confusion only become detrimental if a student is 

unable to reach resolution in an adequate time frame. It is also 

possible that frustration may be simply an outcome of the 

cognitive processes underlying these phenomenon, or even just a 

result of confusion being resolved or not resolved (e.g., different 

types or intensities or durations of confusion might trigger 

persistence or resistance, while varying lengths of frustration 

merely reflect these differences). The similar patterns between 

confusion and frustration raise questions about whether the best 

theoretical split is even between confusion and frustration, or 

whether we should instead move to comparing brief-confrustion, 

extended-confrustion, and perhaps pleasurable-confrustion 

(alternate terms for the affective state combining confusion and 

frustration are welcome). Work to understand and model these 

affective states in their full complexity will be an essential area of 

future research. These endeavors will be supported by the advent 

of data-mined models, such as the ones used here, that can 

identify affect in a fashion that is both fine-grained and scalable. 
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ABSTRACT 

Large amounts of data are generated while students interact with 

computer based learning systems. These data can be analysed 

through data mining techniques to find patterns or train models 

that can help tutoring systems or teachers to provide better 

support. Yet, how can we exploit students’ data when they 

perform small-group face-to-face activities in the classroom? We 

propose a novel approach that aims to address this by discovering 

the strategies followed by students working in small-groups at a 

multi-tabletop classroom. We apply two data mining techniques, 

sequence and process mining, to analyse the actions that 

distinguish groups that needed more coaching from the ones that 

worked more effectively. To validate our approach we analysed 

data that was automatically collected from a series of authentic 

university tutorial classes. The contributions of this paper are: i) 

an approach to mine face-to-face collaboration data unobtrusively 

captured at a classroom with the use of multi-touch tabletops, 

and ii) the implementation of sequence mining and process 

modelling techniques to analyse the strategies followed by 

groups of students. The results of this research can be used to 

provide real-time or after-class indicators to students; or to help 

teachers effectively support group learning in the classroom.  

Keywords 

Collaborative Learning, Sequence Mining, Process Mining, 

Interactive Tabletop, Classroom 

1. INTRODUCTION 
Collaborative face-to-face activities can offer particular 

advantages compared to computer-mediated group work [17]. 

These include a natural channel for both verbal and non-verbal 

communication, improved perception of quality of group 

discussions, and an increased productivity in completing tasks 

[17, 18]. The classroom is a common environment in which the 

teacher can foster face-to-face collaboration skills acquisition by 

making use of small-group activities [8]. However, even in small-

group activities, it is challenging for teachers to provide students 

the attention that they may require and be aware of the process 

followed by each group or their individual contributions [21]. 

Commonly, teachers try to identify the groups that work 

effectively to leave them work more independently and be able to 

devote time to groups needing their attention.  

Multi-user shared devices, such as interactive tabletops, provide 

an enriched space where students can communicate face-to-face 

with each other and, at the same time, interact with a large work 

area that has access to digital content and allows the creation of 

persistent artefacts [14]. Interactive tabletops may afford new 

possibilities to support learning but they also introduce 

additional challenges for a new space of interaction. In order for 

these tabletops to be integrated into the classroom, as with any 

emerging technology, they should provide additional support to 

teachers compared with what they can currently do without such 

technology [4]. Currently, these devices are making their way 

into the classroom in the form of multiple interactive tabletops 

that have the potential of providing teachers with new ways to 

control groups [1, 11]; plan and enact authentic collaborative 

activities [10]; and monitor students’ progress [5, 11]. 

At the same time, the increasing usage of technology for learning 

and instruction has made it possible to collect students’ traces of 

activity resulting in large amounts of data gathered while they 

interact with computer based learning systems. These data can be 

analysed through data mining techniques to find patterns or train 

models that can help tutoring systems or teachers to provide 

enhanced support [3]. Although there is substantial research 

work on mining students’ data obtained from individual or online 

learning systems, there is still little research on automatically 

exploiting the data generated when learners perform small-group 

face-to-face activities in the classroom. 

A slightly hidden potential of interactive tabletops is that they 

can open new opportunities for capturing learners’ digital traces 

of activity, offering teachers and researchers the possibility to 

inspect the process followed by students and recognise patterns 

of group behaviour [12]. This paper presents a novel approach 

that focuses on analysing face-to-face collaboration data to 

discover the strategies that distinguish groups that need more 

coaching from the ones that work effectively.  

To validate our approach we analysed data that was 

automatically and unobtrusively collected from authentic 

tutorials that covered part of the regular curricula of a university 

subject in the area of Management. The teacher designed a 

small-group collaborative activity, based on the concept mapping 

learning technique, using our multi-tabletop classroom 

environment called MTClassroom [11]. This allows multiple 

small-groups of students to work around a number of interactive 

tabletops, perform a series of tasks, discuss a topic and provide a 

solution to a case proposed by the teacher. The system 

automatically logs identified students’ actions on the shared 

device and all the steps that groups performed to build a 

collaborative artefact. We describe the application of two data 

mining techniques. First, we used a sequential pattern mining 

technique to look for patterns that can help find differences 

between groups according to the teacher assessment. Then, we 

used the Fuzzy Miner tool [6] to discover the processes most 

often followed by both high and low achieving groups. The main 

contributions of this paper are: i) an approach to mine face-to-

face collaboration data unobtrusively captured at a classroom 
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Figure 1. MTClassroom: a multi-tabletop classroom with 

capabilities for capturing differentiated students’ activity. 

 

with the use of multi-touch tabletops, and ii) the implementation 

of sequence mining and fuzzy modelling techniques to analyse 

and discover strategies followed by groups of students.  

The paper is structured as follows. The next section describes the 

state of research on the areas of interactive tabletops in the 

classroom and data mining for collaborative learning. Then, we 

present details of the multi-tabletop tutorials and our technical 

infrastructure. Section 4 presents the motivation and design of 

study. Section 5 describes the data pre-processing and the 

methods. Section 6 presents a discussion of the results. Section 7 

states the conclusions and the avenues for future research.  

2. RELATED WORK 
There is a steady growth of the usage of tabletops in education. 

More specifically, there are a number of research projects that 

have used multiple tabletops or shared devices in the classroom. 

One of these is Synergynet [1], a multi-tabletop setting that has 

served to study the ways school kids collaborate and interact to 

achieve group goals. This project also included the design of 

tools for the teacher to control the classroom activities. Another 

approach was proposed by Do Lenh [5], who developed a setting 

for training on logistics, that consisted of four tangible horizontal 

devices that could be orchestrated by the teacher using paper-

based commands or through a remote computer. This project also 

offered minimalist indicators of progress of each small group 

presented at a wall display. Even though these two previous 

projects included real students and teachers, they were mostly 

designed and deployed as experimental scenarios. A different 

approach was followed by Martinez-Maldonado et al. [10], who 

presented a multi-tabletop system that permitted teachers to 

assess the design and enactment of their planned classroom 

activities through the use of analytics tools. This is the only 

previous work that has focused on exploiting the collected data 

from a multi-shared device environment to describe the activities 

that occur in an authentic classroom.  

In the case of data mining applied to collaborative settings, the 

closest study to ours was presented by Martinez-Maldonado et al. 

[12]. It consisted in extracting and clustering frequent sequential 

patterns to then link them with high level group actions at a pen-

based tabletop learning application called Mysteries. One 

important study, even though not related to tabletops, was 

performed by Perera et al. [20] who explored the usage of 

sequence mining alphabets and clustering to find trends of 

interaction associated with effective group-work behaviours in 

the context of a software development tool. Moreover, Anaya et 

al. [2] analysed a computer-mediated learning tool to classify and 

cluster learners according to their level of collaboration.  

The work reported in this paper is the first effort we are aware of 

that proposes an integrated solution, inspired by authentic needs 

of the teacher in the classroom, to exploit the students’ data that 

can be captured by multiple tabletops though the application of a 

data mining technique and a process modelling tool.  

3. MULTI-TABLETOP TUTORIALS 
This section describes our technical infrastructure that consists 

of: the multi-tabletop classroom, a teacher’s dashboard, the 

system for capturing identified learners’ actions and a learning 

tool for building concept maps. We also describe the teacher’s 

design of the tutorials. 

3.1 Technical Infrastructure 
Our multi-tabletop classroom is called MTClassroom [11]. This 

has a number of interconnected multi-touch interactive tabletops 

(four in this study). Figure 1 shows an instance of MTClassroom 

for a demo tutorial. Each tabletop consists of a 26 inch PQlabs 

overlay placed over a high-definition display that is enriched 

with Collaid [9]. Collaid is a system that provides an ordinary 

interactive tabletop the capability of automatically and 

unobtrusively identifying which person is touching where, based 

on an over-head depth sensor (www.xbox.com/kinect ). Using this 

system, each tabletop can identify actions performed by each 

student according to their seating position.  

The logging system of each tabletop records the activity logs to a 

central synchronised repository that can be accessed in real time 

by other services. One of these is a teacher’s dashboard called 

MTDashboard [11]. This dashboard provides functions for the 

teacher to orchestrate the tabletops (e.g., blocking the touch input 

of all tables or moving the class to the next phase) and to see key 

live-indicators of work progress of each small-group. Figure 2 

shows the teacher holding the dashboard, displayed on a tablet 

device, while she provides feedback to a group. The classroom 

activity consisted in elaborating collaborative concept maps 

about a case proposed by the teacher. Concept mapping is a 

technique that promotes learning by allowing students to visually 

represent their understanding in the form of concepts associated 

by linking words that creates statements [16]. We used a 

minimalist version of a tabletop concept mapping application 

called Cmate [9]. Cmate provides students with a list of concepts 

and linking words suggested by the teacher, and also allows them 

to type their own words, in order to build a concept map that 

represents their solutions. Prior to the tutorials, the teacher 

creates a master concept map with the crucial concepts and links 

that learners are expected to include in their maps.  

3.2 Tutorials Design 
Eight tutorial sessions were organised in the School of Business 

of the University of Sydney during week 6 of semester 2, 2012 

for the course: Management and organisational ethics. The 

teacher designed a case resolution activity to cover the topic of 

the curricula corresponding to that week. A total of 140 students 

attended these tutorials (from 15 to 20 students per session) that 

were organised in groups of 4, 5 or 6 students.  

The teacher designed the tutorial script as follows: 1) 

Introduction (10 minutes): the teacher forms groups, explains to 

students how to use the concept mapping application and 
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Figure 2. A teacher attending a group while holding the 

MTDashboard 

 

Table 1. Possible actions on the concept mapping tabletop system 

High impact actions 

(content and structure) 

Low impact actions 

(layout) 
No impact actions 

Add a concept/link Move a concept/link Open or close menus 

Delete a concept/link Merge two links Move/scroll menu-

concepts  Edit a concept/link  

 

introduces the first activity. 2) Activity 1 (10 min.): using the 

MTDashboard, the teacher cleans up the four tabletops for all 

groups to start at the same time. Students are instructed to create 

a concept map that represents how the main actors of the case are 

associated. 3) Reflection 1 (5 min.): the teacher blocks the 

tabletops, leads a short class discussion about partial solutions 

and introduces Activity 2. 4) Activity 2 (15 min.): this is for the 

teacher “the most important activity of the tutorial from the 

learning perspective”. The teacher unblocks the tabletops, and 

students discuss and focus on representing a final solution to the 

case in their concept map. 5) Class sharing and reflection (10 

min.): the teacher asks each group to share their solution with the 

class. After each group has explained their map, the teacher 

summarises the outcomes of the tutorial, finishes the session and 

assesses each group in private. The class time was fixed to 50 

minutes. Details of these tutorials can be found in [11]. 

4. STUDY DESIGN AND DATASET 

DESCRIPTION  
The teacher in the classroom can face a number of challenges 

related with control, awareness and resources management [22] 

which depend on a number of factors that may fall out of the 

scope of what tabletop systems can capture. The tabletop systems 

are not totally aware of the classroom situation, for example, if a 

group of students is talking, if they work on-task or if someone 

needs to leave the class. The teacher can have a better idea of the 

productivity of students’ discussions within each group, however, 

one of the main conclusions after finishing the tutorials was that 

for the teacher it is not easy to know aspects of the final artefacts 

that students built or their individual contributions [11].  

In a post-tutorial interview the teacher expressed her view as 

follows: “I don’t want to see a lot of information in the 

dashboard, this can be distracting. But more information can be 

provided after the tutorials for assessment, like who did what, 

when, and the quality of the work”. These are indeed the aspects 

of group work that tabletops are aware of in detail. Our system 

can capture: 1) differentiated students’ action on the tabletop; 2) 

the sequential actions performed to build the group artefact.  

Inspired by the above teacher needs, but framed on what 

tabletops can actually capture in an authentic classroom, we 

propose an approach to distinguish strategies followed by groups 

that either needed more coaching or worked effectively. We 

analyse three sources of contextual information i) identified 

individual actions on the tabletop that can occur in parallel, in 

turn, or on other students’ objects, ii) the quality of students’ 

actions according to the teachers’ artefact, and iii) the impact of 

students’ actions on the group artefact. In this paper we focus on 

the students’ actions performed in Activity 1. This is important 

because a certain degree of success in Activity 1 is required for 

Activity 2. This also allows the approach to be applicable in real-

time, to provide feedback to teachers before the tutorial is over, 

so they can target their support during Activity 2. 

The teacher assessed groups at the end of each tutorial, using one 

of three possible values: low, medium or high achievement. The 

teacher specified that the assessment criteria mostly considered 

the quality of each group solution presented at the end of the 

tutorial and the quality of their discussions during the tutorial. 

We considered the activity data of all the 32 groups divided in 

two sets: 20 groups that were high achieving and 12 groups that 

were medium or low achieving.  

The initial raw data of each group consists of a long sequence of 

actions in which each element is defined as: {Resource, 

ActionType, Author, Owner, Time, Relevance}, where Resource 

can be: Conc (concept), Link (proposition) or Menu. ActionType 

can be: Add (create a concept or link), Del (delete), Mov (move) 

links, Chg (edit), Scroll, Open or Close (a menu). Author is the 

learner who performed the action, Owner is the learner who 

created an object or owns a menu, Time is the timestamp when 

the action occurred and Relevance indicates if the concept or link 

belongs to the crucial elements of the teacher’s map. Table 1 

lists all the possible actions in the dataset grouped by their 

impact on the group concept map. Some examples of actions are: 

{ConceptA, Add, 3, 3, 17:30:02, Crucial}, when a learner adds a 

crucial concept to the map; {LinkY, Move, 2, 6, 17:30:04, Irr}, 

when s/he moves a link created by another learner; and 

{MenuConcepts, Open, 2, 2, 17:30:07,-} when s/he opens the list 

of suggested concepts.  The original sequence obtained for each 

group contained from 74 to 377 physical actions. 

We address four research questions regarding the strategies and 

characteristics that can differentiate groups according to their 

extent of achievement. The formulation of these is based on the 

triangulation of the nature of the available data (differentiated 

students’ actions and their impact on their artefact), the teacher’s 

needs (awareness on students’ participation and quality of their 

work), and open issues in the study of multi-tabletop classrooms 

[10]. Our research questions are the following. 1) Can we 

distinguish groups by inspecting patterns of parallelism and 

turn-taking? As the teacher is interested in the participation of 

all students in the construction of the group solution [10], we 

analyse whether it is possible to find differences among groups 

where students worked at the same time (in parallel or taking 

turns) or not. 2) Can we distinguish groups by inspecting 

students’ interactions on others’ objects? Other studies inspired 

this question; these have suggested that interacting with what 

others’ have done may trigger further discussion that is beneficial 

for tabletop collaboration [11, 13]. 3) Can we distinguish groups 
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Table 2. Keywords included in the alphabets for the sequential pattern mining. 

Resource Action type 
Alphabet 1 

Parallelism –turn 

taking 

Alphabet 2 
Actions on others’ 

objects 

Alphabet 3 
Master map 

distance 

Concept (Conc)-C Add -C,L Delete (Del)-C,L Parallel Own  Cruc (C,L) 

Link -L Edit (Chg) -C,L Merge (Move)-L Other NoOwn NoCruc (C,L) 

Menu -M Move -C,L,M Open -M Same   

  Close -M    

Inactivity block (Inact)-B Short(Shrt) -B Long –B    

 

by inspecting students’ map quality? This and the next question 

are directly inspired by teachers’ needs, as noted above, and the 

data captured by our system about the groups’ artefacts and the 

process followed to build them. 4) Can we distinguish groups by 

inspecting the process followed by students’ actions and their 

impact on the group artefact?  

5. METHOD 
Sequential mining and process mining are techniques that have 

been used to identify patterns in educational datasets by 

considering the order of students’ actions [7, 12, 19]. We used a 

sequential pattern mining technique called differential sequence 

mining [7] to distinguish strategies followed by groups that were 

either high or low achievers and address each of our first three 

research questions. For these, we analysed two of the sources of 

contextual information listed in the previous section: i) identified 

actions on the tabletop and ii) the quality of students’ artefact. In 

order to address the fourth question, and analyse the strategies 

that distinguish groups according to iii) the impact of students’ 

actions on the group map, we used the Fuzzy Miner tool [6]. Next 

subsections present the motivation for using these tools, the data 

pre-processing and the implementation of each technique. 

5.1 Sequence mining 
One of the data mining techniques that has been succesfully 

applied to identify patterns that differentiate high from low 

achieving students is differential sequence mining (DSM) [7]. In 

general, a sequential pattern is a consecutive or non-consecutive 

ordered sub-set of a sequence of events that is considered 

frequent when it meets a minimum support threshold. In 

educational contexts, the events commonly correspond to 

individual or grouped students’ actions logged by the learning 

system. The DSM algorithm extracts frequent consecutive 

ordered sequences of actions from 2 datasets and performs an 

analysis of significance to obtain the patterns that differentiate 

them. The actions can also contain contextual information as 

defined by an alphabet. Alphabets can be used to encode each 

action to a set of concatenated keywords. In our study, each 

action was encoded to the format {Resource-ActionType-

Context}. We implemented a DSM solution to investigate the 

differential patterns in terms of degree of parallelism, actions of 

students on others’ objects and relevance of the links and 

concepts students use according to the teacher;s map. Table 2 

presents the keywords of each of our three alphabets. The 

encoded actions encoded using any alphabet should contain at 

least one keyword for the Resource column and one for the 

ActionType column. We add one keyword of the corresponding 

contextual information (three rightmost columns in Table 2) 

according to the Resource type. Alphabet 1 aims to model the 

differentiated individual actions performed on the tabletop that 

occur in parallel (with other students’ actions, keyword: 

Parallel), in turns (when the previous action was performed by a 

different student, keyword: Other), or as a series of actions by the 

same student (Same). Alphabet 2 models the actions that 

students perform on their own objects (Own) or on other 

students’ objects (NoOwn). Finally, Alphabet 3 indicates whether 

the concept or link involved in the action belongs to the crucial 

objects defined by the teacher (Cruc or NoCruc).  

In a previous study, we found that it is very important to consider 

the periods of significative inactivity registered by the tabletop 

[11]. During these periods of inactivity students can be having 

productive discussions, off-task talking or not working 

collaboratively at all. In our study, even when we do not perform 

speech detection, it is important to at least consider the 

occurrence of inactivity. To define a period of inactivity, we 

explored the time gap between each action performed on the 

tabletop. We found that time gaps between actions below one 

standard deviation from the mean (<µ+1σ) account for the 92% 

of the set. (µ= 4.30 seconds, σ= 8.62, µ +1σ=13 seconds). This 

means that a period above 13 seconds without logged actions can 

be considered as a block of inactivity. We defined these blocks as 

short when the gap was between 13 (µ+1σ) and 22 (µ+2σ) 

seconds, and long, for gaps longer than 22 seconds (µ+2σ). We 

detected from 6 to 19 periods of inactivity in each group.  

The output of the DSM algorithm, using the three alphabets, 

consists of three sets of frequent sequential patterns that 

differentiate high from low achieving groups according to the 

teacher’s assessment. In this study, we set a minimum support of 

0.5 to consider a pattern as frequent and a maximum error of one 

to allow matching sequences with up to 1 different action, 

similarly to previous work on educational data exploration [7].  

5.2 Process mining 
The sequence mining approach presented above can extract 

patterns of activity that distinguishes groups; however, it does 

not give insights of the higher level view of the processes 

followed. The Fuzzy miner [6] is a process discovery tool that 

can generate a meaningful abstraction of a general process, from 

multiple instances by distinguishing the activities that are 

important. It is especially suitable to mine unstructured 

processes, like the concept mapping construction in this study. 

The input of this algorithm is a series of consecutive actions, or 

group of actions. The result is a directed graph in which each 

node represents an action, or group of actions, and the edges 

represent the transitions between these. The nodes and edges that 

appear in the graph should meet a conformance threshold based 

on the instances that were used to build the model.  

The objective of this second analysis is to discover the meaning 

of the higher level steps that high and low achieving groups 

performed to build the concept map and the impact of such 

actions. For this, we performed the following data preparation 

before using the Fuzzy miner tool. 
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Figure 3. Distribution of the length of the sets of activity in 

terms of number of actions. 
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1) Data grouping. We grouped the actions into periods of activity 

in order to generalise similar actions according to their impact on 

the concept map. First, we explored the number of actions 

contained in each period of activity between periods of inactivity. 

Figure 3 illustrates the frequencies of the number of actions 

within blocks of activity in the dataset (µ= 12.85 actions, σ= 

17.68). The distribution shows a high frequency of periods with a 

small number of continuous actions, and a long tail of longer sets 

of actions. In fact, the 71% of the periods of continuous activity 

were below the mean size (13 actions) and the 87% of them were 

below one standard deviation from the mean (30 actions). We 

considered the mean (13 actions) as a practical threshold for the 

maximum size of a block of activity.  

2) Actions categorisation. Based on the definition and previous 

research on concept mapping [15, 16], we categorise students’ 

actions according to their impact on the group map. Actions that 

make a change in the structure or content of the concept map are 

categorised as High-impact actions. These include actions that 

modify the quantity or content of concepts and links (Table 1). 

The second category is Low-impact actions, which includes 

actions that modify the layout of the map, which is important for 

the activity, but not crucial. These actions include moving 

concepts and links, or merging links. Finally, actions performed 

on the menus of the application belong to No-impact actions.   

3) Blocks categorisation. Each block was categorised according 

to the actions that occurred within that period following the next 

rules: HighOnly for blocks that contained only high-impact 

actions and some no-impact actions; HighLow, if the block 

contained at least one high-impact and one low-impact actions; 

LowOnly, for blocks that contained only low-impact actions and 

no-impact actions; and NoImpact if the block contained just no-

impact actions. Periods of inactivity were categorised as either 

InactShort or InactLong, as explained earlier.  

4) Addition of contextual information. According to our research 

aim, we highlighted the importance of distinguish the learners 

who work on their own or on other students’ objects. For this, we 

added the information about who touched which object with the 

keywords NoOwn if most of the actions were performed on 

others’ objects and Own if the actions were performed on the 

same learners’ objects.   

After performing the data preparation we divided the dataset into 

two sets, one for high and one for low achieving groups, as we 

did for the sequential mining. We generated two corresponding 

fuzzy models using the plugin implemented in the ProM 

framework (www.processmining.org). Then, we performed two 

model analyses: analysis of the number of active learners, and a 

validation of the models to discriminate groups. 

Analysis of number of active learners. We explore whether there 

is a difference in the number of learners that were actively 

involved in each of the significant activities that appear in each 

fuzzy model (the nodes of the model). For the latter, the explored 

values corresponded to blocks of activity in which only one 

learner (1u), two (2u), or more than 2 learners (+u) were 

involved in the actions within a block of activity. This takes into 

account that all groups had from 4 to 6 group members. No 

correlation was found between the group size and the level of 

achievement of each group (r = 0.2). 

Validation of the models. We performed a cross validation of the 

two models to evaluate if they can be used to effectively 

differentiate high from low achieving groups. To do this, we 

calculate, for each group process, the level of conformance of 

both fuzzy models and validate that the model that fit the most 

corresponds to the level of achievement of the group.  

6. RESULTS AND DISCUSSION 

6.1 Sequence mining results 
After applying the DSM algorithm on the encoded datasets 

according to our three alphabets, we selected the patterns whose 

instance support (number of times the pattern is repeated within 

a group log) differed between the high and low achieving groups 

(p<=0.10) and that were composed of at least 2 actions. Table 3 

presents the top-4 most frequent sequences for each of the three 

alphabets explored in this part of the study. 

Alphabet 1: focused on parallelism and turn-taking. We obtained 

a total of 23 differential patterns for groups that were either high 

or low achieving after analysing the first encoded dataset. The 

top sequences in Table 3 indicate the presence of actions in 

parallel for move events (sequence A) and actions that contain 

the keyword Other, when adding and moving elements of the 

concept map (sequences B, C and D). These provide evidence 

that in high achieving groups more than 1 student quite often 

interacted with the tabletop at the same time. In fact, the 

keywords Parallel and Other appeared in 13% and 66% in the 

frequent patterns of high groups, while in the low achieving 

groups there were no patterns with the keyword Parallel and the 

keyword Other only appeared in the 30% of them.  

Alphabet 2: focused on actions on others students’ objects. In 

this case, we obtained a total of 29 differential patterns. Table 3 

shows that in high achieving groups, students tended to interact 

with objects created by other students, such as moving and 

adding links using others’ concepts, either followed or preceded 

by periods of inactivity (keywords NoOwn and Inact in sequences 

I, J, and L). The keyword NoOwn appeared two times more often 

in the frequent sequences of the high groups than in the 

achieving groups (in 42% and 22% of the sequences 

respectively). The presence of actions on students’ own objects 

(Own) was similar in all groups. 

Alphabet 3: focused on Master map distance.  We obtained 28 

differential patterns by analysing the encoded dataset. This 

includes contextual information of the concepts and links that 

belong to the crucial elements defined by the teacher. The 

patterns in Table 3 show that in high achieving groups, students 
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Table 3. Top-4 most frequent sequences after applying differential sequence mining on each encoded dataset.  

Alphabet 1 High achieving groups  Low achieving groups 

A- {Menu-Mov-Same}>{Menu-Mov-Same}>{Menu-Mov-Parallel} E- {Link-Add-Same}>{Link-Rem-Same}>{Con-Mov-Same} 

B- {Con-Mov-Other}>{Link-Add-Same}>{Con-Mov-Same}> 

     {Link-Add-Same} 
F- {Link-Rem-Same}>{Con-Mov-Same}>{Link-Add-Same} 

C- {Inact-Shrt}>{Con-Mov-Other}>{Link-Add-Same} G- {Link-Add-Same}>{Link-Chg-Same}>{Inact-Long} 

D- {Con-Mov-Other}>{Link-Add-Same}>{Con-Mov-Same} H- {Inact-Long}>{Inact-Shrt}>{Con-Mov-Same} 

Alphabet 2 High achieving groups  Low achieving groups 

I-   {Con-Mov-NoOwn}>{Con-Mov-NoOwn}>{Link-Add-Own}> 

    {Inact-Shrt} 

M- {Inact-Shrt}>{Con-Mov- NoOwn }>{Link-Add-Own}> 

      {Link-Chg-Own} 

J- {Inact-Shrt}>{Con-Mov- NoOwn }>{Con-Mov- NoOwn }> 

    {Link-Add-Own} 
N- {Link-Add-Own}>{Link-Chg-Own}>{Inact-Long} 

K- {Link-Mov- NoOwn }>{Link-Mov- NoOwn }>{Con-Mov- NoOwn } O- {Link-Chg-Own}>{Inact-Long} 

L- {Inact-Shrt}>{Con-Mov- NoOwn }>{Con-Mov- NoOwn } P- {Inact-Long}>{Inact-Shrt}>{Con-Mov- NoOwn } 

Alphabet 3 High achieving groups  Low achieving groups 

Q- {Con-Mov-Cruc}>{Link-Add-Cruc}>{Con-Mov-Cruc}> 

     {Link-Add-Cruc} 

U- {Link-Rem-NoCruc}>{Con-Mov-Cruc}>{Link-Add-Cruc}> 

     {Link-Chg-NoCruc} 

R- {Inact-Shrt}>{Con-Mov-Cruc}>{Con-Mov-Cruc}>{Link-Add-Cruc} V- {Link-Chg-NoCruc}>{Link-Chg-NoCruc}>{Inact-Shrt} 

S- {Link-Add-Cruc}>{Link-Mov-Cruc}>{Con-Mov-Cruc} W- {Inact-Shrt}>{Link-Add-Cruc}>{Link-Chg-NoCruc} 

T- {Link-Chg-Irr}>{Con-Mov-Cruc}>{Link-Add-Cruc} X- {Con-Mov-Cruc}>{Link-Add-Cruc}>{Link-Chg-NoCruc}>{Inact-Long} 

 

tended to work with more crucial elements than low achieving 

groups. However, an analysis of all patterns found showed that 

there was not a large difference in actions performed on crucial 

elements (keyword Cruc was present in 87% and 84% of the 

patterns of high and low achieving groups respectively). 

However, the key difference was that high achieving groups 

interacted with less non-crucial concepts and links (keyword 

NoCruc was in 19% and 73% of the patterns of high and low 

achieving groups respectively). 

The sequences of events extracted using this technique, provides 

some insights about the strategies followed by groups. Low 

achieving groups tend to have long periods of inactivity on the 

tabletop before or after creating links or performing a chain of 

actions that affect the layout of their concept map (e.g. action 

Inact-Long in patterns G, H, N, O and X). High achieving groups 

also had periods of inactivity, but these were shorter. Long 

periods of inactivity appeared two times more in the low 

achieving groups, followed or preceded by other actions (Inact-

Long appeared in 48% and 22% of the sequences of high and low 

achieving groups respectively). There was no difference in the 

appearance of short periods of inactivity.  

These findings suggest that, to discover the strategies followed 

by groups, this approach offers a limited view of the meaning of 

the actions. The frequent sequences that were found can be used 

to build a model or benchmark to ‘detect’ if students’ actions are 

similar to either high or low achieving groups. However, the 

patterns themselves do not provide information about the process 

that groups followed during the activity that would be easily 

associated with groups’ behaviours.  

6.2 Process mining results 
Figure 4 shows the resulting fuzzy models after applying the 

second approach to mine the process of both, high and low 

achieving groups where the conformance with their 

corresponding datasets was above 80%. Nodes of the graph 

represent categories of action blocks of activity and the edges the 

transitions between these. Each node contains: the name of the 

block category, the conformance of the block with the dataset, 

and the rates of active students that were involved in the 

activities (1u, 2u and +u). Nodes with conformance rates below 

to 0.1 were not considered in the models to include the majority 

of the block categories but disregarding the actions that rarely 

appeared in the data and that would make the graph 

unnecessarily complex. The numbers next to the edge lines are 

indicators of conformance of the transitions with the datasets.  

By visually comparing both graphs we can highlight that they 

share the same core blocks of activity. These include: the blocks 

Inact-Short and Inact-Long (marked with an orange small square 

in the top left of the node). We confirmed the results obtained 

with the sequence mining, where low achieving groups showed 

more long periods of inactivity compared with high groups 

(conformance of 0.68 and 0.98 respectively). Both models also 

have in common the categories HighLow-NoOwner and 

HighLow-Owner (blue markers) that represent activity that 

combined high and low impact actions on the group map 

(conformance of 1 and around 0.4 respectively). The last 

similarity, in terms of nodes, corresponds to blocks of low impact 

actions where students interacted with other students’ objects 

(LowOnly-NoOwner, red markers).  

The nodes marked with a yellow star correspond to activity 

blocks that appear in one model but not in the other. High 

achieving groups, contrary to the expected, presented more 

blocks of actions with no impact on the concept map (NoImpact-

Owner/NoOwner). However, both nodes had the least 

conformance with the model (0.11 and 0.2 respectively). In 

contrast, low achieving groups presented blocks of activity with 

only high impact actions (HighOnly- Owner/NoOwner). The 

conformance of these blocks was not low (conformance of 0.37 

and 0.74 respectively).  

However, the main difference between the models is in the 

structure of the transitions. For the model of high achieving 

groups, there is only one transition between different blocks of 

activity. This was, in addition, not very frequent (0.08 

conformance, between NoImpact-Owner and HighLow-Owner). 

By contrast, the model of low achieving groups contains 5 

transitions between activity nodes with a conformance of up to 

0.17 (between HighLow-Owner and LowOnly-NoOwner). 

Additionally, we did not find any observable difference in the 

actions performed on other students objects (NoOwner) and 

students’ own objects (Owner). 
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Table 5.  Validation of the fuzzy models 

 Predicted class 

 High Low 

Actual 

class 

High 17 3 

Low 0 12 

 

Table 4.  Distribution of the number of active learners in 

blocks of activity 

Achievement 
One learner 

(1u) 

Two learners 

(2u) 

More learners 

(+u) 

High 55% 18% 27% 

Low 54% 27% 19% 

 

Figure 4. Fuzzy model generated from groups’ activity. Left: Fuzzy model of high achieving groups (Conformance: 86%, 

Cuttoff: 0.1). Right: Fuzzy model of low achieving groups (Conformance: 81%, Cuttoff: 0.1). 
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Next, we present the analysis of the number of students involved 

in the activities and the validation to determine if the observable 

differences can distinguish high from low achieving groups.  

Active learners. Table 4 shows the results of the cumulated 

distribution of the number of learners involved in the periods of 

activity for both high and low achieving groups (partial rates 

displayed in the third line of text inside each node of Figure 4). 

Both high and low achieving groups presented more than the half 

of the blocks of activity performed by a single student (54/55%). 

The main difference found was that high achieving groups 

presented blocks of activity in which more than two learners 

were involved in comparison with low achieving groups (+u, 

27% and 19% respectively). In low achieving groups most of the 

blocks of activity were performed by either one or two learners.  

Validation. In order to validate that the two models generated by 

the fuzzy miner are different and can be used to distinguish the 

process followed by either high or low achieving groups, we 

estimated how accurately each model will conform to each 

group’s activity. We performed a cross-validation to compare the 

level of fit of both models to the data blocks of each group by 

measuring whether the conformance of the model that 

corresponded to the level of achievement of the group was 

higher. Table 5 shows the confusion matrix which layouts the 

results of this analysis. This indicates that the fuzzy model for 

low achievement could distinguish the 100% of the low 

achieving cases, however, three high achieving groups presented 

a superior conformance to this model. The conformance of the 

model of high achievement was higher for the high achieving 

groups in 17 of the 20 cases. The difference between the levels of 

fit of each model was statistical significant for high achieving 

groups (paired t(23) = 2.46, p = 0.0219 ) and very close to 

statistical significance (p<=.05) for the model of low 

achievement (paired t(7) = 2.16, p = 0.061). 

7. CONCLUSIONS AND FUTURE WORK 
This paper described the technological infrastructure and the data 

mining and process mining techniques used to analyse the 

strategies that distinguish high from low achieving groups in the 

classroom. We presented a novel approach to mine traces of 

collaboration of students working face-to-face on an activity 

linked with the regular curricula and supported by a number of 

teacher-orchestrated interactive tabletops. Our goal was to 

exploit students’ data that was unobtrusively captured in an 

authentic classroom in contrast to a controlled experimental 

setting. This can make our approach immediately applicable in a 

real classroom context equipped with the technology required. 

Sequential frequent mining was applied to find patterns of 

activity that differentiate groups. Results revealed interesting 

patterns that indicated students in high achieving groups worked 

more often in parallel, interacted with other students’ objects and 

mostly focused on the crucial elements of the problem to solve. 

The fuzzy miner tool was used to model the process that groups 

followed by grouping and categorising students’ actions. This 

modelling proved effective in helping distinguish part of the 

process followed by groups. High achieving groups tended to 

build their concept map interweaving periods of focused activity 

with periods of tabletop inactivity. Low achieving groups, by 

contrast, presented more transitions between different categories 

of blocks of activity including periods with only actions that 

caused high impact on the map. We also found that important 

strategies can be mined from early data. Our analysis was only 

performed on the data captured from the first activity of the 

classroom sessions. This gives time for the results of the analysis 

to be used by facilitators or group members in the classroom. 

The knowledge generated by the sequence patterns and the fuzzy 

models can be used in several valuable ways. Firstly, derived 

groups’ indicators can be displayed in a processed form on the 

teachers’ dashboard to help them adapt in real-time the support 

to groups that might need closer attention. Secondly, the findings 

can be used to generate indicators of group learning to be shown 
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to the teacher for after-class reflection or re-design of the activity 

or to reflect on students’ performance or assessment. Thirdly, 

this information can be the basis to build student models that can 

be shown to learners to encourage reflection and self-assessment. 

We acknowledge some current limitations of our approach. The 

first is that the technology to capture students’ actions is not yet 

developed to automatically record verbal interactions in the 

classroom, which is crucial in collaborative work. However, our 

approach proved that even modest interaction data can provide 

insights about their strategies. Regarding the configuration of the 

data mining method, especially for the Fuzzy process mining, 

changing some thresholds can produce different results. For 

example, the size of blocks of activity was set to the mean 

number of actions between two periods of inactivity (13 actions). 

We explored the generation of fuzzy models using two more 

heuristics for the maximum block size: µ/2 and µ+σ. We 

obtained conformance rates as low as 60% for the block size 

heuristic of µ/2, and very similar fuzzy models and conformance 

rates for the heuristic µ+σ compared to the one we used in the 

study. Even when these rates are lower than the ones we 

obtained using the µ heuristic, a deeper analysis of the 

configuration of the approach is part of the work in progress.   

Our current work includes the exploration of ways to present the 

results of our approach to the teacher, in real time and for after 

class analysis. We also aim to connect the students’ data that can 

be captured when they work at the tabletop with other activities 

that they perform, for example, through online learning systems.  
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ABSTRACT 

Supervised learning (SL) systems have been used to automatically 

learn models for analysis of learning object (LO) data.  However, 

SL systems have trouble accommodating data from multiple 

distributions and “troublesome” data that contains irrelevant 

features or noise—all of which are relatively common in highly 

diverse LO data.  The solution is to break up the available data 

into separate areas and then take steps to improve models on areas 

containing troublesome data.  Unfortunately, finding these areas 

in the first place is a far from trivial task that balances finding a 

single distribution with having sufficient data to support 

meaningful analysis.  Therefore, we propose a BoU meta-

reasoning (MR) algorithm that first uses semi-supervised 

clustering to find compact clusters with multiple labels that each 

support meaningful analyses.  After clustering, our BoU MR 

algorithm learns a separate model on each such cluster.  Finally, 

our BoU MR algorithm uses feature selection (FS) and noise 

correction (NC) algorithms to improve models on clusters 

containing troublesome data.  Our experiments, using three 

datasets containing over 5000 sessions of student interactions with 

LOs, show that multiple models from BoU MR achieve more 

accurate analyses than a single model.  Further, FS and NC 

algorithms are more effective at improving multiple models than a 

single model.   

Keywords 

Learning Object Analysis; Supervised Learning; Clustering; 

Meta-Reasoning 

1. INTRODUCTION 
Learning objects (LOs) are independent and self-standing units of 

learning content that are predisposed to reuse in multiple 

instructional contexts [2].  An example of an LO is a self-

contained lesson on recursion with a tutorial, interactive exercises, 

and assessment questions.  In general, the analysis of student 

interactions with LOs is important for many groups including 

students, instructors, researchers, and content developers [16].  

First, for students, such analyses can improve student study 

strategies and allow for more self-regulated learning [1].  Second, 

instructors can use such analyses to choose appropriate LOs for 

their students [8].  Third, such analyses can help researchers and 

content developers investigate which student interactions are 

associated with the different learning outcomes [6].   

One previously used approach for the analysis of student 

interactions with LOs is supervised learning (SL) systems [16].  

SL systems learn a model from previously recorded sessions of 

student interactions (features) and learning outcomes (labels) that 

can predict the learning outcome for a specific session of student 

interactions with a high degree of accuracy. 

SL systems have one main advantage over other approaches (e.g., 

statistical analysis): they learn the model automatically without 

the need for direct human intervention.  First, learning the model 

can help students and instructors.  Such a model predicts the 

learning outcome for a student in real-time based on the observed 

student interactions [15].  Such predictions can allow the LO to 

adjust the content presented to a student while he or she is taking 

the LO and provide real-time updates to instructors on student 

mastery of LO content.  Second, a model learned automatically 

without human intervention provides independent, high-level 

guidelines on which types of student interactions are associated 

with the learning outcomes [4].  Such guidelines can serve as a 

useful starting point for further investigation by researchers and 

inform content developers on which parts of the LO may need to 

be revised. 

However, SL systems have some potential problems which can 

limit the effectiveness of their models for analysis:   

First, SL systems assume that the training data from previously 

recorded sessions comes from a single underlying distribution.  

Unfortunately, such training data is likely to come from multiple 

distributions and be highly diverse due to a wide variety of factors 

including students with different backgrounds, LOs with different 

content, instructors providing varying amounts of support for the 

LO content, etc.  These factors make it difficult to learn a single 

model which can “fit” all this highly diverse training data and 

still achieve high accuracy.  

Second, SL systems assume that the training data available is 

relatively “clean” being free of student interactions unrelated to 

the learning outcomes (i.e., irrelevant features) and errors in the 

student interactions and learning outcomes provided (i.e., noise).  

Unfortunately, such training data is all too likely to contain both 

irrelevant features and noise.  Irrelevant features are relatively 

common when researchers are uncertain which student 

interactions are relevant and, thus, record as many student 

interactions as possible since they cannot retroactively record 

additional interactions.  Noise is relatively common when 

developers fail to create assessment questions appropriate for all 

students and when students are motivated to “game the system” to 
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achieve a certain learning outcome (e.g., a good grade on the LO).  

These factors make it difficult for a single model to achieve high 

accuracy on areas containing large amounts of “troublesome” 

training data with irrelevant features and/or noise. 

Intuitively, we could address these problems and improve the 

effectiveness of SL systems for analysis by using an approach 

which first breaks up the training data into areas―each containing 

similar student interactions―and learns a separate model on each 

area.  We could then identify which areas consistently contain 

“troublesome” training data and take steps to improve the models 

in those areas. 

However, breaking up the training data and finding areas with 

“troublesome” training data are far from trivial tasks.  As 

previously mentioned, the training data collected is likely to be 

highly diverse.  Such diversity makes it difficult for an approach 

to find suitable areas balancing two factors.  First, each area 

should contain similar data from a single distribution.  Second, 

each area should contain sufficient training data to support 

meaningful analysis.  Further, the model learned on an area is 

likely to fit the irrelevant features and/or noise in that area which 

can make it difficult to identify the areas containing troublesome 

training data. 

Therefore, we propose new meta-reasoning algorithm called the 

Boundary of Use (BoU MR) to improve the effectiveness of SL 

models for analysis of student interactions with LOs.  Our 

algorithm first uses an iterative process, based on semi-supervised 

clustering, which breaks up the training data in different ways 

until suitable areas are found.  These suitable areas, which we dub 

BoU clusters, include training data with similar student 

interactions from a single distribution which, nevertheless, have 

multiple learning outcomes to support meaningful analysis.  

After clustering, the BoU MR learns a separate model for each of 

these clusters.  Then, our algorithm evaluates each of these BoU 

clusters using a localized estimate to detect troublesome training 

data (e.g., feature selection for irrelevant features).  Finally, our 

algorithm takes steps to selectively improve the models for the 

difficult BoU clusters containing troublesome training data; for 

example, removing irrelevant features and relearning the model 

on the “refined” training data. 

In the following, we will investigate the BoU MR using two 

objectives.  Objective 1 is to investigate the impact of breaking up 

the training data on LO datasets using three types of SL systems 

to learn the models:  decision trees, support vector machines, and 

artificial neural networks.  We compare the accuracy for a single 

model with that for multiple models from the BoU MR.  Objective 

2 is to investigate the effectiveness of BoU MR for improving its 

models on difficult BoU clusters.  For this objective, we consider 

both feature selection and noise correction algorithms.  We 

compare the accuracy to the BoU MR that uses these algorithms 

to help selectively relearn the models for difficult BoU clusters to 

a single model relearned after the same algorithm is applied to all 

the training data. 

The rest of the paper is organized as follows.  Section 2 provides 

background on SL systems and model improvement algorithms 

used in our study.  Section 3 describes our BoU meta-reasoning 

algorithm in more detail.  Section 4 discusses the experimental 

setup and results.  Finally, we conclude and outline future work. 

2. BACKGROUND 
Here we discuss background on the SL systems and model 

improvement algorithms.  Discussion of the LO datasets is 

deferred until Section 4. 

2.1 Supervised Learning (SL) Systems 
We consider three types of SL systems in the experiments below.  

To help demonstrate the effectiveness of our meta-reasoning 

algorithm for SL systems in general, we chose three widely used 

SL systems with very different properties.  First, artificial neural 

networks (ANNs) learn a vector of weights on features in the 

dataset to choose the labels for new data [19].  ANNs consist of 

multiple nodes connected to threshold functions or to additional 

layers of nodes.  ANNs are updated iteratively (e.g., using 

gradient descent) until they correctly predict the labels for the 

training data.  Second, decision trees (for classification) learn a 

tree data structure to generate the labels for new data [19].  The 

decision tree first selects one feature as the root node and adds an 

edge for every label value.  The decision tree continues to add 

nodes and edges recursively until all the training data has been 

sorted into groups with similar labels.  The leaves are then set to 

the common label.  Third, support vector machines (SVMs) learn 

a hyperplane to separate the training data such that data on the 

same side mostly have the same label [19].  SVMs first use a 

kernel function to transform all values for the dataset into higher 

dimensional space where they are linearly separable.  Then, the 

SVM attempts to maximize the distance (i.e., margin) between the 

training data with different labels. 

2.2 Model Improvement Algorithms 
We consider two types of algorithms for improving the models in 

the experiments below: feature selection and noise correction. 

First, feature selection (FS) algorithms find the subset of relevant 

features for the dataset using an evaluation criterion based on 

filters or wrappers.  Filters evaluate the relevant features using 

only the intrinsic properties of the data whereas wrappers use the 

accuracy of the SL system model [10].  To avoid overfitting 

common to wrapper-based feature selection, we use a state-of-the-

art filter-based FS algorithm called Lasso in the experiments 

below.  Lasso FS uses a shrinkage method for FS which maintains 

a coefficient for each of feature (Hastie et al., 2011).  Lasso 

computes these coefficients by using a pairwise coordinate 

descent approach to minimize the sum of squares subject to a 

constraint on the coefficients.  Features whose coefficients have 

shrunk to zero are considered to be irrelevant and removed 

entirely from the dataset. 

Second, noise correction (NC) algorithms are designed to identify 

noisy labels and then remove or replace them.  There are two 

general types of noise correction algorithms [13]: (1) noise 

tolerant correction modifies existing SL systems to better 

accommodate noisy labels (e.g., rule-post pruning for decision 

trees) and (2) noise filtering detects noisy labels in the training 

data before the model is learned.  We use both types of noise 

correction algorithms in the experiments below.  We use decision 

trees rule post-processing and SVMs with soft margins both 

designed to accommodate noisy labels [19] for the former and a 

state-of-the-art algorithm called LSVM [18] for the latter.  LSVM 

uses a hybrid approach for NC that starts by using a k-Nearest 

Neighbor algorithm to select the neighborhood of similar data 

around a given instance.  LSVM then learns a local SVM on that 

local neighborhood (hence the name).  Based on the maximal 

margin principle, if the LSVM incorrectly predicts the label for 

that instance, then the label is deemed noisy.  Furthermore, to 

avoid accidently injecting noise into the training data, in our 

experiments, noisy labels are removed rather than being replaced. 
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3. METHODOLOGY 
The central idea for the BoU meta-reasoning (MR) algorithm is to 

first break up the training data into special BoU clusters 

containing sessions with similar student interactions (i.e., 

instances) from a single distribution.  At the same time, the cluster 

should sufficient data with multiple learning outcomes (i.e., 

labels) to support a meaningful analysis in the form of a SL 

model.  In a very real sense, BoU clusters allow us to “zoom in” 

and get a more detailed analysis on highly diverse LO data than 

could be obtained using all the data together. 

Next, our algorithm learns a separate model based on the training 

data in each BoU cluster.  By using only the data in a single 

cluster, BoU MR guarantees that each model is more detailed and 

expressive on member data than a single model trained on all data 

together.  After learning the separate models, our algorithm uses a 

localized estimate of the accuracy for each model by comparing 

the predicted and actual labels for the cluster members:  correct 

when the predicted matches the actual; otherwise, incorrect.  

Based on the predominant correct/incorrect label, BoU MR thus 

assigns each BoU cluster a type: correct BoU clusters where the 

model is doing well and incorrect clusters where the model is 

struggling on troublesome data.   

Figure 1 provides an example of four such BoU clusters.  In this 

figure, the clear circles are correct training data instances and grey 

circles are incorrect instances.  Clusters 1 and 2 contain only 

correct instances and are thus flagged as correct.  Note that 

Cluster 1 contains only a single label while Cluster 2 contains 

both labels—both are considered correct based on the localized 

estimate.  Clusters 3 and 4 are flagged as incorrect since they 

contain a mix of both correct and incorrect instances. 

 
Figure 1. Example BoU Clusters.  The grey data instances are 

those on which the model failed to predict the correct label. 

After identifying the aforementioned clusters, BoU MR takes 

steps to improve the models for incorrect clusters.  This is done by 

using either a feature selection or noise correction algorithm 

selectively on only the incorrect clusters.  In this way, the models 

are left alone on correct clusters where they are already doing 

well.  The BoU MR then relearns each model for a previously 

incorrect cluster using the refined data in that cluster. 

Taken together, the combination of multiple, expressive models 

learned on highly diverse LO data and selective improvement on 

clusters containing troublesome data allows our BoU to improve 

the overall effectiveness of SL models for analysis of student 

interactions with LOs. 

3.1 BoU Essential Components 
Here we discuss the basic process and equations used for creating 

the clusters and deciding whether they are correct or incorrect.  

First, to make use of the BoU notion of clusters to find clusters 

with a single distribution that support meaningful analysis, we use 

a semi-supervised clustering (SSC) algorithm [9] to cluster the 

training data.  Briefly, SSC algorithms create clusters based on 

both similarity in the training data and additional information 

available on how the session instances should be clustered (e.g., 

constraint that two instance must/cannot be clustered together).  

For our purpose—to find BoU clusters, the additional information 

that we incorporate for each session instance is whether or not the 

model predicts the label correctly or incorrectly.  The actual SSC 

algorithm used is based on the k-Means variant discussed in Kulis 

et al. [9].  The modified objective function for BoU-style clusters 

  can be expressed as: 

∑ ∑ ‖     ‖
 

     
 ∑           

         

 
      (1) 

where   is the set of cannot-link constraints,     is the penalty 

cost for violating a constraint involving points    and    and    

refers to the model prediction for    s.t.                        .  

The first term in Eq. 1 is the k-Means objective function that 

chooses the closest centroid while the second term is a penalty 

function for assigning a data instance deemed correct to a cluster 

with incorrect instances (or vice-versa).  The training data is 

assigned to the cluster that minimizes this objective function.  This 

predisposes the SSC algorithm to find high similarity clusters that 

have either predominately correct or incorrect instances.  Note 

that clusters with predominately incorrect labels are guaranteed to 

contain multiple labels since a single-labeled cluster would be 

trivial for the model. 

Second, the BoU needs to be able to evaluate each cluster to 

decide whether the model for that cluster needs improvements.  

Here we propose using a localized estimate of model performance 

to decide whether the model needs improvement to accommodate 

troublesome data.  This estimate can be expressed as: 

        ∑                 
    |  |  (2) 

where    is the cluster under consideration,    is the cluster 

member, and    refers to the model prediction.   

Third, we decide whether each BoU cluster is correct or incorrect.  

The decision making strategy here is to make use of a specified 

confidence interval to identify correct clusters where 

improvement is not needed: 

         {
                     

                   
 (3) 

where     is the localized estimate (Eq. 2) and   is the purity 

threshold parameter for the confidence interval.  Eq. 3 is based on 

work in Dasgupta & Hsu [5] where clusters are evaluated using 

confidence intervals on the correctly-labeled member data to 

decide whether to request further labels for the member data. 

Finally, we also create a hierarchy of BoU clusters.  The BoU uses 

a hierarchical, top-down approach that iteratively (1) splits the 

data into clusters and identifies the correct and incorrect clusters, 

and (2) selectively improves the models on incorrect clusters.  

Specifically, at each layer of the cluster dendrogram, the SSC 

algorithm previously described splits the data into BoU clusters 

(Eq. 1).  Next, each cluster from the split is assigned a type (Eq. 3) 

based on the localized estimate (Eq. 2).  If the cluster is deemed 
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incorrect, the specified improvement algorithm (cf., Section 2.2) 

runs using only the member data in that cluster and the model is 

relearned on that refined data.  Correct clusters skip both steps and 

instead inherit the model from their parent cluster.  After BoU 

algorithm stops splitting, the clusters and relearned models at the 

leaves of the dendrogram are used to make up the ensemble that 

predicts the labels for new data.  The leaves are used so that each 

training instance belongs to only a single cluster thus avoiding 

confusion on cluster membership.  Ultimately, this ensemble 

predicts the labels for a new instance by selecting the cluster 

containing the most similar instances and then using the model 

associated with that cluster to predict the label. 

An example of this top-down approach is given in Figure 2 with 

the type, improvement, and model for each cluster.  In this 

example, we use FS as the model improvement algorithm that 

gives a set of relevant features ( ).  This figure shows how the 

clusters are split and the models are inherited or relearned from 

one layer to the next.  The original cluster starts with the model 

learned on all the data.  After the improvement (  ) and relearn 

steps     , this cluster is split into correct and incorrect clusters.  

The correct cluster uses the model from the parent, while the 

incorrect cluster goes through model improvement and relearning 

before being split again.  As shown in the last split, one child can 

retain the parent model      while the other goes through the 

improvement and relearn steps. 

 

Figure 2. Cluster Splits from our BoU MR along with Type, 

FS Improvement ( ), and Model ( ).  The double width 

borders denote the final set of clusters used. 

3.2 BoU MR Algorithm 
Here we present the complete BoU MR algorithm, as shown in 

Figure 3.  Before we begin, there are two general guidelines we 

adopt to decide when to stop splitting the clusters.  First, to avoid 

breaking up data in a single distribution, we stop splitting when a 

correct cluster is found with a high purity in terms of correctly-

labeled instances (i.e., purity stop).  Second, to support 

meaningful analysis, we stop splitting when clusters lack 

sufficient coverage (based on the percentage of the training data 

they contain) to learn a detailed model (i.e., coverage stop). 

Our algorithm starts with a single cluster with all the training data 

and a model trained on that data.  The algorithm runs recursively 

to create the dendrogram of BoU clusters.  First, this algorithm 

uses Eq. 3 to compute the type for the BoU cluster (line 1).  If the 

type is incorrect, the specified improvement algorithm is used on 

that BoU cluster’s member data (cf., Section 2.2) and its model is 

relearned (lines 2-3). Subsequently, the cluster’s type is updated 

based on the relearned model (line 4).  If a cluster’s type is now 

correct, then there is a purity stop and the algorithm returns the 

BoU cluster and its relearned model.  Otherwise, the algorithm 

splits the training data into two new BoU clusters using the SSC 

algorithm previously discussed (Eq. 1).  If both the new clusters 

meet the minimum coverage requirement (line 6), containing a 

percentage of the training data above the threshold  , then the 

algorithm runs recursively on the two new BoU clusters with the 

parent’s model.  Otherwise, there is a coverage stop due to 

insufficient instances and the parent cluster/model is returned.  

The BoU MR algorithm runs in polynomial time based on the 

number of recorded sessions and, as such, runs fast even as the 

number of LOs increases.  The actual time complexity is 

dependent on the clustering algorithm: O(IDF) where I is the max 

iterations, D is the number of session instances, and F is the 

number of features.  Further, the actual BoU clusters and the SL 

models can be computed offline to accommodate thousands of 

LOs.  The real-time analysis only consists of mapping the new 

session to the BoU cluster based on current student interactions 

with the LO.  This can be done very quickly as the number of 

clusters is much less than the total number of recorded sessions. 

Some readers may argue that, by looking at the way the clusters 

are identified hierarchically, we are actually introducing 

overfitting on the data when creating the BoU clusters.  But recall 

that the BoU MR algorithm is designed to prevent the labels from 

having too much influence on the BoU clusters: its clusters are 

created based on both feature similarity and labels, and not just 

labels alone.  Additionally, the coverage stop also helps in this 

regard by acting as a regularizer and rejecting small clusters. 

                                            

                     

                              

                             

                                              
(1)                         // check purity stop 

(2)                        

(3)                          

(4)                                 // check purity stop 

(5)                              // split the cluster 

(6)                                     
                       // check coverage stop 

(7)                                        

(8)                                        

(9)                    

(10)             

(11)      

(12)           

(13)           

Figure 3. BoU MR Algorithm. 

4. IMPLEMENTATION AND RESULTS 
Here we start by describing the experimental setup including the 

learning object (LO) datasets.  In Section 4.1, we provide results 

demonstrating the effectiveness of using the BoU to learn multiple 

models on the LO datasets (Objective 1).  In Section 4.2, we 

provide results for using the BoU to improve existing models with 

feature selection and noise correction algorithms (Objective 2). 

First, we use three widely studied SL systems in the experiments 

below: artificial neural networks (ANNs), support vector 

machines (SVMs), and decision trees (DTs).  We use the Java 

implementations for all three from the Weka library with the 

parameters values suggested in Witten et al. [19].  The BoU MR 
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algorithm uses a Java implementation for the semi-supervised 

clustering algorithm based on Kulis et al. [9].  We use of 0.1 for 

the purity threshold ( ) and a 0.1 for the coverage threshold ( ) 

both fine-tuned based on empirical results.  Additionally, this 

clustering algorithm normalizes the student interactions features 

to the same range before creating the clusters.  For the model 

improvement algorithms, we use a Java implementation of Lasso 

feature selection based on the R glmnet package [7].  We use the 

C++ implementation of LSVM noise correction from the FaLKM-

lib package [17].  We use the values suggested in Segata [17] for 

the numerous parameters for LSVM.    

Second, the intelligent learning object guide (iLOG) LO datasets 

used in the experiments are based on a three year deployment of 

16 learning objects to introductory CS courses at the University of 

Nebraska, Lincoln [11].  During this deployment, there were over 

5000 separate sessions between students and LOs.  Large amounts 

of data were collected including (1) student interactions with the 

LOs during the tutorial, exercise, and assessment components 

(e.g., time spent on a page), (2) student demographic data (e.g., 

gender), (3) scores on the CS placement test [12], and (4) survey 

responses to both MSLQ and evaluation Likert surveys.  The 

iLOG datasets distill the data collected into the instances, features, 

and labels necessary for supervised learning.  Each instance 

represents a student-LO session with the features summarized in 

Table 1.  The label for an instance is whether or not students 

passed the LO assessment component (i.e., if a student achieves   

70% then she passes, otherwise she fails).  As shown in Table 1, 

there are relatively few changes in the features collected from one 

year to the next.  The increase in instances is the result of 

deployment to a larger number of courses.   

We use the iLOG datasets in the experiments because they 

exemplify the aforementioned problems with SL systems in the 

following manner.  First, the LOs were deployed to students in 

introductory CS courses with highly diverse backgrounds (e.g., 

CS majors, nonmajors, etc.) resulting in multiple distributions in 

the resulting datasets.  Second, the LOs were deployed online 

using the Moodle Learning Management System and students 

were required to take the LOs and part of their course grades 

(5%).  The difficulty of writing LO content suitable for all 

students and the online deployment, taken together, resulted in 

both irrelevant features and noise in the data tracked.  For 

example, students trying to achieve high assessment scores 

without spending time on the tutorial content.  Thus, these 

datasets are prime candidates for using FS and NC. 

Table 1. Summary of the iLOG datasets in the experiments. 

Features iLOG 2008 iLOG 2009 iLOG 2010 

Metadata 5 5 5 

Tutorial 10 10 10 

Exercises 20 20 16 

Assessment 10 10 10 

Student Demo 9 9 9 

Placement 16 16 16 

MSLQ 47 45 50 

Evaluation 10 9 9 

Total 127 124 125 

Instances iLOG 2008 iLOG 2009 iLOG 2010 

Fail 426 738 1228 

Pass 604 1131 2215 

Total 1030 1869 3443 

Finally, the experiments below compare the single model with the 

multiple models from the BoU.  For all experiments, we provide 

both the test and F1 accuracy results based on ten-fold cross 

validation.  In Section 4.1, we compare a single model to the BoU 

models learned using three SL systems (ANN, SVM, and DTs).  

In Section 4.2, we compare a single model to the BoU models 

after refining the data using FS and NC.  This results in six (FS or 

NC × ANN, SVM, or DT) configurations. 

4.1 Multiple Model Investigation 
Table 2 provides the test and F1 accuracy, on the iLOG datasets, 

for single model and the BoU multiple models.  The BoU multiple 

models provide higher test and F1 accuracy than a single model 

on all three iLOG datasets.  These results are reasonable given 

that the BoU can break up the iLOG dataset to better 

accommodate data from multiple distributions, for example, LOs 

deployed to different courses, students with different majors, etc.   

To probe further into how the BoU multiple models accommodate 

the iLOG data, Figure 4 provides the actual decision trees on the 

iLOG 2008 dataset created using a single model and multiple 

models based on three clusters.  (The trees for the iLOG 2009 and 

2010 datasets are similar.)  As shown in Figure 4, the trees learned 

on Clusters 1-2 have a very different idea of what features are the 

most important for predicting the labels (i.e., at the root) than the 

a single tree learned on all the data.  By using these diverse 

trees—i.e., models, the BoU MR can better model the separate 

distributions in the iLOG datasets than forcing a single model to 

accommodate all the data.  At the same time, the BoU clusters 

contain sufficient data to allow for fully expressive trees on the 

iLOG dataset.  The proof of this is that Cluster 3 actually learns 

the same tree as the single model.  Taken together, the capability 

to find diverse trees while retaining the same tree as the single 

model helps explain the BoU MR benefits to the test and F1 

accuracy results.  Additionally, BoU models learned on the local 

data provide more specific and detailed analyses than using a 

single model on all the data.  These analyses can uncover very 

interesting connections in the data that would otherwise be 

hopelessly buried in the single model such as that between 

evaluation survey questions and gender in Cluster 1.  Overall, 

these results help establish the effectiveness of BoU multiple 

models for LO analysis.   

Table 2. Test and F1 accuracy for a single model and BoU 

multiple models.  Grey cells indicate higher test accuracy 

while (*) indicates significantly higher accuracy (t-test, p <= 

0.05).  The average number of BoU clusters is also given. 

Dataset Test Accuracy F1 Accuracy Ave. #  

iLOG 2008 Single BoU Single BoU Clusters 

ANN 0.69 0.74* 0.63 0.67 1.90 

SVM 0.68 0.73* 0.64 0.69* 2.10 

DT 0.72 0.73 0.68 0.68 4.60 

iLOG 2009 Single BoU Single BoU Clusters 

ANN 0.69 0.74* 0.60 0.67* 1.90 

SVM 0.67 0.69* 0.58 0.61* 2.00 

DT 0.62 0.65 0.52 0.56 2.00 

iLOG 2010 Single BoU Single BoU Clusters 

ANN 0.70 0.72* 0.56 0.61 3.20 

SVM 0.69 0.71 0.57 0.62* 3.60 

DT 0.65 0.67* 0.50 0.51 2.30 
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Figure 4. Decision trees on the iLOG 2008 dataset created using a single model and multiple models based on BoU clusters. 

On the other hand, as shown in Table 2, the accuracy (even for 

BoU multiple models) is relatively low on all three iLOG datasets 

(e.g., test accuracy in the 60s for DTs).  As alluded to earlier, 

these datasets contain both irrelevant features and noise both of 

which are problematic for SL systems in general.  In the next 

section, we show how the BoU MR can use feature selection and 

noise correction algorithms to break through this ceiling and 

improve both test and F1 accuracy. 

4.2 Model Improvement Investigation 

4.2.1 Lasso Feature Selection 
Table 3 provides the test and F1 accuracy for the single model and 

the BoU multiple models both improved using the Lasso feature 

selection on the iLOG datasets. 

Table 3. Test and F1 accuracy for a single model and BoU 

multiple models both using Lasso feature Selection (FS).  Grey 

cells indicate higher test accuracy while (*) indicates 

significantly higher accuracy (t-test, p <= 0.05).  The average 

number of BoU clusters is also given. 

Dataset Test Accuracy F1 Accuracy Ave. #   

iLOG 2008 Single BoU Single BoU Clusters 

ANN+FS 0.72 0.75* 0.65 0.69* 2.00 

SVM+FS 0.72 0.74* 0.66 0.70* 2.00 

DT+FS 0.74 0.75 0.70 0.71 2.43 

iLOG 2009 Single BoU Single BoU Clusters 

ANN+FS 0.71 0.76* 0.63 0.68* 2.00 

SVM+FS 0.71 0.70 0.63 0.62 2.00 

DT+FS 0.66 0.69* 0.55 0.60* 2.00 

iLOG 2010 Single BoU Single BoU Clusters 

ANN+FS 0.73 0.74 0.58 0.60 2.80 

SVM+FS 0.72 0.72 0.61 0.61 3.30 

DT+FS 0.67 0.70* 0.52 0.55 2.30 

First, we observe that using Lasso on the training data allows 

nearly across-the-board increases in test and F1 accuracy for both 

single and BoU multiple models.  Additionally, the increases in 

accuracy reported between Tables 2 and 3 are generally 

statistically significant (t-test, p <= 0.05).    

To explain, the Lasso feature selection identifies and removes 

irrelevant features from the training data.  Since these features are 

unimportant to the actual label, had they been incorporated into 

the model by the SL system, they would tend to confuse and 

distort the model lowering predictive accuracy and making the 

model less useful for analysis of student learning outcomes. 

Second, using Lasso, we observe that the BoU multiple models 

still provide generally higher test and F1 accuracy than does a 

single model on all three iLOG datasets.  As previously discussed 

the BoU retains the capability to break up the iLOG datasets and 

learn a separate model on each distribution.  The BoU also has the 

capability to further improve and “fine-tune” these models using 

Lasso selectively only on the clusters that are deemed to contain 

troublesome data.   

To probe further into how the BoU uses Lasso selectively to 

improve the models, Table 4 provides an example on the iLOG 

2009 dataset of the number of relevant features used for the single 

model and separately for the models in BoU clusters.  (The results 

for the iLOG 2008 and 2010 datasets are similar).  As shown in 

Table 4, for a single model, Lasso removes almost half the 

features belonging to the exercise and MSLQ categories while 

mostly retaining features in the other categories.  Lasso on BoU 

clusters gives more diverse results on the features removed.  

Lasso on cluster 1 removes additional features from the tutorial 

and assessment categories compared to that for the single model.  

Next, Lasso on cluster 2 removes a similar number of features as 

Lasso for the single model. Lastly, the BoU MR does not use 

Lasso at all on cluster 3 as this cluster is deemed free of 

troublesome data.  Our algorithm prevents Lasso from removing 

locally relevant features just because they are irrelevant on the rest 

of the training data.  This, in turn, prevents the model from being 

distorted by removing relevant features necessary for predicting 

the learning outcome for this cluster.  Taken together, the 
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capability to use Lasso selectively—thus allowing the relevant 

features to be customized for each cluster—helps explain the BoU 

benefits to the test and F1 accuracy results.  Additionally, Lasso 

used separately for models provides additional insights that do not 

show up when Lasso is used for a single model; for example, 

suggesting that the students with sessions in cluster 1 are getting 

less out of the LO tutorial and assessment.  Overall, these results 

help establish that BoU can further improve the multiple models 

for LO analysis using Lasso. 

Note that the capability to use Lasso feature selection to improve 

models is important for educational data mining (EDM) in general 

since EDM datasets often contain numerous irrelevant features.  

However, these datasets are also often highly diverse forcing 

Lasso to make difficult decisions to retain features as relevant that 

are irrelevant in many areas or remove features because they are 

only relevant to a minority of the training data.  The advantage of 

using BoU is that its clusters allow for multiple, expressive 

models.  Recall the discussion for Table 4 where Lasso found very 

different feature vectors when used on different clusters.  

Combined with the identical decision trees previously discussed 

(cf., Figure 4), this supports our claim that BoU clusters contain 

sufficient data to allow for more effective utilization of Lasso 

separately on the data in each cluster.  

Table 4. Number of relevant features selected by Lasso feature 

run on all the training data (Single) and run separately on the 

three BoU clusters (C1-C3).  The total number of features is 

also included for reference (2009). 

Features 2009 Single C1 C2 C3 

LO Data 5 5 5 4 5 

Tutorial 10 7 3 8 10 

Exercises 20 11 9 11 20 

Assessment 10 7 6 9 10 

Student Demo 9 9 6 6 9 

Placement 16 13 9 10 16 

MSLQ 45 22 19 24 45 

Evaluation 9 9 6 6 9 

Total 124 83 63 78 124 

4.2.2 LSVM Noise Correction 
Table 5 provides the test and F1 accuracy results, on the iLOG 

datasets, for the single model and the BoU multiple models both 

using the LSVM noise correction. 

Table 5. Test and F1 accuracy for a single model and BoU 

multiple models both using LSVM noise correction (NC).  

Grey cells indicate higher test accuracy while (*) indicates 

significantly higher accuracy (t-test, p <= 0.05).  The average 

number of BoU clusters is also given. 

Dataset Test Accuracy F1 Accuracy Ave. #   

iLOG 2008 Single BoU Single BoU Clusters 

ANN+NC 0.73 0.75* 0.65 0.69 2.00 

SVM+NC 0.72 0.74 0.68 0.70* 4.10 

DT+NC 0.73 0.75* 0.68 0.71 4.00 

iLOG 2009 Single BoU Single BoU Clusters 

ANN+NC 0.72 0.75* 0.56 0.67* 2.00 

SVM+NC 0.70 0.70 0.50 0.62* 2.00 

DT+NC 0.64 0.69* 0.36 0.59* 2.00 

iLOG 2010 Single BoU Single BoU Clusters 

ANN+NC 0.71 0.75* 0.52 0.61* 4.10 

SVM+NC 0.72 0.70 0.49 0.60 3.50 

DT+NC 0.67 0.70* 0.36 0.54* 2.50 

First, as with Lasso, using LSVM noise correction allows nearly 

across-the-board improvements in accuracy.  To explain, LSVM 

improves the model by flagging potentially noisy instances whose 

labels (i.e., pass/fail) do not match those in nearby instances with 

similar features.  These noisy instances would otherwise distort 

the model since they provide contradictory labels and, thus, lower 

predictive accuracy. 

Second, using LSVM, on all three datasets the BoU multiple 

models provide generally higher test and F1 accuracy than a 

single model.  Again, the BoU can “fine-tune” these models using 

LSVM selectively only on the clusters with troublesome data.  

Now, as a whole, the total number of instances flagged as noisy 

by LSVM was comparable when used on the all training data and 

selectively on the BoU clusters.  However, LSVM for multiple 

models had two advantages. First, by breaking up the training 

data, the BoU MR simplified the task of distinguishing between 

instances that actually have noisy labels and those in close 

proximity to instances with truly different labels.  Second, by 

using LSVM selectively, our algorithm was able to use LSVM 

aggressively on clusters where the model was struggling, such as 

clusters containing sessions where students tried to game the 

system, without worrying about damaging clusters where the 

model was already doing well by removing training data 

mistakenly deemed noisy.  Overall, these results help establish that 

BoU MR can further improve the multiple models for LO analysis 

using LSVM. 

Once again, using LSVM to improve models is important on 

EDM datasets that contain relatively large amounts of noise.  

However, LSVM used only once on a highly diverse datasets may 

struggle to find concentrations of label noise and could end up—

in its pursuit of noise to correct—flagging data near the decision 

boundary as noisy.  Again, BoU MR helps in this regard by 

allowing for more effective LSVM focusing on the clusters 

containing large amounts of noise. 

5. CONCLUSIONS AND FUTURE WORK 
Supervised learning (SL) systems have been used for the analysis 

of student interactions with learning objects (LOs).  SL systems 

learn a model from previously collected training data that can 

accurately predict the labels for new data assuming that the 

training data comes from a single distribution and is relatively 

clean.  Unfortunately, LO data is highly diverse from multiple 

distributions and likely to contain noise which can limit the 

effectiveness of single models.  Learning multiple models and 

improving models on troublesome training data is intuitively a 

good solution.  However, identifying areas that capture only data 

from a single distribution without fitting the noise is far from 

trivial.  We propose a new BoU meta-reasoning (MR) algorithm 

that starts by breaking up the data into clusters designed to 

separate troublesome data (incorrect cluster) from data where the 

model is doing well (correct cluster).  Our algorithm then uses a 

separate model for each cluster.  On the incorrect clusters, our 

algorithm takes steps to improve the model by using feature 

selection or noise correction on the training data before relearning 

the model.  We have shown empirically on three LO datasets that 

the BoU multiple models allow for higher predictive accuracy 

than single models.  Furthermore, we have shown that the BoU 

MR can further improve the models for LO analysis using feature 

selection and noise correction algorithms.  Our results also 

suggest that BoU MR may also be able improve feature selection 

and noise correction algorithms―both important for educational 

data mining.  Feature selection used separately on the BoU 

clusters makes it easier to identify features that are relevant only 
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on certain areas.  Further, noise correction focused on the clusters 

makes it easier to remove noise instead of accidently disrupting 

the decision boundary. 

In this paper, we have established effectiveness of using the BoU 

multiple models.  In the future, we intend to advance our BoU MR 

down two different lines of research.  First, we intend to further 

investigate how the BoU multiple models can provide 

independent, high-level guidelines on which type of student 

interactions are associated with the learning outcomes.  We have 

already taken the first step by showing that multiple models allow 

for diverse decision trees.  The next step is the analysis of the 

ANN and SVM models using rules extraction, sensitivity analysis, 

or inverse classification techniques [3].  This research has strong 

pedagogical implications for students.  Such analysis could, in 

real-time, inform students about the probable success/failure of 

their study strategies, for example, warning a student during the 

LO that she may not be spending enough time on the tutorial 

section.  Second, we intend to expand the use of BoU models to 

other educational data mining (EDM) areas such as intelligent 

tutoring systems (ITS) and virtual learning platforms (VLP). 

These areas share some of the same properties that BoU is 

designed to address (e.g., noise) but have additional properties not 

found in LOs (e.g., “bags” of instances in VLP).  To this end, we 

intend to evaluate how the BoU models stack up against previous 

work on learning accurate models in these areas (e.g., 

Rajibussalim [14] for ITS; Zafra & Ventura [20] for VLP). 
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ABSTRACT 

Massive Open Online Courses (MOOCs) are an increasingly 

pervasive newcomer to the virtual landscape of higher-education, 

delivering a wide variety of topics in science, engineering, and the 

humanities. However, while technological innovation is enabling 

unprecedented open access to high quality educational material, 

these systems generally inherit similar homework, exams, and 

instructional resources to that of their classroom counterparts and 

currently lack an underlying model with which to talk about 

learning. In this paper we will show how existing learner 

modeling techniques based on Bayesian Knowledge Tracing can 

be adapted to the inaugural course, 6.002x: circuit design, on the 

edX MOOC platform. We identify three distinct challenges to 

modeling MOOC data and provide predictive evaluations of the 

respective modeling approach to each challenge. The challenges 

identified are; lack of an explicit knowledge component model, 

allowance for unpenalized multiple problem attempts, and 

multiple pathways through the system that allow for learning 

influences outside of the current assessment.  

Keywords 

Probabilistic Graphical Models, Bayesian Knowledge Tracing, 

MOOC, Resource model, edX 

1. INTRODUCTION 
Massive Open Online Courses (MOOCs) are a quickly emerging 

modality of learning in higher-education. They consist of various 

learning resources, often lecture videos, etexts, online office 

hours, assessments which include homework and exams, and have 

a specific time in which they begin and end, often corresponding 

closely to that of their residentially offered counter-parts. While 

the efficacy of MOOCs compared to their residential offerings is 

an open question; from the viewpoint of educational research, 

MOOCs provide several substantial advantages, most notably the 

detailed digital trail left by students in the form of log data and the 

size of the student cohorts, which are often several orders of 

magnitude larger than typical on-campus-only offerings. 

Unlike Intelligent Tutoring Systems (ITS), MOOCs do not 

currently provide tutorial help on demand at the points of need; 

instead, the knowledge is self-sought and supplied by a 

redundancy of information across various types of resources 

resulting in a variety of student selected resources and pathways 

through the system. This rich data provided by MOOCs presents 

an opportunity to investigate the efficacy of student behavior 

under varying conditions; however, MOOCs currently lack a 

model of learning with which to instrument this exploration. In 

this paper we will show how existing learner modeling techniques 

based on Bayesian Knowledge Tracing can be adapted to the 

inaugural course, 6.002x: circuit design, on the edX MOOC 

platform. We identify three distinct challenges to modeling 

MOOC data in section 2, followed by a description of our 

evaluation methodologies in section 3, and finally results of the 

predictive evaluations of the respective modeling approach to 

each challenge in section 4. 

1.1 Anatomy of the MOOC 
The inaugural course on the edX platform, 6.002x (Spring 2012), 

was a 14 week-long online course featuring video lectures in 

weekly sequences interspersed with lecture problems, an online 

textbook, a discussion forum, and a course wiki. The web 

interface for the course is shown in Figure 1. While the  sequence 

of videos and problems is suggested in the form of a timeline at 

the top of the interface, the student can take any path through the 

material they choose including skipping or revisiting content. 

 

Figure 1. The interface for the 6.002x MOOC on edX. This 

screenshot shows a student answering a problem that is part of the 

Week 1 lecture sequence. 

Student grades were based on 12 homework assignments and 12 

virtual labs (weighted 15% for each category, with unlimited 

answer attempts allowed), a midterm and a final exam (30% and 

40% respectively, with 3 attempts allowed). Although lecture 

problems did not count towards the grade, they were still marked 

correct and incorrect, with instant feedback as given on the 

homeworks. There were 289 scored elements (i.e. counting 

problem subparts) in 104 lecture sequence problems, 197 in 37 

homework problems, 26 in 5 midterm problems and 47 in 10 final 

exam problems. The homework interface and scoring mechanism 

had some nuances that deserve elaboration. 

Weekly homework assignments consisted of several problems 

which were all displayed on a single web page. A typical problem 

consisted of a figure plus several answer field “subparts” that 

prompted the user for input. Correctness feedback would be 

shown to the right of the answer fields in the form of a red “X” for 

incorrect (or blank answers) and a green checkmark for correct 

answers. This feedback was displayed after the student clicked the 

problem’s "check" button, which simultaneously checked all 

answer fields within the problem. Students could answer the 

subparts in any order they chose however several problems’ 

subparts required the incorporation of answers from a previous 

subpart. If a student answered all the subparts before their first 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 137



www.manaraa.com

“check”, the order in which she answered the subparts was not 

known, however many students elected to click the check button 

after each consecutive answer. Unlike most ITSs, homework was 

scored based on the last answer entered by the user instead of the 

first. 

1.2 Dataset 
The course drew 154,000 registrants, however; only 108,000 

entered the course with around 10,000 completing the course 

through the final. Among those, 7,158 received a certificate for 

having earned at least a 60% weighted average. Our dataset 

consisted of 2,000 randomly chosen students from the certificate 

earners. A further reduction of the dataset was made by randomly 

selecting ten problems (and their subparts) from each of the three 

types of assessments; homework, lecture sequence, and exam 

problems.  

The data for this course originated from JSON log files produced 

on the Amazon EC2 cloud, where the edX platform is hosted. The 

original log files were separated out into individual user files and 

the JSON records were parsed into a human readable time series 

description of user interaction with components of the MOOC. 

The final data preparation step compiled an event log by problem, 

consisting of one line per student event relevant to that problem. 

This included time spent on the event, correctness of each subpart, 

when the student entered or changed an answer, the attempt count 

of that answer, and resources accessed by the student before and 

between responses. An example of this data format is shown in 

Table 1. 

Table 1. Example of the event log format of our distilled dataset 

User Res  Time Resp1 Resp2 Count1 Count2 

9 video 2m 30s - - - - - - - - 

9 answer 10m 5s correct correct 1 1 

10 book 4m 41s - - - - - - - - 

10 book 40s - - - - - - - - 

10 answer 20s incorr. - - 1 - - 

10 answer 15s incorr. - - 2 - - 

10 answer 1m 8s incorr. incorr. 3 1 

10 answer 28s - - correct - - 2 

10 video 2m 10s - - - - - - - - 

10 answer 6s correct - - 4 - - 

 

1.3 Bayesian Knowledge Tracing 
Knowledge Tracing (KT) [1] comes from the motivation to 

implement mastery learning [19], where every student is allowed 

to learn skills at his or her own pace and does not continue on to 

more complex material until mastery of pre-requisites has been 

achieved. It is based on a simplification of the ACT-R theory of 

skill acquisition [2] and is tasked with making this inference of 

mastery in the Cognitive Tutors, among other ITS. To achieve this 

end, simpler mastery criterion exist such as N-correct in a row to 

master, which is used by the ASSISTments Platform in their skill 

builder problem sets [3] and in the Khan Academy tutor where the 

term proficiency is used instead of mastery [4]. In a Cognitive 

Tutor, acquirable knowledge, whether declarative or procedural, is 

defined by fine-grained atomic pieces called Knowledge 

Components (KCs), typically defined by a subject matter expert. 

Answer steps in the tutor are tagged with these KCs and a 

student’s past history of responses indicates his or her level of 

mastery of the KC. In this context, mastery is inferred to have 

occurred when there is a high probability (usually >= 0.95) that 

the KC is known by the student.  

The initial KT model was not introduced as a Bayesian model; 

however, its formulas were found [6] to be perfectly represented 

by a Dynamic Bayesian Network [20], which has become the 

standard representation referred to as Bayesian Knowledge 

Tracing (BKT). The standard BKT model is defined by four 

parameters; prior knowledge p(Lo)
1, probability of learning p(T), 

probability of guessing p(G), and probability of slipping p(S). 

Based on these parameters, inference is made about the student’s 

probability of knowledge at time opportunity n, p(Ln). The 

parameters and inferred probability of knowledge can also be used 

to predict the correctness of a student response with: 

 (        )   (  )   (  )     (   )   ( ) 

KCs vary in difficulty and amount of practice needed to master on 

average, so values for these parameters are KC dependent and can 

be fit to training data such as log data from a previous cohort of 

students. Parameter fitting is often accomplished using 

Expectation Maximization (EM) or a grid-search of the 

parameters that maximizes a loss function such as sum of squared 

residuals of the predicted probability of a correct answer and the 

observed correctness. Neither fitting procedure has proved 

consistently superior to the other [5, 21], however; grid-search, 

while faster at fitting the basic BKT model, grows exponentially 

with the number of parameters which is a concern for extensions 

to BKT with higher parameterization. With both methods of 

parameter fitting, the objective is to define parameters that result 

in a projection of performance that best matches the observed 

data, which is the students’ temporal sequence of correct and 

incorrect responses to questions of a particular KC.  

The use of Knowledge Tracing has two stages, the stage in which 

the four parameters are learned, and the stage where an individual 

student’s knowledge is being inferred from their responses. 

During the inference stage, the probability of knowledge at time n, 

given an observation, is calculated from a student’s response with 

the following when a correct response is observed: 

 (           )  
 (  )   (  )

 (  )   (  )    (   )   ( )
 

And with the following when an incorrect response is observed: 

 (             )  
 (  )   ( )

 (  )   ( )    (   )   (  )
 

The p(Ln) on the right side of the formula is the prior probability 

of knowledge at that time, while p(Ln|Evidencen) is the posterior 

probability of knowledge calculated after taking an observation at 

that time into account. Both formulas are applications of Bayes 

Theorem and calculate the likelihood that the explanation for the 

observed response is that the student knows the KC. Since the 

student will be presented with feedback, there is a chance to learn. 

The probability the student will learn the KC from the opportunity 

is captured by this formula which calculates the new prior after 

adding in the probability of learning: 

 (  )   (                )   (                 )
  ( ) 

These formulas are used in the task of determining mastery, 

however; this model of knowledge has been extended to serve as a 

                                                                 

1 The name “P(Lo)” was used to denote the prior parameter in [1]. 

In a BKT model, this is symbolically equivalent to p(L1). 
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platform to study learning phenomenon [7, 8, 9]. It is this capacity 

for discovery that we aim to enable in MOOCs by adapting BKT 

approaches. 

2. Model Adaptation Challenges  
In order to build a foundation for measuring learning phenomena 

in the MOOC, several differences between MOOCs and 

Intelligent Tutoring Systems need to be addressed. The first is the 

lack of a subject matter expert mapping of the KCs associated 

with questions in the system. The second challenge is the attempt-

until-correct scoring of the homework and lecture sequence 

problems. Lastly, we will address the open interface of the virtual 

learning environment which allows for users to take different 

pathways through the course which influences learning rates 

within a KC differently depending on path. 

2.1 Lack of a KC model 
The term “learning” can have broad meanings, however; in 

mastery contexts it is referred to with respect to a particular skill, 

or knowledge component being acquired. The mapping of these 

skills to questions, commonly referred to as a Q-matrix [10], as 

well as the enumeration of the skills, often comes from a subject 

matter expert. These skills have been referred to as cognitive 

operations in the psychometrics literature [11] and the processes 

of identification of skills is commonly referred to as cognitive task 

analysis in the context of ITS [12] and expert systems. Learning 

curves analysis [13], a KC mapping evaluation technique, asserts 

that evidence of a good skill mapping is a monotonically 

decreasing error rate across opportunities to answer questions 

within a skill. Similarly, fluency is expected to increase 

(decreasing time to solve) across correct answers to a particular 

skill. A unidimensional view of questions within a MOOC or a 

subject such as Geometry, for instance, would result in a noisy 

performance and fluency plot since error rates and response times 

would jump as soon as new topic material was introduced in the 

curriculum. 

While subject matter expert defined knowledge components or 

learning objectives are planned for select future MOOC offerings, 

they are not common and do not exist in the 6.002x course data 

used in this paper. Therefore, our goal was to utilize elements of 

the course structure to inform a mapping of KCs to questions. We 

chose to leverage the problem and subpart structure of 

assignments, where the problem itself would serve as the KC and 

its subparts would be the questions belonging to the KC. The 

rationale for this choice was that the professor of the course often 

has a particular concept in mind that they wish to tap with each 

problem. Performance on the subparts is evidence of the student 

grasping this concept. The benefit to this type of mapping is that it 

is domain agnostic and can be used as a baseline KC model for 

any MOOC. The drawback is that it does not allow for 

longitudinal assessment of learning over more than one week 

since answers to a given KC will only occur within a problem in a 

particular week’s assignment. Reduced model fit is another 

drawback as Corbett & Conrad [14] evaluated a similar superficial 

mapping of questions to course problem structure and found that 

this indeed sacrificed achieving more systematic, smother learning 

curves. Nevertheless, we believe this mapping is a reasonable start 

which allows for phenomenon to be studied within a problem 

(which we coin “problem analytics”) and the methods and models 

described here can be applied with a different KC model swapped 

in, derived by a subject matter expert, inferred from the data, or a 

hybridization of the two [15].  

2.1.1 Basic model definition 

 

Figure 2. The basic model – a retrofit BKT model to capture 

answers to multiple questions in a single time slice and using 

homework problem as the KC. The number of parameters in this 

model is:   

Our most basic retrofitting of the BKT model to the MOOC is 

shown in Figure 2. In this model, which we will refer to as the 

“basic” model, the homework problem is the latent knowledge, K, 

and the observed questions are the subparts of the homework 

problem. When student knowledge is in the learned state this 

means the student has the knowledge required to answer all of the 

subparts. Whereas traditional application of BKT has only a single 

observed random variable causally linked to from the latent 

variable, in this model we had to accommodate for observation of 

multiple subpart observations at once. For example, these are the 

calculation steps for inferring the probability of knowledge at the 

second time slice when a student answers subparts one and two 

incorrectly on the first click of the problem check button and the 

third subpart correctly on the second click of the problem check 

button (leaving parts one and two unchanged). 

First, the posterior is calculated given an incorrect answer to the 

first subpart:  (               )  
 (  )  ( )

 (  )  ( )   (   )  (  )
  

Next, the posterior is updated again given an incorrect answer to 

the second subpart: 

 (                               )  
 (                )  ( )

 (                )  ( )   (                 )  (  )
  

Steps one and two are interchangeable, including when correct 

and incorrect responses are observed.  

The prior for knowledge at the second time slice is then calculated 

by applying the probability of learning to the posterior: 

 (   )   (                              )  

 (                               )   ( )  

Finally, the posterior probability of knowledge at the second time 

slice is calculated given the observation of a correct answer on the 

third question:  (             )  
 (  )  (  )

 (  )  (  )   (   )  ( )
  

2.2 Multiple unpenalized answer attempts  
The Cognitive Tutors allow for multiple answer attempts, as does 

the ASSISTments Platform, however; the scoring policy for those 

systems is to score only the first response to each question and 

students are aware of this policy. The assumption is therefore that 

the most informative response is the first response and in a 

standard application of BKT, only the first responses to questions 

are used to train and update the model. In the MOOC, three 

responses are allowed on the exam problems and unlimited 

responses on the homework and lecture sequence problems. The 

scoring policy for all problems is to score the last response. Since 
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students are aware of this policy, it cannot be assumed that the 

most informative response is the first. For example, some students 

may decide to employ a quick heuristic on their first attempt 

instead of thinking through the problem as was observed among 

male users in an intro physics course [16]. Using only the last 

response is also problematic as these responses tend to have a 

very high percent correct, at least in homework and lecture 

problems, and a large amount of information would be lost in 

trying to model learning with only these responses. It is therefore 

an open and empirical research question as to where the most 

information exists in student answer attempts and so we define a 

model that allows the data to give us the answer. Past approaches 

have used regression to set BKT guess and slip parameters based 

on a host of contextual features [22], however these models, by 

admission, have not considered multiple attempts within a 

question. 

Studies on test data where students are allowed multiple 

unpenalized attempts suggest that more information is contained 

in later responses (higher IRT discrimination) [17]. In addition to 

evaluating if a BKT model with attempt count information 

outperforms the basic BKT model in predictive accuracy, we also 

inspect the parameters of the model for each attempt count to 

observe if the trends seen in past studies reemerge in our data. 

2.2.1 Count model definition 

 

Figure 3 The count mode – conditioning question guess and slip 

on answer attempt count to allow information gained from 

responses to vary. The number of parameters in this model is: 

    (                             ) 

The guess and slip parameters of the model dictate the amount of 

information gained about the latent variable from a correct or 

incorrect response; a guess and slip of zero in the Bayesian update 

calculation would mean that the value of the responses was 100% 

reflective of the binary state of the latent variable, while a guess 

and slip of 0.50 represents the maximum uncertainty regarding a 

response. Allowing for a different guess and slip parameter 

depending on attempt count therefore allows the model to capture 

a differing amount of information gained at each attempt. This is 

our modeling approach to multiple unpenalized attempts which 

we will refer to as the “count” model.  

In the model, shown in Figure 3, count nodes, which are 

observable random variables, are added for every subpart since 

users can be on different attempt counts for different subparts. 

The size of the count nodes correspond to the number of attempt 

counts chosen to model. Inspection of the dataset showed that 

only ~4% of attempts were 5th attempts, therefore the size of the 

attempt count node was set to 6 which was also the count used for 

any attempt count over 6. This setting was fairly ad-hoc and could 

be improved upon by setting based on empirical evaluation. While 

the attempt count node contains a prior parameter, this was not 

counted as a free parameter but was instead fixed to the observed 

distribution of count attempts in the training data. 

2.2.2 Allowing for difficulty/information gain to 

differ among subparts 
Recent work has extended BKT to allow for different guess and 

slip parameters to be modeled per item in a model coined KT-

IDEM (Item difficulty effect model) [3]. In ASSISTments, each 

problem template within a skill builder problem set was allowed 

to fit different guess and slip parameters, and in the Cognitive 

Tutor this was done at the level of the problem, where all steps of 

a given KC shared a guess/slip with one another within a problem 

but steps of the same KC that appeared in a different problem 

could fit different guess and slip parameter values. In both 

systems, prediction accuracy was improved by ~15% when there 

was ample data to fit each set of parameter (6 or more data points 

per parameter). This can be seen as allowing for variation in 

question difficulty among questions in a KC, or in the case of the 

Cognitive Tutor, allowing for variation in KC performance 

depending on problem context. It can also be interpreted as 

modulating the information gained about the latent variable 

depending on the question in much the same way as the count 

nodes in the count model modulate the information gained about 

the latent variable from responses depending on attempt count. 

This item parameterization technique was applied to our MOOC 

data in the basic and count model, creating two additional models 

referred to as the “idem” and “idem count” model. In the idem 

model, the number of parameters increases to:     
(             ) and in the idem count model, increases to: 

    (             )  (                           ).  

2.3 Multiple pathways through the system 
In many virtual learning environments, particularly in K-12, 

students complete one set of problems at a time and their path 

through the system is either fixed or the interface inhibits 

switching between problem sets. In the 6.002x MOOC, multiple 

problems are displayed on a page and students are frequently 

observed returning to a problem after answering another [18]. 

Besides learning from other problems, the redundancy of 

information found among the book pages, videos, wiki, and 

discussion board also allow the student to self-select his or her 

own path to acquiring the knowledge needed to complete the 

assignments. This means that influences on learning can come 

from a variety of sources in the learning environment, unlike most 

ITS where the learning can be assumed to come from feedback 

and tutorial help provided within the problem at hand. While this 

poses a challenge, in terms of capturing the variance in student 

learning, it also provides a rich trail of information and variety of 

pathways through the system that can be data mined and modeled. 

Table 1 in section 1.2 illustrates how students can weave in and 

out of resources while answering assignment questions. It shows 

how one student answered a question correct after viewing a video 

and another student answered the same question incorrect until 

encountering a video, after which the hypothetical student 

answered the question correct. The consideration of resource 

influence on learning can be posed as a credit/blame inference 

problem, where, depending on problem answers and resource 

access in the aggregate, resources can be credited with learning or 

blamed for being ineffective. This model is at the very early 

stages of research and considers only resource type, which can be 

one of the following seven types: book, video, wiki, discussion, 

tutorial, answer to another problem, and answer to the problem at 
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hand. Up to the last five resource access events before a response 

are used, earlier events are discarded.  

2.3.1 Resource model definition  

 

Figure 4. The resource model – based off of the idem model with 

resource access information added and hypothesized to influence 

learning. The number of parameters in this model is:     
(             )  (                           ) 

The resource model was built from the idem model without 

attempt count taken into consideration. The model is the same 

except for the addition of the observable resource node, R, which 

conditions the learning parameter, p(T|R). At each time slice, the 

observable, R, is given the value corresponding to the current 

resource type being accessed. This model generalizes the idem 

model and can be made mathematically identical by removing all 

resources types except for “answer to the problem at hand”, which 

represents the standard learning parameter capturing the benefit of 

feedback. When a non-problem resource is accessed, the R node 

gets the value of that resource type and a time slice with no 

question answer input is used.  

3. Training and Evaluation Methodology 
All five models (basic, count, idem, idem count, and resource 

model) were evaluated with a 5-fold student level cross-validation 

where the 2,000 students and their respective data were randomly 

assigned to one of five bins. Models were trained on the data in 

four bins and predictions were made on the data of the students in 

the fifth bin. This training/testing procedure was repeated five 

times, such that each bin was used once as the testing set. This 

evaluation procedure was run for all models on the 10 lecture, 

homework, and exam problems sampled in the dataset with the 

exception of the resource model which was only run on the 

homework problems. The premise of a cross-validation is to 

investigate if the variance captured by the models generalizes to 

held out data. If it does, indicated by improved predictive 

performance over a simpler model, the assumption is that the 

variance captured by the more complex model is real and 

reproducible. Ideally, training can be done on a previous course 

cohort and tested on the data of a cohort from a subsequent 

offering of the course. In the absence of this kind of training/test 

data, student level cross-validation serves as a strong substitute.  

3.1 Model training details 
The models used Expectation Maximization (EM) to fit 

parameters to the training sets with the same set of ad-hoc initial 

parameter values used for all models: p(Lo) = 0.20, p(T) = 0.10, 

p(G) = 0.10, p(S) = 0.15. Due to the data being restricted to a 

limited number of computing resources at the time of evaluation, 

a low maximum EM iteration count of 5 was set to make the 

cross-fold evaluations tractable in the time period allotted. Each 

cross-validation fold for homework took on average 12.8 hours of 

compute time per model running on an Intel i5 2.6Ghz machine. 

The lowest compute time model was the basic model with 10.7 

hours per fold and the highest was the resource model with 15.1 

hours per fold. Lecture and exam problems took 1/10th the time to 

evaluate suggesting that more answer events occurred in the 

homework. For future runs, more tractable compute times could 

be sought with a more aggressive filtering of homework students 

with excessively long attempt counts or by cutting off response 

sequence at a particular count. 

3.2 Model prediction detail 
After the parameters of the model are trained, each student answer 

in the test set is predicted one student at a time and one time slice 

at a time for that student. This prediction procedure is identical to 

previous literature evaluating KT with the difference of 

accommodating for multiple responses per time slice. Walking 

through the prediction procedure; response data for the first 

student in the test set is loaded. On the first time slice, observable 

evidence, other than the response, is entered such as attempt 

counts and resource type being accessed. If there is an answer 

recorded for one or multiple subparts in the first time slice, the 

model is told which subpart or subparts were answered and makes 

a prediction of the student’s response(s) based on the parameters 

learned from the training set. There will always be at least one 

response in each time slice except for in the case of the resource 

model where a time slice can represent a resource access. This 

prediction is logged along with the actual response. After 

prediction, the model is told what the student’s real responses 

were and the model applies the Bayesian update formula to 

calculate a posterior and then applies the learning transition 

formula to calculate the new prior for the next time slice. This 

processes is repeated until the end of the student’s response 

sequence and the next student is evaluated. Past answers of a 

student in the test set are used to predict their responses in the 

next time slice, however; student responses in the test set are not 

used to aid in prediction of other students in the test set. This form 

of testing, where data is utilized temporally within an instance, is 

not typical among classifier evaluations, however it is a principled 

way of evaluating student models since a real-world 

implementation of the model would have the benefit of a student’s 

past responses in order to predict future performance.  

3.3 Accuracy metric used 
The metric chosen to evaluate the goodness of model prediction 

performance is Area Under the Curve (AUC) also known as Area 

under the Receiver Operator Curve (ROC). The metric is also 

equivalent to A’ (A-prime). It measures a classifier’s ability to 

discriminate between binary classes, in our case - between 

incorrect and correct responses. It is an accuracy metric which 

ranges from 0 to 1, where 1 represents perfect discrimination 

between responses, 0 represents perfectly inaccurate 

discrimination (always the opposite of the real value), and 0.50 

represents classifier performance that is no better than chance. 

Approximations are often used to calculate AUC, such as 

approximate integration under the true positive vs. false positive 

plot of classifier performance, however the exact calculation 

provides a much improved intuition for the metric. To calculate 

AUC exactly: enumerate every possible pairing of positive and 

negative examples (#positive examples * #negative examples). 

For each pair, check if the classifier’s prediction of the positive 

example is higher or equal to the negative example. The AUC is 

the percentage of the pairings in which this is true. The AUC 

metric is therefore a type of ranking metric. So long as all positive 

class predictions are higher than negative class prediction, a 

perfect AUC score will be achieved. Deviations from this perfect 

ranking result in lower AUC. This evaluation makes the AUC 
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metric favorable for detecting differences between two models’ 

ability to discriminate between a correct and incorrect answer.  

We calculated AUC for each problem by comparing all predicted 

responses to the actual responses to subparts of the problem. Since 

the models in our studies are primarily being used to study 

learning and performance phenomenon in the aggregate, we used 

this evaluation instead of the equally employed evaluation of 

averaging over student AUCs per problem [5]. The per student 

evaluation is more appropriate when a model’s performance at the 

individual student mastery prediction task is of primary concern.  

4. Results 
Summarized cross-validated prediction results of the four models; 

basic, count, idem, and idem count, are presented in this section 

for the three problem types; homework, lecture, and exam. In 

addition to predicting our 2,000 sampled students, the models are 

also evaluated on a smaller 200 student sample to test the 

reliability of the results with less data. These results are 

summarized in the next subsection. An analysis of the count 

model parameters is presented in section 4.2 followed by a deeper 

analysis of the IDEM model in section 4.3. A two-tailed paired t-

test over problems was used to test if the difference in AUC 

scores between models was statistically reliably different. 

4.1 All results and training using less data 
A review of the models, their salient features, and number of 

parameters is shown in Table 2. Results of predicting the 3 

problem types with the four models with sample of 200 and 2,000 

students are shown in Figure 4. We will first discuss the results of 

evaluating the 2,000 student sample. 

Table 2. Model name, parameters, and description addressing 

how the challenges described in section 2 were addressed. 

Model  Description 

basic Lack of KC model addressed by defining problems as 

KCs and their subparts as questions of the KC. Retrofit 

BKT model to allow responses to multiple questions in 

a single time slice.  

parameters = 4 

count Basic model extended to capture possible variation in 

information gained from responses due to unpenalized 

multiple answer attempts. 

parameters = 2+2·(#counts) 

idem Basic model extended to account for variation between 

questions within a KC (subparts within a problem). 

parameters = 2+2·(#subparts) 

idem 

count 

IDEM model with multiple attempt extension. 

parameters = 2+2·(#subparts) ·(#counts) 

 

Figure 5. Cross-validated AUC results of the four models by 

problem type and amount of student data used. 

The basic model scored an AUC of 0.6451 on homework, 0.5279 

on lecture problems, and 0.5355 on exams. The homework score 

rivals scores achieved applying BKT to Cognitive Tutor (0.6457) 

and ASSISTments (0.6690) data [3]; however, the lecture and 

exam scores are not far above the performance of random chance. 

A potential upper bound benchmark for the model results 

presented is 0.7693, achieved in ASSISTments using a blended 

combination of classifiers [5].  

Accounting for different information gain depending on attempt 

count (count model) resulted in a small but statistically significant 

gain in the homework (+0.0167 AUC, p = 0.008) but no 

statistically significant change in lecture or exam prediction 

performance.  

Allowing for individual item guess and slip parameters (idem 

model) to account for differences among questions in our 

problem-subpart KC model resulted in the largest and most 

significant improvement among models. Performance improved in 

homework (+0.0368 AUC, p = 0.002), lecture problems (+0.0681 

AUC, p = 0.013), and most prominently in exams (+0.1220 AUC, 

p < 0.001).  

Adding the count extension on top of the idem model did not 

result in any statistically significant performance improvement.  

Evaluation of all models using 1/10th the number of users resulted 

in the same relative model performance trends as with the 

complete sample. This gives us confidence in the reproducibility 

of the results. Overall predictive performance with the smaller 

sample decreased most in exam prediction, followed by lecture 

and homework.  

The early stage resource model failed to show gains. In fact, while 

better than the basic model, it was statistically significantly lower 

performing than the idem model it was extended from (-0.009 

AUC, p = 0.008).  

4.2 Count model 
There was no effect in modeling attempt count in exams, perhaps 

because exam attempts were limited to three. There was also no 

effect on lecture sequence problems, possible because lecture 

problems are ungraded and students make fewer attempts. 

However, a small improvement was found on homework, where 

the most multiple attempt behavior is observed. 

We look at the guess and slip parameters of the count model for 

each answer attempt count to observe at which attempt the most 

information is being gained. We averaged the learned guess and 

slip values over the 5 training folds and found that slip stayed 

almost stationary (+/- 0.02) around its initial parameter value 
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while the guess value precipitously declined with attempt count. 

The average guess values for each homework problem are plotted 

in Figure 6. 

 

Figure 6. Learned guess parameters at each attempt count for 

problems in the homework. 

A lower guess value means that the model can gain more 

confidence that the student knows the KC after observing a 

correct answer. Higher average guess values on the first attempt 

than the 6th attempt could suggest that students who struggle for 

longer before answering correctly are more likely to know the 

KC. Alternatively, lower guess values with attempt counts could 

simply be returning the student to the same probability of 

knowledge as when he began the sequence (which had been 

lowered due to consecutive incorrect answers). 

4.3 Item difficulty model (IDEM) 
The IDEM model accounted for a large amount of additional 

variance on top of the basic model, particularly on exam questions 

and least so on homework. Assuming that the 15 exam problems 

(midterm + final) were drafted to cover the same space of material 

as the 37 homework problems, it is possible that there was a 

higher within-problem variance among exam problem than 

homework problems, explaining the more dramatic improvement 

in modeling individual questions in exams over homework. 

Individual exam, lecture, and homework problem performance is 

shown in Figures 7, 8, and 9 respectively. 

 

Figure 7. Individual model performance on each exam problem.  

 

Figure 8. Individual model performance on each lecture problem 

 

Figure 9. Individual model performance on each homework. 

5. Contribution 
We have presented a first foray into applying a model of learning 

to a MOOC. We identified three challenges to model adaptation 

and found that modeling variation in question difficulty resulted 

in the largest performance gain given our definition of KC. While 

our KC definition as problem with subparts as members is not 

ideal for measuring learning throughout the course, it nevertheless 

resulted in AUC performance accuracy rivaling that of prediction 

within systems with subject matter expert defined KC models. 

While we elucidated the potential for knowledge discovery given 

the unique variation in resource access in MOOC data, much 

work is left to demonstrate that this information can be seized on 

to produce more accurate results. This raises the question of how 

the efficacy of resources generalizes and the contexts and 

background information that needs to be considered to identify 

what works and for whom. Our solutions to the first two 

challenges, of lack of a KC model and multiple unpenalized 

attempt counts, will serve as an initial foundation for an efficacy 

assessment framework for MOOCs. 
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ABSTRACT 

From novice to expert, almost every musician must recognize 

musical intervals, the perceived pitch difference between two 

notes, but there have not been many empirical attempts to 

discover an optimal teaching technique. The current study created 

a method for teaching identification of consonant and dissonant 

tone pairs. At posttest, participants increased their ability to 

discern tritones from octaves, and performance was better for 

those who received an interleaving order of the practice trials. 

Data mining of the results used a novel method to capture 

curvilinear forgetting and spacing effects in the data and allowed a 

deeper analysis of the pedagogical implications of our task that 

revealed richer information than would have been revealed by the 

pretest-to-posttest comparison alone. Implications for musical 

education, generalization learning, and future research are 

discussed. 

Keywords 

Model-based discovery, forgetting, interleaving, spacing effect, 

computer adaptive training, musical consonance 

1. INTRODUCTION 
Music is a rich multi-modal experience which taps a range of both 

perceptual and cognitive mechanisms. As in other important facets 

of human cognition (e.g., speech/language), music consists of 

constituent elements (i.e., scale tones) that can be arranged in a 

combinatorial manner to yield high-order units with specific 

categorical labels (e.g., intervals, chords). In Western tonal music, 

the octave is divided into 12 pitch classes (i.e., semitones). When 

combined, these pitch relationships can be used to construct 

twelve different chromatic intervals (each one semitone above or 

below another) that are labeled according to the relationship 

between fundamental frequencies of their tones. For example, two 

tones can form an octave (2:1 ratio), a perfect fifth (3:2 ratio), or a 

variety of other tonal combinations.  

Perceptually, musical intervals are typically described as either 

consonant, associated with pleasantness and smoothness (e.g., 

octave), or as dissonant, associated with unpleasantness and 

roughness (tritone, ratio: 11:8). Helmholtz (1895) defined this 

“roughness” as the fluctuations in amplitude perceived by a 

listener which occurs when the distance between partials is small 

enough for them to interact (i.e., “beat”) within the auditory 

periphery. Consonance, on the other hand, occurs in the absence 

of such beating, when low-order harmonics are spaced sufficiently 

far apart to not interact (e.g., octave, perfect fifth). Behavioral 

studies demonstrate that listeners treat the various intervals 

hierarchically and tend to prefer consonant over dissonant pitch 

relationships [2, 7, 10]. It is this hierarchical arrangement of pitch 

which largely contributes to the sense of a musical key and 

harmonic structure in tonal music [8].  

The ability to discriminate consonant and dissonant intervals is far 

better than chance [20]. Indeed, this ability emerges early in life 

as both newborns and infants show a robust preference for 

consonant over dissonant tone pairs, well before being exposed to 

the stylistic norms of culturally specific music [5]. As such, it is 

posited that the perceptual distinction between consonance and 

dissonance might be rooted in innate auditory processing [1, 2]. 

While the perceptual discrimination of music intervals is fairly 

well studied [1, 2, 7, 9] the ability to identify intervals remains 

poorly understood. While the capacity to distinguish aspects of 

musical structure might be present at birth, the orientation towards 

culture-specific music and its definitions must progress during 

childhood. This developmental perspective of musical learning 

marks the vital periods for receptivity of musical structures. 

However, musical training is not a standard thus resulting in a 

continuum of musical ability amongst the general population.  

Here, we ask how individuals learn to identify (i.e., categorically 

label) the pitch combinations of music. Interestingly, musically 

naïve individuals could potentially benefit from musical training. 

Research suggests that late musical training might compensate for 

some gaps in musical knowledge such as the enhancement of 

automatic encoding of interval structures [4]. Additionally, music 

training is said to have both short-term and long-term benefits in 

regards to transfer [19]. Indeed, the benefits of prolonged musical 

training could have long-term effects such as improved executive 

functioning and perceptual organization [5]. Specifically, studies 

suggest that training greatly influences the developing brain, 

making music training a promising model for examining learning 

[12, 13]. If music training is a potential model for investigating 

learning then the implementation of different training regimens 

should help elucidate the general learning process.  
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Specifically, by training individuals to identify different harmonic 

intervals, a more optimal training regimen could be derived and 

contribute to our understanding of pedagogical strategies. (A 

harmonic interval is when two tones are played simultaneously, as 

opposed to a melodic interval where two tones are sequential.) As 

previously stated, studies have shown that people already have 

some prior knowledge when it comes to interval discrimination, 

regardless of enculturation effects or innate capacities. Indeed, 

listeners appear to be better at distinguishing some intervals over 

others. For example, intervals of small integer ratios, such as 

perfect fourths (4:3) and perfect fifths (3:2), are typically more 

difficult to discriminate and are often confused [6, 18]. 

Furthermore, the order in which people learn certain intervals has 

been seen to have an effect on their ability to make accurate 

distinctions, e.g. [6]. If factors such as these could be understood 

more deeply, it may lead to more effective ways of configuring 

musical training. 

2. METHOD 

2.1 Participants 
After screening our data for participants (Amazon Turk workers) 

who provided a full set of responses, without omissions, we had 

220 participants. The average participant age was 29.88 years (SD 

= 10.32). Participants had a mean of 4.30 years of musical 

experience (SD = 5.70). Parsed into different types of musical 

training, participants had on average 1.34 years (SD = 2.31) of 

training with a private tutor, 2.27 years (SD = 4.78) studying 

music on their own, and 2.86 years (SD = 3.38) of training in a 

formal school setting. Prior ear training experience averaged 0.47 

years (SD = 1.61), 0.24 years (SD = 0.81) of which focused 

specifically on harmonic interval training.  

2.2 Procedure 
Participants self-selected this study from a list of various available 

research participation opportunities on Amazon Mechanical Turk, 

an online data-collection service. Participants were paid $3. 

Participants began the study with a survey. Items included 

demographic information such as age and sex. This survey also 

asked for various predictors, including years of different types of 

musical training (overall, private tutoring, school), and types of 

musical training (ear training, harmony, reading music). 

Upon finishing the survey, participants completed the interval 

identification task. Prior to the pretest, to ensure that people 

understood the task, the following instructions were given for 

participants to view (participants clicked a button after reading):  

Hint: The octave interval is sometimes described as 

smooth, pleasing or pure.  The tritone interval is 

sometimes described as harsh, diabolic or impure.              

Task: Please listen to each 2 second interval, then type 

'o' for octave or 't' for tritone. After each incorrect 

response, you are provided review to help you learn.               

Goal: Practice the sound identification task, attempting 

to learn the interval (octave or tritone) between two 

notes played at the same time. This pretest portion will 

get an initial measure of your skill in the task, and will 

be followed by 96 training practices, and finally a 

posttest of 32 practices.   

This task contained three stages: practice, learning, and posttest. 

The practice section presented 32 intervals for the participant to 

label as either a tritone or octave. In the learning section, 96 

intervals were presented and participants were asked to similarly 

label the intervals as tritone or octave. The orders of the learning 

intervals were presented in various sequences (see section 2.3, 

Conditions).  Sequence type was thus the primary independent 

variable of the study. The posttest section, which is the primary 

dependent variable of the study, once again presented 32 intervals 

to be labeled as tritone or octave.  

All trials presented the interval sound file which lasted 2 seconds 

and then they typed ‘t’ or ‘o’ to indicate their response (trials 

timed-out after 2 minutes, but learners typically responded in less 

than 2 seconds). After responding, a checkmark appeared for .5 

seconds to indicate the selected answer was correct; if incorrect, 

the correct answer was given with a replay of the now labeled 

interval sound just responded to incorrectly, these “study” 

opportunities lasted 5 seconds (so there was 3 seconds of silence 

after each replay). 

2.3 Conditions 
This experiment varied the presentation sequencing to test the 

effectiveness of various presentation orders on the task of 

identifying tritone and octave harmonies. Practice trials were 

presented in combinations of progressive and interleaving orders 

organized into four blocks, each containing 24 harmonic intervals. 

Conditions were randomized between subjects. 

A progressive order presented the harmonic intervals in 

consecutive blocks, each block containing the same two intervals 

but presented at a higher pitch register than the previous block. 

Block 1 contained intervals in a low register (155.6Hz/311.1Hz 

for octave and 185Hz/261.6Hz for tritone) block 2, intervals of a 

medium-low register (277.2Hz/554.4Hz for octave and 

329.6Hz/,466.2Hz for tritone), block 3, intervals from a medium-

high register (493.9Hz/987.8Hz for octave and 587.3Hz/830.6Hz 

for tritone) and block 4, intervals from a high register 

(880Hz/1760hz for octave and 1046.5Hz/1480Hz for tritone). 

Sounds were synthesized by MIDI using instrument 1 (Piano) for 

a 2-second duration. An antiprogressive order presented harmonic 

intervals in a way that made each block maximally different from 

the previous block. block 1 consisted of low register tones, block 

2, high register tones, block 3 medium-low tones, and block 4, 

medium-high tones.  

An interleaving order introduced a new register for each of blocks 

2-4 according to the antiprogressive or progressive order, with 

tones already heard from the previous blocks interleaved with the 

new material. In other words, new registers were taught while 

practicing the old ones, with an equal distribution for each of the 

presented tone levels within a block of 24. Conditions lacking an 

interleaving order did not repeat tones from previous blocks.  

Therefore, the 4 experimental conditions contained all 4 

combinations of progressive and interleaving orders: progressive 

and no interleaving, antiprogressive and no interleaving, 

progressive with interleaving, and antiprogressive with 

interleaving. As a control group, there was one condition that 

presented 96 learning in 4 blocks that were fully mixed, (just like 

the pretest and posttest). For all conditions, although each block 

contained a predetermined set of tones, tones were randomized 

within each block.  Finally, practice during learning “blocks” 

were not marked by a brief pause with an introduction screen like 

the pretest, learning, and post-test were marked. In other words, 

transitions between sets of different items during practice were not 

signaled to subjects. 
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3. RESULTS 
An analysis was conducted on the number of participants in each 

of the five conditions (M = 44.00, SD = 5.10), to assess whether 

dropout was more prevalent in certain conditions. The control 

condition had the fewest observations, with only 37 participants, 

whereas the largest group, the interleaving–progressive condition, 

had 51 participants. Since the control condition was most 

difficult, we thought that might be causing this disparity. 

However, attrition did not differ statistically between conditions, 

χ2(68) = 78.15, p = .2. 

Means and standard deviations by condition for the post-test were 

as follows: Condition 1 (progressive only): Mean=.78, SD=.15; 

Condition 2 (progressive + interleaving): Mean=.82, SD=.16; 

Condition 3 (no progressive or interleaving): Mean=.79, SD=.14; 

and Condition 4 (interleave only): Mean=.86, SD=.16. There was 

statistically significant improvements, averaged across conditions, 

from pretest to posttest, t(219) = 9.75, p < .01. Upon finding an 

overall positive effect from pre to posttest, analyses focused on 

systematic differences between interleaving and progressive tone 

presentations in the practice trials. Figure 1 shows average 

performance across the entire 160 trials of the experiment, 

averaged in blocks of 8 trials. The four experimental conditions 

(progressive without interleaving, antiprogressive with 

interleaving, progressive–interleaving, and antiprogressive 

without interleaving) were analyzed according to two 

dichotomous criteria: those with or without progressive 

presentations, and those with or without interleaving 

presentations. The control condition, which presented intervals in 

a random order, was not used in this 2 way  (interleaving/no 

interleaving) x 2 (progressive/antiprogressive) analysis of variance 

(though the results in that condition are in the same direction as 

below, since the highly interleaved control also performed well 

for learning gain relative to the blocked conditions). We used 

pretest score as a covariate. 

The ANCOVA revealed an effect of interleaving during practice 

trials on posttest scores, even when controlling for pretest scores. 

Interleaving trial presentation order had a significant positive 

effect on posttest scores, F(1, 178) = 5.81, p = .02, d = .34. 

Progressive and antiprogressive ordering had no reliable effect on 

posttest scores, [F(1, 178) = .48, p = .5]. The interaction of 

progressive and interleaving orders was also non-significant,  F(1, 

178) = .33, p = .6.  

The last series of analyses looked for any relationships between 

individual differences in musical training or skill with posttest 

scores and the overall magnitude of the pretest–posttest 

improvement. A list of correlations is listed in Table 1. There 

were modest relationships between various musical training-

related and skill-related predictors and posttest scores, and some 

suggestion of a negative relationship between previous learning 

and improvement. 

Overall, results suggest that the teaching paradigm created for this 

experiment caused improvement from pretest to posttest. This 

corroborates previous work [6], which presented the practice trials 

in an interleaved rather than sequential order, also showing a 

reliable advantage. Certain qualities of musical skill and training 

had modest relationships with posttest performance, but were 

negatively related to improvement. This negative correlation 

suggests that proficient musicians had less to gain than poorly 

skilled musical learners from our practice procedure. 

 

Table 1. Correlations between participant factors and scores. 

 

Participant factor Posttest Improvement 

Years overall musical training .28* -.10 

Years of musical tutoring .25* -.10 

Ability to read music .26* -.16* 

Understanding of musical harmonies .30* -.15* 

Ability to hear musical harmonies .30* -.10 

Years of self-directed musical training .26* -.08 

Years of musical training in school .31* -.07 

Years of ear training .13 .03 

Years of ear training on harmonies .18* .04 

Note. N = 220, *p < .05 

4. MODEL BASED DISCOVERY 
While this paper mines data from a novel musical educational 

task, the computational model of the data we created is based on 

many of the common principles of educational data mining. To 

begin, the model builds upon a simple additive factors model 

(AFM) [3, 21]. The AFM is a logistic regression model that is 

based on the logic of counting prior practice events, so that the 

prior practice is an “additive factor” predicting future 

performance. In this early stage of research to understand how 

people learn musical intervals, we began with the simple 

assumption that each of our 8 stimuli was a knowledge component 

that could be learned independently in some sense. In a later 

model in this paper, we will also demonstrate how we can add a 

generalization component specific to each interval, but our current 

experimental design was not appropriate for more deep analysis of 

generalization primarily because the conditions only used 2 

intervals and did not vary the spacing of each interval, rather, in 

all conditions, there was always a 50/50 chance of either interval 

for each trial. 

However, while we fit a model that is built upon AFM principles 

of counting prior instances of practice of particular types, we 

found that the simple AFM model could not account for some of 

the effects in Figure 1. The first effect that could not be captured 

by AFM was simple interference based forgetting as a function of 

the number of trials since the prior repetition. We can see this 

forgetting effect (probably driven by multiple processes, including 

interference) manifesting in the practice block differences and 

transitions between practice blocks. For example, note how fast 

learning is in each block when items are blocked, but then observe 

the huge decrement when items are mixed in the final posttest. 

Retention is apparently quite poor when there is other practice 

between repetitions of the same type.  

We can see similar differences comparing performance between 

blocks also, noting that as items are added in the interleaved 

conditions performance steps down with each additional register 

added to the set of stimuli blocked together. The mechanism 

behind this forgetting effect is not entirely clear. However, 

previous work demonstrates that the perceptual distinction 

between musical pitch relationships is continually strengthened 

with exposure and training [11]. Thus, it is possible that periodic 

lapses in performance across the practice blocks might be due to 

the fact that our non-musician listeners’ internal templates for the 

intervals are not yet robust, rendering the mapping between 

interval sound and label unstable, and ultimately hindering 

behavioral identification. 
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The second effect that AFM was unable to capture was the benefit 

of spacing/interleaving that we saw in the interleaved conditions 

with the ANOVA analysis. This was described in Section 3 as a 

significant benefit for the 2 conditions which employed more 

interleaving. We can also see this effect in Figure 1 as a visible 

difference between the interleaving and blocked conditions at 

posttest. This “spacing” effect, which is also very common in 

verbal memory experiments [16], was not by itself as strong as the 

effect of forgetting, but it has important implications for 

education. If musical educators can make use of this effect, our 

data suggest they may enhance learning. While AFM does not 

capture such an effect in the original incarnation, more complex 

models can capture such data. For example, Pavlik and Anderson 

[16] describe one such model, which functions by proposing less 

decay for as a function of the increased difficulty of more widely 

spaced practice. Unfortunately, such models have several 

parameters and no analytic method of solution, so, solving these 

models is extremely difficult due to issues of time and local 

minima. To resolve some of these issues we wanted to find a way 

to fit a similar model as Pavlik and Anderson, that relied less on 

an ad hoc, difficult to solve (albeit accurate) model form and more 

on an established model formalism (logistic regression).  

 

The problem was that both of the effects we wanted to model, 

forgetting and spacing, depend on a model where each 

observation is predicted by a parameterized function of prior 

knowledge (not just the count, as in AFM), and typical logistic 

formalisms only allow the independent data for each observation  

to be used to predict the dependent effect. Of course, AFM solves 

this by keeping a simple count of prior practices for a skill or 

item-type and adding it to the data for each row so that these prior 

events can have an effect. This will not work easily for decay 

however, unless we want to have learning decrease linearly when 

other items are practiced. However, linear forgetting has never 

been considered a viable model [17]. To work around this 

limitation, we decided to model decay by adding a parameter that 

captures a percentage loss for each item as each other item is 

practice (exponential decay). 

So, for example, if we look at the vector of prior events for some 

arbitrary item we might notice it is practiced at opportunity 3 and 

opportunity 7. Normally, in AFM this would be represented as the 

vector 0, 0, 0, 1, 1, 1, 1, 2, 2, 2..., thus the student would have 1 

prior counted for the prediction of how they will perform on trial 

 

Figure 1. Performance in all conditions plotted in blocks of 8 trials. Error bars are 1 SE confidence intervals. First 4 and last 4 blocks 

represent pre- and post-test trials. 
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7, and if they performed on trial 10, they would be credited 2 

priors when computing their chance. Note, how the credit is 

lagged so that when we compute performance for trial 3 we do not 

(quite sensibly) have any priors, but when we compute the 

prediction for trial 4, we then have 1 prior. 

With the new mechanism we introduce a “forgetting rate”, d, that 

we estimated and applied to computing the prior credit vector. 

This decay was applied to each prior practice independently, so 

that if decay was say .7 (for our example above) we would have 

the vector 0, 0, 0, .7, .49, .34, .24, 0.17, 0.12, 0.08, and the vector 

0, 0, 0, 0, 0, 0, 0, .7, .49, .34 summed equals 0,0, 0, .7, .49, .34, 

.24, .87, .61, .43. So, given the .7 parameter value, the student 

would have .24 prior counted when they perform on trial 7, and if 

they performed on trial 10, they would be credited .43 prior 

decayed strength when computing their chance.  

Next, we wanted to add spacing effects to the model by using the 

ideas from Pavlik and Anderson [16]. In this work, Pavlik and 

Anderson proposed that long-term learning benefit (decayed 

remnant) for spaced practice was an inverse function of the 

current strength. To adapt this model we used the decaying 

strength vector as an exponent in a power function model where 

we estimated the base as another new parameter, g. So, for 

example, given a spacing parameter g=.005, we find that .005^0 = 

1 long term learning (e.g. for the first trial, which is the 3rd 

opportunity in our example above) while .005^.24 = .28 long-term 

learning for the 7th opportunity. Long-term learning is a new 

vector that works in addition to the decay strength to predict 

performance. In our example, we would sum 0 , 0, 0, 1, 1, 1, 1, 1, 

1, 1 for the first practice and 0, 0, 0, 0, 0, 0, 0 , .28, .28, .28 for 

the second practice. This long-term learning is permanent. 

This model was estimated by nesting a logistic general linear 

model (GLM) within a general gradient descent optimization 

function. This wrapper optimization took the decay and spacing 

parameters, transformed the data vectors based on those 

parameters, and then computed the optimal logistic model and 

outputted the fit of that model to the wrapper. The wrapper then 

used the internal model’s fit to adjust spacing and decay by brute 

force gradient descent steps (the bounded BFGS method from the 

optim function, built into R), to get a global optimization for the 

wrapped GLM function given the decay and spacing parameters. 

Figure 2 shows this optimization structure in R code where temp 

is a vector that holds the decay and spacing parameters. 

model <- function(temp, data) { 
compute data 

as a function of temp 
compute GLM model fit using data  
return log likelihood fit} 

 
optim(temp, model, method 

=c("L-BFGS-B"),lower=0, upper=1)) 
 

Figure 2. Wrapper optimization loop pseudocode. 

 

The GLM model included fixed effects to capture the 2x4 main 

effects and interactions caused by the particular tones and 

intervals, and the prior decayed strength and prior long-term 

learning for the particular stimuli. Figure 3 shows the GLM 

structure (i.e. the independent variables that predict the 

dependent), which shows how we fit a single coefficient for the 

effect of prior decayed strengths, and a single coefficient for the 

effect of the long-term benefits (using the I function in R allows 

us to use the vector sum since each vector applies independently 

of the prediction). This means that the data vectors for these 

values were linearly scaled inside the GLM, while being created 

in the wrapper. This allows us to fit a much more complex model 

than if we just used the wrapper, since brute force gradient 

descent would have been prohibitively slow with 3 (or more) 

parameters. Instead, putting the GLM in the wrapper allows us to 

fit the minimum number of non-linear parameters (2) inside the 

slow brute force procedure, and then optimize several more 

parameters in the efficient GLM logistic function. Table 3 shows 

the more complex AFM-decay-space model  compared to two 

simpler models via cross validation. The R code for the model 

equation first finds a parameter for the 8 decaying vectors for the 

8 components (octave0, etc.). Fitting a single parameter for the 

effect of each of the 8 vectors simplifies the model under that 

assumption that forgetting is equivalent for each register by 

interval combination (using the I function in R allows us to sum 

vectors since each vector applies independently of the prediction). 

Similarly, we also assume a single parameter for the permanent 

learning vectors (soctave0, etc.), which account for the long-term 

learning from spaced practice for each stimulus type. Finally, the 

interval by tone interaction captures fixed-effect differences that 

may be due to average effects of poor fidelity of the participants’ 

audio speakers or hearing in some registers and any other specific 

differences in the baseline performance with each register by 

interval pair. However, it might be noted that the variety of 

significant differences for tone and interval were not well 

controlled for (e.g. order of introduction) in our design, so we 

choose not to analyze them here. 

answer ~  
 
I(octave0 + octave10 + octave20 + octave30 + 
tritone0 + tritone10 + tritone20 + 
tritone30) +  
 
I(soctave0 +  
    soctave10 + soctave20 + soctave30 + 
stritone0 + stritone10 + stritone20 + 
stritone30) +  
 
interval * tone 
 

Figure 3. Logistic GLM model structure. 

We tested 3 models with 5 runs of 10 fold cross validation to 

confirm the model generalized to our data as shown in Table 2. 

The three models were AFM, which simply summed the prior 

practices in for each of the 8 stimuli, AFM-decay, which included 

the new decay mechanism, and AFM-decay-space, which further 

layered the spacing effect mechanism into the model and is shown 

in Figure 3. While the test analysis reveals strong significant 

difference for the AFM-decay model for both r and MAD, the 

AFM-decay-spacing model was barely (Z=2.16, p<.05) better in 

terms of r and not significant for MAD. We added spacing effects 

after decay effects, since spacing effects are very small compared 

to decay effects in an experiment with only one-session, and thus 

a spacing effect mechanism may inappropriately capture effects 

due to decay unless decay effects are removed first (the spacing 

mechanism may actually improve the model in such a case, but 

parameter values will not meaningfully indicate a benefit to 

spacing, perhaps even the inverse). 
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Table 2. Cross validation results. 

Model Train Test 

 

Spearman 

r (SE) 

MAD 

(SE) 

Spearman 

r (SE) 

MAD 

(SE) 

AFM 
0.10974 

(0.00047) 

0.25315 

(0.0005) 

0.1067 

(0.00392) 

0.25347 

(0.00203) 

AFM-

decay 

0.24013 

(0.00044) 

0.24167 

(0.00053) 

0.23783 

(0.00402) 

0.24206 

(0.00239) 

AFM-

decay-

space 

0.25211 

(0.00037) 

0.23987 

(0.00042) 

0.24921 

(0.0034) 

0.24026 

(0.00197) 

 

It was also interesting to check how well the model could be used 

to simulate the experiment. Figure 4 shows graphically how well 

the model captures the aggregate effects. Note that even the error 

bars are of very similar magnitude. This simulation was 

constructed by generating random number from 0 to 1 that were 

than compared to the model of each trial to determine whether the 

trial was responded to correctly in the simulated result.  

 

Figure 4. Simulation of experiment 

Finally, we wanted to see if there was any general transfer by 

interval type. While normally we might expect spacing to be an 

important factor in this effect, the simplicity of experiment (as 

noted) results in a 50/50 chance of either interval for each trial, so 

spacing between intervals does not have a great deal of variability. 

Because of this we used a generalization model that merely 

tracked the intervals prior practice count, but also used the 

performance factors analysis (PFA) formalism to track the interval 

counts depending on success or failure. The PFA method works 

just like AFM, but counts prior success and prior failure practices 

instead of simply the count of undifferentiated prior practice [15].  

Purely to improve simplicity, we also choose not to account for 

the fixed interval x tone effects, which did not appear to change 

the other model coefficients much, despite reducing the fit as 

expected. Figure 5 shows this model structure. This model adds 

on 2 PFA components to track learning as a function of prior 

failures (trif + octf) or success (tris + octs) count for each interval 

type. Again we fit a single parameter for both intervals under the 

assumption that are learned at equivalent rates. Again we used the 

I function to sum the columns since they were mutually exclusive 

predictors in the equation. 

answer ~  
 
I(octave0 + octave10 + octave20 + octave30 +  
    tritone0 + tritone10 + tritone20 + 
tritone30) +  
 
I(soctave0 +  
    soctave10 + soctave20 + soctave30 + 
stritone0 + stritone10 +  
    stritone20 + stritone30) + 
 
I(tris + octs) +  
 
I(trif + octf) 
 

Figure 5. GLM model structure with PFA generalization 

4.1 Application of Discovered Model to 

Pedagogical Inference 
The model discovered (Figure 5) is useful because it can be used 

to make pedagogical inference combined with a model of costs for 

the actions the model allows. The combined model allows us to 

consider the long-term gains from different conditions of practice 

relative to the current practice costs. Figure 6 additionally 

describes a model of practice costs (time spent in practice) as a 

function of prior practice. This simple model implies a maximal 

cost for success with unpracticed items, which decreases to a 

minimum as practice accumulates. This simple model predicts 

latency cost of success, and we also estimated latency cost of 

failure and review practice at 7.054 seconds using the overall 

average from the data. In the model we used the decaying short-

term strengths as the predictor. 

latency ~  
 
I(1/(1 + octave0 + octave10 + octave20 +  
    octave30 + tritone0 + tritone10 + 
tritone20 + tritone30) 
 

Figure 6. LM model structure for costs. 

Then we can extract the parameters from both models. See table 3. 

Table 3. Parameters used to in pedagogical inference. 

Parameter Value 

d .628 

g .00106 

fixed cost failure 7.054 

logistic intercept 0.99 

spacing coefficient .131 

decay coefficient 2.36 

PFA gain failure coeff. -.106 

PFA gain success coeff. .0144 

latency intercept .154 

latency coeff. 1.296 
 

The values from Table 3 then allow us to construct an Excel 

simulation (available from the first author) of the optimality 

conditions for our task by examining when spaced gain and PFA 
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parameter gain (the undecaying learning gains) are maximal 

relative to the time spent on practice.  To do this we plot the 

learning efficiency (gain / time cost, where both gain and time 

cost are conditional on success or failure in the calculation) at 

various levels of prior knowledge (probability values as inferred 

from the effect of the short-term strength) to find an optimum for 

the efficiency that allows us to see the optimal probability at 

which to practice each item. Figure 7 shows the long-term gain 

curve, the current cost curve, and the optimal efficiency curve. 

 

Figure 7. Optimality function. 

The results imply it is always best to widely space, since 

efficiency is maximal with a low probability correct, which would 

come from very wide spacing between repetitions. However, this 

may also be because the data was not strong enough to draw 

conclusions very clearly in this case. Small differences in the fit of 

the spacing effect result in large changes to the predictions (note 

the difference in the gain curves for Figures 7 and 8). Indeed, the 

experiment only had weak power to determine the shape of the 

spacing effect gain because even in our most intermixed 

conditions spacing averaged only 8 intervening trials. Because of 

this the experiment may have poor power when extrapolating to 

inferences about spacing that imply much wider spacings than 

were actually used to parameterize the model. As can be seen in 

Figure 8, when spacing effects are strong the prediction changes. 

 

Figure 8. Optimality with spacing parameter (only) changed to .4. 

Another problem in trusting the optimality model is due to the 

noise introduced by only having 2 response options in the 

experimental design. This makes it hard to identify if success are 

true success or only guesses, since a guess has a 50% chance of 

success. This consequently means the PFA parameters are 

averaging over some of the effects of guessing, thus blunting the 

quantitative difference between success and failure. This can also 

have a large effect on the optimization, since the gain curve shape 

depends on the PFA parameters since they produce the difference 

in gain for different rates of correctness probability. 

So, in addition to what the model reveals about the processes of 

forgetting and spacing in our data, the model also allows this sort 

of principled speculation on how the model might be improved if 

we collect better data to parameterize it. To correct these two 

limitations of the data we will need to add several more intervals 

to the practice mix in succeeding experiments. Additional 

intervals will allow for more spacing (since we have more options 

for other items to practice when spacing one interval type) and 

will also improve the effectiveness of the PFA parameters by 

reducing the noise inherent in modeling success that has a high 

rate of guessing. In addition to providing more resolution for the 

spacing effect and PFA parameters, more intervals also will allow 

much deeper analysis of generalization, since generalization will 

no longer be a simple binary distinction, but rather a complex 

categorization. 

5. CONCLUSIONS 
Although the ability to discern musical intervals is a basic skill 

vital for almost every musician—beginner or expert—there is a 

shortage of empirical studies on effective teaching techniques for 

this skill. In this study, we created a computerized system that 

tracked participants’ identification performance during the 

process of musical interval learning. The results suggest that our 

teaching method caused improvement from pretest to posttest, and 

that an interleaved order was more effective for interval learning. 

Mathematical models of the data revealed that, while participants 

improved as a result of our program, there were robust patterns in 

the practice trials between pretest and posttest. The practice trials 

showed learning within each block and quick forgetting from one 

block to the next. 

The model we have made is not as detailed as [16], but because of 

that simplicity, it was possible to more easily fit the model. 

Importantly, unlike the Pavlik and Anderson model, practices in 

this new AFM variant model capture spacing effects as permanent 

learning rather than learning that is merely more durable. Indeed, 

this new model is in some respects closer to work that has 

modeled forgetting and spacing using a distribution of units that 

decay exponentially, some more quickly and some more slowly 

[14]; however, the model in the current paper is far simpler since 

it only uses 2 units, one permanent that is a function of current 

strength and one temporary with relatively quick exponential 

decay. Others have looked at decay in an educational data mining 

context, but this work has been at a coarser grain-size looking at 

forgetting over sessions, and not at the event level [22]. 

From the perspective of music pedagogy, our training paradigm 

highlights the importance of the learning sequence in the process 

of musical interval learning. Ear training and aural skills courses 

nearly always progress in a rote manner whereby musical 

relationships are taught serially based on their apparent difficulty 

(e.g., tones, intervals, chords, harmonies). Our data demonstrate 

that this typical curriculum is relatively inefficient. Instead, 

interleaving intervals—here, across multiple pitch registers— 

seems to promote more efficient learning. Presumably, the higher 

effectiveness of interleaving in music learning results from having 

to map sound to meaning across a more diverse acoustic space. 

Interleaving multiple pitch relationships and registers during the 

learning processing thus reinforces the learned label for musical 

sounds across multiple contexts, promoting greater more effective 

learning. Future work should investigate whether interleaving 

other musical parameters during an interval learning paradigm 

(e.g., changes in instrumental timbre) would yield even more 

robust effects and efficient learning than the changes in register 

employed presently.  
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Our paradigm could also be extended to explore novel pitch 

learning in domains other than music. For example, the effects of 

spacing and interleaving could be explored in the learning of 

lexical pitch patterns of tonal languages (e.g., Mandarin Chinese). 

Unlike English, in these languages, changes in pitch at the 

syllable level signal word meaning and hence, are entirely novel 

to nonnative speakers. Future work could thus examine the role of 

spacing and interleaving in learning the important components of 

a second language and in maximizing the speed of its acquisition.  
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ABSTRACT
In massive open-access online courses (MOOCs), peer grad-
ing serves as a critical tool for scaling the grading of complex,
open-ended assignments to courses with tens or hundreds of
thousands of students. But despite promising initial tri-
als, it does not always deliver accurate results compared to
human experts. In this paper, we develop algorithms for
estimating and correcting for grader biases and reliabilities,
showing significant improvement in peer grading accuracy
on real data with 63,199 peer grades from Coursera’s HCI
course offerings — the largest peer grading networks anal-
ysed to date. We relate grader biases and reliabilities to
other student factors such as engagement, performance as
well as commenting style. We also show that our model can
lead to more intelligent assignment of graders to gradees.

1. INTRODUCTION
The recent increase in popularity of massive open-access
online courses (MOOCs), distributed on platforms such as
Udacity, Coursera and EdX, has made it possible for any-
one with an internet connection to enroll in free, university
level courses. However while new web technologies allow for
scalable ways to deliver video lecture content, implement
social forums and track student progress in MOOCs, we re-
main limited in our ability to evaluate and give feedback
for complex and often open-ended student assignments such
as mathematical proofs, design problems and essays. Peer
assessment — which has been historically used for logisti-
cal, pedagogical, metacognitive, and affective benefits [18]
— offers a promising solution that can scale the grading of
complex assignments in courses with tens or even hundreds
of thousands of students.

Initial MOOC-scale peer grading experiments have shown
promise. A recent offering of an online Human Computer
Interaction (HCI) course demonstrated that on average, stu-
dent grades in a MOOC exhibit some agreement with staff-
given grades [13]. Despite their initial successes, there re-
mains much room for improvement. It was estimated that
43% of student submissions in the HCI course were given a
grade that fell over 10 percentage points from a correspond-
ing staff grade, with some submissions up to 70pp from staff
given grades. Thus a critical challenge lies in how to reliably
obtain accurate grades from peers.

In this paper, we present the largest peer grading networks
analysed to date with over 63, 000 peer grades. Our central
contribution is to use this unprecedented volume of peer as-

Figure 1: Peer-grading network: Each node is a learner with

edges depicting who graded whom. Node size represents the

number of graders for that student. The highlighted learner

shown above graded five students (circular nodes) and was in

turn graded by four students (square nodes).

sessment data to extend the discourse on how to create an ef-
fective grading system. We formulate and evaluate intuitive
probabilistic peer grading models for estimating submission
grades as well as grader biases and reliabilities, allowing our-
selves to compensate for grader idiosyncrasies. Our methods
improve upon the accuracy of baseline peer grading systems
that simply use the median of peer grades by over 30% in
root mean squared error (RMSE).

In addition to achieving more accurate scoring for peer grad-
ing, we also show how fair scores (where our system arrives
at a similar level of confidence about every student’s grade)
can be achieved by maintaining estimates of uncertainty of
a submission’s grade.

Finally we demonstrate that grader related quantities in our
statistical model such as bias and reliability have much to
say about other educationally relevant quantities. Specifi-
cally we explore summative influences: what variables cor-
respond with a student being a better grader, and formative
results: how peer grading affects future course participa-
tion. With the large amount of data available to us, we are
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Table 1: Data Sets
First HCI Second HCI

Students 3,607 3,633
Assignments 5 5
Submissions 6,702 7,270
Peer Grades 31,067 32,132

able to perform detailed analyses of these relationships that
would have been difficult to validate with smaller datasets.
These results have notable relevance to the study of educa-
tion in that the relationships observed depict hypotheses for
the dynamics of students grading.

Because peer grading is structurally similar in both MOOCs
and traditional brick and mortar classrooms, these results
shed light on best practices across both mediums. At the
same time, our work helps to describe the unique dynamics
of peer assessment in a very new setting — one which may
be part of a future with cheaper, more accessible education.

2. DATASETS
In this work, we use datasets collected from two consec-
utive Coursera offerings of Human Computer Interaction
(HCI), taught by Stanford professor Scott Klemmer. The
HCI courses used a calibrated peer grading system [17] in
order to assess weekly student submissions for assignments
which covered a number of different creative design tasks
for building a web site. On every assignment, each student
evaluated five randomly selected submissions (one of which
was a “ground truth” submission, discussed below) based on
a rubric1, and in turn, was evaluated by four classmates.
The final score given to a submission was determined as the
median of the corresponding peer grades.2 Peer grading was
anonymized so that students could not see who they were
evaluating, or who their evaluators were.

After the first offering (HCI1), the peer grading system was
refined in several ways. Among other things, HCI2 featured
a modified rubric that addressed some of the shortcom-
ings of the original peer grading scheme and peer graders
were divided into language groups (English and Spanish).
Counting just those who submitted at least one assignment
in the English offerings of the class, there were 3,607 stu-
dents from the first offering (HCI 1) and 3,633 students
from the second offering (HCI 2). These students came from
diverse backgrounds (with a majority of students from out-
side of the United States). Collectively, these 7,240 students
from around the world created 13,972 submissions, receiving
63,199 peer grades in total. See Table 1 for a summary of the
dataset. To prevent overfitting our models to one instance
of the class we used the data from HCI2 as a hold out set.

The software for the peer grading framework used by the
HCI courses was designed to accommodate experimental val-

1 See the Appendix: http://stanford.edu/~cpiech/bio/
papers/appendices/edm13_appendix.pdf
2 Our description is somewhat of a simplification — students
also performed self-assessments and were given the higher of
the median and their self grade provided that the two were
within five percentage points of each other. We did not
consider self assessments in this work.

idation of peer grading. A small number (3-5) of submissions
for each assignment were set aside to serve as“ground truth.”
For each assignment, every student was given a ground truth
submission to grade. Since there were thousands of stu-
dents in the class, the ground truth submissions were“super-
graded” (they had, on average, 160 assessments). Of note,
the students were not told that one of the submissions they
were assigned to mark belonged to the ground truth set. We
hypothesized that by that law of large numbers, the mean
of hundreds of student grades should tend towards the cor-
rect peer grade. In addition to having hundreds of student
grades, the ground truth submissions were also evaluated
by volunteer staff graders. However upon deeper analysis it
seemed that the mean student grade was more consistently
accurate with respect to the rubric than the volunteer staff
grade which was not exempt from interrater inconsistency.
In order to measure something as complex as a student’s
grade, it is more useful to take the average of hundreds of
evaluations. Figure 1 shows the network of gradee-grader re-
lationships on Assignment 5 of HCI1, where the three super-
graded ground truth submissions are clearly visible.

3. PROBABILISTIC MODELS
The ideal peer grading system for a MOOC should satisfy
the following desiderata: it should (1) provide highly reli-
able/accurate assessment, (2) allocate a balanced and lim-
ited workload across students and course staff, (3) be scal-
able to class sizes of tens or hundreds of thousands of stu-
dents, and (4) apply broadly to a diverse collection of prob-
lem settings. In this section we discuss a number of ways to
formulate a probabilistic model of peer grading to address
these desiderata. The models that we introduce allow for
us to algorithmically compensate for factors such as grader
biases and reliabilities while maintaining estimates of uncer-
tainty in a principled way. Through our paper, we will use v
and u to refer to students in the peer grading network (each
student is also a grader).

Our models assume the existence of the following quantities
which are either observed or latent (unobserved) variables.

• True scores: We assume that every student u is as-
sociated with a submission that has a true underlying
score, denoted su, which is unobserved and to be esti-
mated.

• Grader biases: Every grader v is associated with a
bias, bv ∈ R. These bias variables reflect a grader’s
tendency to either inflate or deflate her assessment by
a certain number of percentage points.

• Grader reliabilities: We also model grader reliabil-
ity, τv ∈ R+, reflecting how close on average a grader’s
peer assessments tend to land near the corresponding
submission’s true score after having corrected for bias.
Reliabilities will always correspond to the inverse vari-
ance of a normal distribution.

• Observed grades: Finally, zvu ∈ R is the observable
score given by grader v to submission u.

Below we present, in order of increasing complexity, three
statistical models that we have found to be particularly ef-
fective.
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Figure 2: (a) The relationship between a grader’s homework performance (her grade) and statistics (mean/standard deviation)

of grading performance (residual from true grade). (b) The relationship between a gradee’s homework performance against

statistics of assessments for her submissions. (c) Visualization of all three variables simultaneously, where intensity reflects the

mean residual z-score. Empty boxes mean that there is not enough data available to compute a reliable estimate.

3.1 Model PG1 (Grader Bias and Reliability)
Our first model, PG1 puts prior distributions over the la-
tent variables and assumes for example that while an in-
dividual grader’s bias may be nonzero, the average bias of
many graders is zero. Specifically,

(Reliability) τv ∼ G(α0, β0) for every grader v,

(Bias) bv ∼ N (0, 1/η0) for every grader v,

(True score) su ∼ N (µ0, 1/γ0) for every user u, and

(Observed score) zvu ∼ N (su + bv, 1/τv),

for every observed peer grade.

G refers to a gamma distribution. The variables α0, β0,
η0, µ0 and γ0 are hyperparameters for prior beliefs of each
variable distribution. In our experiments, we also consider a
simplified version of Model PG1 in which the reliability of
every grader is fixed to be the same value. We refer to this
simpler model in which only the grader biases are allowed
to vary as PG1-bias .

3.2 Model PG2 (Temporal Coherence)
The priors for the grader variables can play a particularly
important role in the above model due to the fact that we
typically only have about 4-5 grades to estimate the bias
and reliability of each grader. A simple way to obtain more
data per grader is to leverage observations made about the
grader from previous assignments. To pose a model, we must
understand the relationship of a grader’s bias and reliability
at homework T to that at homework T ′. Is it the same or
does it change over time?

To answer this question, we examine the correlation be-
tween the estimated biases from Model PG1 using the HCI1
dataset (see Section 2). Between consecutive assignments, a
grader’s biases have a Pearson correlation of 0.33 which rep-
resents a utilizable consistency. Grader reliability, on the
other hand, has a low correlation. We therefore posit Model
PG2 which allows for grader biases at homework T to de-
pend on those at homework T − 1 (and implicitly, on all
prior homeworks). Specifically, Model PG2 assumes:

τ (T )
v ∼ G(α0, β0) for every grader v,

b(T )
v ∼ N (b(T−1)

v , 1/ω0) for every grader v,

s(T )
u ∼ N (µ0, 1/γ0) for every user u, and

zv,(T )
u ∼ N (s(T )

u + b(T )
v , 1/τ (T )

v ),

for every observed peer grade.

Model PG2 requires that we normalize grades across dif-
ferent homework assignments to a consistent scale. In our
experiments, for example, we have noticed that the set of
grader biases had different variances on different homework
assignments. Using a normalized score (z-score), however,
allows us to propagate a student’s underlying bias while re-
maining robust to assignment artifacts.

Note that while a model which captures the dynamics of true
scores and reliabilities across assignments can be similarly
imagined, we have focused only on the dynamics of bias
for this work (which contributes the most towards improved
accuracy while still being equitable).

3.3 Model PG3 (Grader/Student Interplay)
A unique aspect of peer grading is that graders are them-
selves students with submissions being graded. Consequently,
it is of interest to understand and model the relationship be-
tween one’s grade and one’s grading ability — for example,
knowing that a student scored well on his assignment may
be cause for placing more trust in that student as a grader.

In Figure 2, we show experiments exploring the relationships
between the grader specific latent variables. In particular,
we observe that high scoring students tend to be somewhat
more reliable as graders (see details of the experiment in
Section 4). Model PG3 formalizes this intuition by allowing
the reliability of a grader to depend on her own grade:

bv ∼ N (0, 1/η0) for every grader v,

su ∼ N (µ0, 1/γ0) for every user u, and

zvu ∼ N
(
su + bv,

1

θ1sv + θ0

)
,

for every observed peer grade.

Note that Model PG3 extends PG1 by introducing new de-
pendencies, allowing us to use a student’s submission score
to estimate her grading ability. At the same time Model
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PG3 is more constrained, forcing grader reliability to de-
pend on a single parameter instead of being allowed to vary
arbitrarily, and thus prevents our model from overfitting.

Ethics and Incentives. If we are to use probabilistic infer-
ence to score students in a MOOC, the end goal could not
simply be to optimize for accuracy. We must also consider
fairness when it comes to deciding what variables to include
in the model. It might be tempting, for example, to include
variables such as race, ethnicity and gender into a model for
better accuracy, but almost everyone would agree that these
factors could not be fairly used within a scoring mechanism
even if they improved prediction accuracy. Another example
might be to model the temporal coherence of student grades
(we observe a particularly strong temporal correlation be-
tween students’ grades — with 0.46 Pearson coefficient —
of consecutive homework assignments). But incorporating
this temporal coherence for students scores into a scoring
mechanism would not allow for students to be given a “clean
slate” on each homework.

An interesting but subtle facet of PG3 is that by modelling
a correlation between grader reliability and how well the
grader did on the assignment, not only does getting a better
grade on an assignment influence the model into thinking a
particular student is a more reliable grader. It is also the
case that if a student is a more reliable grader, the model is
influenced into thinking that the student did better on the
assignment. This relationship would allow for a student to
“game”the mechanism into believing that they did better by
grading as accurately as possible. Thus PG3 may in fact
incentivize good grading. Giving students bonus points for
better grading is not a new idea. However the nuance of
PG3 is that these bonus points are justified in a statistical
sense.

3.4 Inference and evaluation.
Given a probabilistic model of peer grading such as those
discussed above, we would like to infer the values of the
unobserved variables such as the true score of every submis-
sion, or the bias and reliability of each student as a grader.
Inference can be framed as the problem of computing the
posterior distribution over the latent variables conditioned
on all observed peer grades.

Computing this posterior is nontrivial, since all of the vari-
ables are correlated with each other. For example, having
good estimates of the biases of all of the graders to submis-
sion u would allow us to better estimate u’s true score, su.
However to estimate each bias bv, we would have to have
good estimates of the true scores of all of the submissions
graded by v. We must therefore reason circularly.

To address this apparent chicken and egg problem, we turn
to simple approximate inference methods. In the experi-
ments reported in Section 4, we use Gibbs sampling [7],
which produces a collection of samples from the (approx-
imate) desired posterior distribution. These samples can
then be used to estimate various quantities of interest. For
example, given samples s1u, s

2
u, . . . , s

T
u from the posterior dis-

tribution over the true score of submission u, we estimate the
true score as: ŝu ≡ 1

T

∑T
t=1 s

t
u. We can also use the samples

to quantify the uncertainty of our prediction by estimating

the variance of the samples from the posterior, which we
use in Section 4 when we examine peer grading efficiency.
Note that while the ordinary Gibbs sampling algorithm can
be performed in “closed form” for Models PG1 and PG2 ,
Model PG3 requires numerical approximation due to the
coupling of a submission’s true score su with that of its
grader, sv. Visually we observe rapid mixing for our Gibbs
chains, and in the experiments shown in Section 4, we use
800 iterations of Gibbs sampling, discarding the initial 80
burn-in samples.

Expectation-maximization (EM) is an alternative approxi-
mate inference approach, where we treat the true scores and
grader biases as parameters and then use an iterative coor-
dinate descent based algorithm to obtain point estimates of
parameters. In practice, we find that both the Gibbs and
EM approaches behave similarly. In general EM has the
advantage of being significantly faster while obtaining pos-
terior credible intervals is more natural using Gibbs. On the
peer grading dataset the two methods produce analogous re-
sults. For example, PG1 with Gibbs and EM have RMSE
scores of 5.42 and 5.43 on the first dataset respectively and
with Gibbs running in roughly 5 minutes and EM running
in 7 seconds. We refer the reader to the appendix for the
full algorithmic details of Gibbs as well as EM.

Evaluation. To measure peer grading accuracy, we repeat-
edly simulate what score would have been assigned to each
ground truth submission had it been peer graded. Our eval-
uation of how well we would have graded a single ground
truth submission uses a two step methodology (based on the
evaluation method of [13]): (1) We run inference using all
of our data, except the peer grades of the ground truth sub-
mission being evaluated. This gives us an estimate of each
grader’s biases and reliabilities as well as model priors that
were independent of the submission being evaluated. (2)
We run simulations where we sampled four student assess-
ments randomly from the pool of peer grades for the ground
truth submission, estimate the submission’s grade using the
sample of assessments and record the residual between our
estimated grade and the“true”grade. For each ground truth
submission we run 3000 such simulations, from which we re-
port the RMSE, the number of simulations which fell within
five, and ten percentage points of the true score, the average
standard deviation of the errors over each ground truth and
the worst misgrade that the simulations produced.

We compare each of our probabilistic models to the grade
estimation algorithm used on Coursera’s platform. In the
baseline model, the score given to students is the median of
the four peer grades they received. Specifically, the baseline
estimation does not take into account an individual grader’s
biases or reliabilities. Nor does it incorporate prior knowl-
edge about the distribution of true grades.

4. EXPERIMENTAL RESULTS
4.1 Accuracy of reweighted peer grading
Using probabilistic models leads to substantially higher grad-
ing accuracy. In our experiments we are able to reduce the
RMS error on our prediction of the ground truth grade by
33% from 7.95 to 5.30. Similarly, on the second offering of
the course we were able to reduce error by 31% from 6.43
to 4.73. For the second offering, this means that the num-
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Table 2: Comparison of models on the two HCI courses

HCI 1 HCI 2

Baseline PG1-bias PG1 PG2 PG3 Baseline PG1-bias PG1 PG2 PG3

RMSE 7.95 5.42 5.40 5.40 5.30 6.43 4.84 4.81 4.75 4.73

% Within 5pp 51 69 69 71 70 59 72 73 73 74

% Within 10pp 81 92 94 94 95 88 96 96 97 97

Mean Std 7.23 5.00 4.96 4.92 4.77 6.19 4.57 4.52 4.53 4.52

Worst Grade -43 -34 -30 -32 -30 -36 -26 -26 -25 -26
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Figure 3: (a) Histogram of errors made using the baseline (median) scoring mechanism. (b) Histogram of errors using PG3 .

(c) A comparison of model confidence (x-axis) and actual success rate of predictions (y-axis), where being above the diagonal

(dark bars) is better. (d) Number of submissions for which our model can declare “confidence” after K rounds of grading.

ber of students who received grades within 10 percentage
points (pp) of their grade increased from 88% to 97%. Fig-
ures 3(a), 3(b) show the effect of using Model PG3 as a
scoring mechanism on the histogram of grading errors and
Table 2 shows the complete results for each model. Due
to course improvements, we observe that students in HCI2
were significantly more consistent as graders compared to
students in HCI1. However, we remark that every one of
our models run on HCI1 outperforms the baseline grading
system run on HCI2 with respect to every metric, indicating
that the best gains in peer grading are likely to come from
both an improved class design as well as statistical modeling.

Our results show that Models PG3 (with coupled grader
score and reliability) and PG2 (with temporal coherence)
yield the best results, with Model PG3 outperforming the
other models with respect to most metrics. But the sin-
gle change that provides the most significant gains in ac-
curacy is obtained by estimating each grader’s bias (Model
PG1-bias ). This simple model is responsible for 95% of our
reduction in RMSE. The other changes all contribute com-
paratively smaller improvements to a more accurate model.

Our evaluation setup also allows us to test how accurate
we would have been, had we had more than four grades per
student. If the class had increased the number of grades that
each student received to five (instead of four), our model
could reduce RMSE error on the first and second offering of
HCI to 4.19 and 4.36 respectively.

Surprisingly while modeling grader bias is particularly effec-
tive, modeling grader reliability does little to improve our
performance. To dig deeper into this result we test our
model on a synthetic dataset — one generated exactly from
Model PG1 . When using this synthetic data with only
four grades per student it is difficult for the model to cor-
rectly estimate grader reliability. Modeling variance for each
grader only seems to have a notable impact when students

grade many assignments (more than 10). This experiment
also suggests why PG3 is more useful than PG1 . Though
PG1 contains more expressive power than PG3 , estimating
only two parameters for grader reliability (θ0 and θ1) is more
statistically tractable with only four grades per student than
estimating a reliability, τv, for each grader.

4.2 Fairness and efficiency in peer grading
One of the advantages of using a probabilistic model for
peer grading is that we can obtain a belief distribution over
grades (as opposed to a single score) for each student. These
distributions give us a natural way of calculating how con-
fident the model is when it predicts a grade for a student
which opens up the possibility of a more equitable allocation
of graders. For example, at a given point midway through
the peer grading process, our model may be highly confident
in its prediction for a given student’s score, but very unsure
in its prediction for another student. In this situation, to en-
sure that each student gets fair access to quality feedback,
we could reassign graders to gradees such that submissions
which have low-confidence scores are given to more and/or
better graders.

The first step towards more fair allocation of grades is to
ask ourselves: how accurate are our estimates of confidence?
For example, we would like to know how to interpret what it
means in practice when our Bayesian model is 90% confident
that its prediction of a learner’s true score is within 10pp of
the actual true score.

To better understand our confidence estimates, we run the
following experiment: We first performed a large number of
peer grading simulations on ground truth. From each sim-
ulation we calculate how confident our model is that the
grade it predicts is within 5%, 7%, and 10%, of the true
score, respectively. We then bin the estimated confidences
into ranges 0-5%, 5-10%, etc. After collecting over 5000
predictions per range, we test the pass rate of each range.
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For example, suppose we select four assessments of the same
ground truth submission in a simulation. If our model re-
ports a 72% confidence — based on those four assessments —
that our predicted grade is within 5pp of the true score, we
add that estimate to the set of predictions in the 70% to 75%
confidence range. When we test this confidence range the
example prediction “passes” if its estimate is in fact within
5pp of the ground truth score.

One worry is that our model might be overconfident about
its predictions even when wrong. However the results, shown
in Figure 3(c), demonstrate that our confidence estimates
are on the conservative side — for example over 95% of
the time that our model claims it is between 90 and 95%
confident of a prediction, the model’s estimate is correct.

Since we have reason to believe that our confidence values
are accurate, we can employ our posterior belief distribu-
tions to better allocate grades. To understand how much
benefit we could get out of improved grade allocation, we
estimate at what point in the grading process we were con-
fident about each submission’s score. For each homework
assignment, we simulate grading taking place in rounds. In
the first round, we only include the first grade submitted by
each grader (which may have been a ground truth grade).
In the second round, we included the first two, etc. For each
round we run our model using the corresponding subset of
grades and count the number of submissions for which we
are over 90% confident that our predicted grades were within
10pp of the student’s true grade.

After only two rounds of grading we are highly confident in
our estimated grade for 15% of submissions (this generally
means that the submission has a grade close to the assign-
ment mean, and has two similar grades from graders). Fig-
ure 3(d) shows how the set of confident submissions grows
over the grading rounds. Our experiment demonstrates a
clear opportunity for grades to be reallocated as well as a
pressing need for some submissions to get more grades. For
54% of students, after all rounds, we are still unsure of their
submission’s true score.

4.3 Graders in the context of the MOOC
Applying probabilistic models to peer grading networks al-
lows us to increase our grade accuracy and better allocate
what submissions students should grade. Another product
of our work is an assignment — with a belief distribution —
for a true score, grader bias and grader reliability for each
student. We can use this large dataset to derive new under-
standing about peer grading as both a formative and sum-
mative assessment. We focus our investigation on two ques-
tions, (1) what factors influence how well a student grades?
and (2) how does grading ability affect future class perfor-
mance in a MOOC?

Influential factors for grader ability. To explore what
factors influence how well a student grades we compare grad-
ing residual (how far off a grader’s score is from our model
estimated true score) to: time spent grading, grader grade,
and gradee grade.

Time spent grading shows a particularly interesting trend
(Figure 4(a)). As hypothesized, students that “snap grade”

their peers’ work (the students whose time spent grading has
a z-score of less than -0.30), are both unreliable (the variance
of their residuals is over 1 standard deviation away from the
gradee’s true score) and tend to slightly inflate grades. More
surprising is that over the tens of thousands of grades, there
is a “sweet spot” of time spent grading. Students who grade
assessments with a time that has a z-score of around -0.25
have significantly lower residual standard deviations (with p-
value < 0.001, diff = 0.3 standard deviations) than students
who take a long time to grade (i.e., time spent grading has
a z-score > -0.20). This sweet spot is only visible when
we look at normalized grading times. For most assignments
in the HCI class, the sweet spot corresponds to around 20
minutes grading. This may reflect both that with any less
time a grader does not have enough of a chance to fully
examine her gradee’s work, and that a long grading session
may mean that the grader had trouble understanding some
facet of the submission.

Examining the relationship between grader grade, gradee
grade and how they affect the residual also shows a set of
notable trends. Graders that score higher on assignments
have close to monotonically decreasing biases (Figure 2(a)).
Getting a better grade on the homework in general makes
students more reliable graders; with the notable exception
that the students that get the best grades (+1.75 z-score)
are not as accurate as the students who do very well (+.75
z-score, p = 0.04). The superlative submissions — both the
best and the worst — are the easiest to grade, and the sub-
missions which are one standard deviation below the mean
are the hardest (Figure 2(b)). Finally, our results show that
students are least biased when grading peers with similar
score (Figure 2(c)). The best students significantly down-
grade the worst submissions and the worst students notably
inflate the best submissions.

In addition to numerical scores, graders were asked to pro-
vide feedback in the form of free form text comments to
their gradees. In order to understand the relationship be-
tween grading performance and commenting style, we com-
pare grading residual against the comment length as well as
sentiment polarity of the comment (Figure 4(c)). To mea-
sure the polarity of a comment, we use the sentiment anal-
ysis word list from [15] and implement a simple sentiment
analyzer that returns a (normalized) polarity score (posi-
tive or negative) proportional to the sum of word valences
over the comment. For both comment length and polar-
ity, we filter out all non-English words. We observe that
comments that correspond to larger negative residuals are
typically significantly longer, suggesting perhaps that stu-
dents write more about the weaknesses of a submission than
strong points. That being said, we observe that overall, the
comments mostly range in polarity from neutral to quite
positive, suggesting that rather than being highly negative
to some submissions, many students make an effort to be
balanced in their comments to peers.

Grader ability and future performance. We also tested
what signal grading ability has with predicting future par-
ticipation. Based on the theory that the best graders are
intrinsically motivated, we hypothesized that being a reli-
able grader would add a different dimension of information
to a student’s engagement which we should be able to use to
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Figure 4: (a) Grader consistency (measured using standard deviation of grading residual) as a function of time spent grading.

(b) ROC curve comparing performance (with linear SVM) at predicting future class participation given a student’s grade, bias,

reliability or all three. (c) Commenting style (length of comment and sentiment polarity) as a function of grading residual.

better predict future engagement. We tested this hypothe-
sis by constructing a classification task in which we predict
whether a student would participate in the next assignment
(or conversely which students would “drop out”). In addi-
tion to the student’s grade, we experimented with including
grader bias and reliability as features in a linear classifier.
Our results (Figure 4(b)) show that including grader bias
and reliability improved our predictive ability by 5pp from
an area under the curve (AUC) score of 0.93 to an AUC
of 0.98. Properties about how a student grades, captures
a dimension of their engagement which is missed by their
assignment grade.

5. RELATED WORK
The statistical models we present in this paper are part of
a long tradition of models which have been proposed for
the purposes of aggregating information from noisy human
labelers or workers. Many of these works adapt classical
item-response theory (IRT) models [3] to the problem of
“grading without an answer key” and appear in the litera-
ture from educational aptitude testing [10, 16, 14], to cul-
tural anthropology [4, 12], and more recently to HCI in the
context of human computation and crowdsourcing [19]. In
educational testing, for example, Johnson [10] and Rogers et
al. [16] propose models for combining human judgements of
essays. These papers analyze dedicated human graders who
each evaluated hundreds of essays, allowing for a rich model
to be fitted on a per-grader basis. In contrast, with peer
grading in MOOCs, each student only assesses a handful of
assignments, necessitating more constrained models.

In a recent paper, and in a setting perhaps most similar
to our own, Goldin et al. [9, 1, 8] use Bayesian models for
peer grading in a smaller scale classroom setting. As in our
own work, [8] posits a grader bias, and in fact incorporates
rubric-specific biases, but does not consider many of the
issues raised here such as grading task reallocation or the
relationship between grader bias and student engagement,
for example.

One of the central themes of the crowdsourcing literature,
that of balancing label accuracy against labor cost, is one
which MOOC peer grading systems must contend with as
well. In such problems, one typically receives a number of
noisy labels (for example in an image tagging task) and the
challenge lies in (1) resolving the “correct” label (often dis-

crete, but sometimes continuous) and (2) deciding whether
to hire more labelers for a given task. Explosion of interest
in recent years has led to widespread applications of crowd-
sourcing [2, 11]. For example in image annotation, Whitehill
et al. [19] present a method similar to our own in which they
model discrete “true image labels” as well as labeler accu-
racy. While our work draws from the crowdsourcing litera-
ture, the problem of peer grading is unique in several ways.
For example, the fact that the graders are also gradees in
peer grading is quite different from typical crowdsourcing
settings in which there is a dichotomy between the labelers
and the items being labeled, and motivates different mod-
els (such as Model PG3 ). In crowdsourcing applications,
the end goal often lies in determining the true labels rather
than to understand anything about the labelers themselves,
whereas in peer grading, as we have shown, the insights that
we can glean about the graders have educational value.

A similar problem to peer-grading is the paper assignment
problem for the peer review process in academic conferences.
While related in that the central challenge of both problems
involves fusing disparate human opinions about open-ended
creative work, many of the specific challenges are distinct.
For one, side information plays a much larger role in peer
review, where conference chairs typically rely heavily on per-
sonal or elicited knowledge of reviewer expertise or citation
link structure to assign reviewer roles [5]. Peer grading on
the other hand seems less sensitive to personal preferences,
where a single submission should be equally well graded by
a large fraction of students in the course.

6. DISCUSSION AND FUTURE WORK
Our paper presents methods for making large scale peer
grading systems more dependable, accurate, and efficient.
We show that there is much to be gained by maintaining
estimates of grader specific quantities such as bias and reli-
ability. In addition to improving peer grading accuracy by
up to 30%, these quantities give unique insights into peer
grading as a formative and summative assessment. Due to
these promising results, our implementation is being used
and evaluated in the third offering of HCI.

Moreover, trends among the latent variables that are coloured
in by our model suggest results that could benefit the under-
standing of peer grading as a pedagogical tool. For exam-
ple, understanding the factors that cause the “sweet spot”
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in grading time that we observed would be helpful in teach-
ing graders. The trend between time spent grading and
reliability also raises the question of how to incentivize stu-
dents to spend enough time grading to provide careful and
high quality feedback to their peers, particularly in an open-
acess course. Using model PG3 for scoring, as we discussed,
makes a student’s score dependent on grading performance,
and may be one way to build a justified incentive directly
into the scoring mechanism. There are also a number of chal-
lenging theoretical open questions on the mechanism design
issues behind peer grading which [6] has taken steps to ad-
dress. Similarly, the subtle patterns between grader score
and reliability that are visible given our volume of data add
an interesting piece of evidence to explore from an educa-
tional perspective. While, it is unsurprising that good stu-
dents grade better, we also observe that the very best stu-
dents in the class, were worse graders than students in the
70th percentile. What is the force behind this trend?

There remain a number of issues to be addressed in future
work. We have considered the problem of determining which
submissions need to be allocated additional graders. How-
ever, deciding which grader is best for evaluating a partic-
ular submission is an open problem whose solution could
depend on a number of variables, from the writing styles
of the grader and gradee to their respective cultural or lin-
guistic backgrounds, a particularly important issue for the
global scale course rosters that arise in MOOCS. Moreover,
in our study we ovserved that the mean of hundreds of stu-
dents who graded the same assignment was more reliable
than volunteer staff grades. This points to a more in-depth
investigation into how accurate “expert” grades really are.
Finally, it is not clear how to present scores which are cal-
culated by a complicated peer grading model to students.
While this communication might be easy when a student’s
final grade is simply set to be the mean or median of peer
grades, does each student need to know the inner workings
of a more sophisticated statistical backend? Students may
be unhappy with the lack of transparency in grading mech-
anisms, or on the other hand might feel more satisfied with
their overall grade.

As MOOCs become more widespread, the need for reliable
grading and feedback for open ended assignments becomes
ever more critical. By addressing the shortcomings of cur-
rent peer grading systems, we hope that students everywhere
can get more from peer grading and consequently, more from
their free online, open access educational experience.
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ABSTRACT 
Conceptual understanding of representations and fluency in using 
representations are important aspects of expertise. However, little 
is known about how these competencies interact: does representa-
tional understanding facilitate learning of fluency (understanding-
first hypothesis), or does fluency enhance learning of representa-
tional understanding (fluency-first hypothesis)? We analyze log 
data obtained from an experiment that investigates the effects of 
intelligent tutoring systems (ITS) support for understanding and 
fluency in connection-making between fractions representations. 
The experiment shows that instructional support for both repre-
sentational understanding and fluency are needed for students to 
benefit from the ITS. In analyzing the ITS log data, we contrast 
the understanding-first hypothesis and the fluency-first hypothe-
sis, testing whether errors made during the learning phase mediate 
the effect of experimental condition. Finding that a simple statis-
tical model does not the fit data, we searched over all plausible 
causal path analysis models. Our results support the understand-
ing-first hypothesis but not the fluency-first hypothesis. 

Keywords 

Causal path analysis modeling, multiple representations, intelli-
gent tutoring systems. 

1. INTRODUCTION 
Representational understanding and representational fluency are 
important aspects of learning in any domain [1]. When working 
with representations (e.g., formulae, line graphs, path diagrams), 
students need conceptual understanding of these representations 
(representational understanding). Students also need to use the 
representations to solve problems fast and effortlessly (representa-
tional fluency). Science and mathematics instruction typically 
employs multiple graphical representations to help students learn 
about complex domains [2]. For instance, instructional materials 
for fractions use circle and rectangle diagrams to illustrate frac-
tions as parts of a whole, and number lines to depict fractions in 
the context of measurement [3-5]. Multiple representations have 
been shown to lead to better learning than a single representation, 
provided that students make connections between them [6-7]: to 
benefit from the multiplicity of representations, students need to 
conceptually understand how different representations relate to 
one another, and they need to translate between them [8-11]. Yet, 
students find it difficult to make these connections [8], and tend 
not to make them spontaneously [12]. Therefore, they need to be 
supported in doing so [7]. Based on [1], we distinguish between 
representational understanding as conceptual understanding of 
connections between different graphical representations, and re-

presentational fluency as the ability to fast and effortlessly make 
these connections. To benefit from multiple graphical representa-
tions, students need to acquire both representational understanding 
[8], and they need to develop representational fluency [13].  
In the present paper, we use log data obtained from a classroom 
experiment that uses a successful type of intelligent tutoring sys-
tem (ITS) to help students learn about fractions while comparing 
different ways to support representational understanding and 
representational fluency. The experiment demonstrates that both 
instructional support for representational understanding and repre-
sentational fluency are necessary for students to benefit from mul-
tiple graphical representations of fractions [14]. The goal of the 
present paper is to augment the findings from the traditional anal-
ysis of pretest and posttest data by using causal path analysis 
modeling to analyze mediation effects that can explain the nature 
of how representational understanding and representational fluen-
cy interact. Does representational understanding facilitate stu-
dents’ acquisition of representational fluency? Or does representa-
tional fluency enhance students’ ability to acquire representational 
understanding? We contrast two competing hypotheses. Accord-
ing to the understanding-first hypothesis, representational under-
standing equips students with the necessary knowledge about 
structural correspondences between graphical representations and 
about what differences between the representations are incidental, 
allowing students to attend to relevant aspects of the graphical 
representations while developing representational fluency. There-
fore, students who receive support for representational under-
standing should make fewer errors on fluency-building problems 
compared to students who do not receive support for representa-
tional understanding. By contrast, the fluency-first hypothesis 
predicts that representational fluency frees up the cognitive re-
sources that students need to acquire understanding of these con-
nections. Therefore, students who receive fluency-building sup-
port should make fewer errors on problems supporting representa-
tional understanding compared to students who do not receive 
fluency-building support. The answer to the question of how ac-
quisition of representational understanding and representational 
fluency interact has important implications for the instructional 
design of ITSs and other educational technologies. If representa-
tional understanding enhances the acquisition of representational 
fluency (understanding-first hypothesis), instructional materials 
should support representational understanding before representa-
tional fluency. If, on the other hand, representational fluency faci-
litates students’ acquisition of representational understand-
ing(fluency-first hypothesis), instructional materials should sup-
port representational fluency before supporting representational 
understanding.
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Figure 1. Worked example support for representational understanding: students use a worked example with a rectangle (part A, 
upper left) to guide their work on a fractions problem with a number line (part B, upper right). At the end (part C, bottom), stu-

dents are prompted to integrate both representations by responding to drop-down menu questions. 
To gain further insights into how support for representational 
understanding and representational fluency affect students’ inte-
ractions with an ITS for fractions, we employ causal path analysis. 
In doing so, we contrast mediation models that correspond to the 
understanding-first hypothesis, and to the fluency-first hypothesis.  
Specifically, we investigate whether errors that students make 
during the learning phase mediate the interaction effect between 
support for representational understanding and representational 
fluency on students’ learning. Our results are in line with the un-
derstanding-first hypothesis, but not with the fluency-first hypo-
thesis.  
The remainder of this paper is structured as follows. We first de-
scribe the ITS that we used to carry out the experimental study. 
We then provide a brief overview of the experimental design and 
the results obtained from the analysis of pretests and posttests. 
The main focus of this paper is on describing the causal path anal-
ysis we conducted to investigate the interaction of instructional 
support for representational understanding and representational 
fluency on students’ learning behaviors as identified by the tutor 
log data. We end by discussing the implications of our analysis for 
the instructional design of learning materials, and by outlining 
open questions that future research should be address. 

2. THE FRACTIONS TUTORING SYSTEM 
The Fractions Tutor used in the experiment is a type of Cognitive 
Tutor. Cognitive Tutors are grounded in cognitive theory and 
artificial intelligence. Cognitive Tutors have been shown to lead 
to substantial learning gains in a number of studies [15]. We 
created the Fractions Tutor with Cognitive Tutor Authoring Tools 
[16]. The design of the tutor interfaces and of the interactions 
students engage in during problem solving are based on a number 
of small-scale user studies, a knowledge component model devel-
oped based on Cognitive Task Analysis of the learning domain 
[17], and a series of in vivo experiments [6, 12, 18].  
The Fractions Tutor uses multiple interactive graphical represen-
tations (circles, rectangles, and number lines) that are typically 
used in instructional materials for fractions learning [2-3, 5]. The 
Fractions Tutor covers a comprehensive set of topics ranging from 
identifying fractions from graphical representations, to equivalent 

fractions and fraction addition. Taken together, the Fractions Tu-
tor comprises about ten hours of supplemental instructional ma-
terial. Students solve tutor problems by interacting both with frac-
tions symbols and with the graphical representations. As is com-
mon with Cognitive Tutors, students receive error feedback and 
hints on all steps. In addition, each tutor problem includes concep-
tually oriented prompts to help students relate the graphical repre-
sentations to the symbolic notation of fractions.  

3. EXPERIMENT 
The goal of the experimental study (cf. [14] for a detailed descrip-
tion) was to investigate the hypothesis that students learn more 
robustly when receiving instructional support for both representa-
tional understanding and support for representational fluency. We 
conducted a classroom experiment with 599 4th- and 5th-grade 
students from five elementary schools in the United States. Stu-
dents worked with the Fractions Tutor for about ten hours during 
their regular mathematics class. 
We contrasted two experimental factors. One factor, support for 
representational understanding in making connections had three 
levels: no support, auto-linked support in which the Fractions 
Tutor automatically made changes in one representation as stu-
dents manipulated another, and worked examples. Figure 1 pro-
vides an example of the Fractions Tutor problem that uses worked 
examples (WEs) to support representational understanding. Stu-
dents used a worked example with a familiar representation as a 
guide to make sense of an isomorphic problem with a less familiar 
representation. This factor was crossed with a second experimen-
tal factor, namely, whether or not students received support for 
representational fluency in making connections: students had to 
visually estimate whether different types of graphical representa-
tions showed the same fraction. Figure 2 shows an example of a 
fluency-building problem (FL). Students in all conditions worked 
on 80 tutor problems: eight problems per topic (e.g., equivalent 
fractions, addition, subtraction, etc.). In each topic, the first four 
tutor problems were single-representation problems (i.e., they 
included only a circle, only a rectangle, or only a number line, and 
no connection-making support). The last four tutor problems were 
multiple-representation problems and differed between the experi-
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Figure 2. Fluency-building support: students sort graphical representations by dragging-and-dropping them into slots that show 

equivalent fractions. 
mental conditions. For instance, students in the worked examples 
only condition (WE) received four worked examples problems. 
Students in the fluency-only condition (FL) received four fluency-
building problems. Students in the worked examples plus fluency 
condition (WE-FL) received two worked examples problems, 
followed by two fluency-building problems. Table 1 illustrates 
this procedure for two consecutive topics for each of these three 
conditions. The same sequence of eight problems was repeated for 
each of the ten  topics the Fractions Tutor covered. 

Table 1. Problem sequence per condition: for each topic, 
problems 1-4 (P1-P4) are single-representation problems (S); 
problems 5-8 are multiple-representation problems: worked 

examples (WE, blue-underlined) or fluency-building problems 
(FL, green-italicized). 

Cond. Topic P1 P2 P3 P4 P5 P6 P7 P8 

WE 
1 S S S S WE WE WE WE 
2 S S S S WE WE WE WE 

… … 

FL 
1 S S S S FL FL FL FL 
2 S S S S FL FL FL FL 

… … 

WE-
FL 

1 S S S S WE WE FL FL 
2 S S S S WE WE FL FL 

… … 
Results based on the analysis of pretest, immediate posttests, and 
delayed posttest (administered one week after the immediate post-
test) from 428 students confirmed the hypothesis that a combina-
tion of instructional support for representational understanding 
and representational fluency is most effective: the interaction 
between support for understanding and fluency was significant, 
F(2, 351) = 3.97, p < .05, ηp² =.03, such that students who re-
ceived both types of support performed best. Worked examples 
are the more effective type of support for representational under-
standing, when paired support for representational fluency: within 
the conditions with support for representational fluency, there was 
a significant effect of support for representational understanding, 
F(2, 343) = 4.34, p < .05, ηp² =.07. However, within the condi-
tions without support for representational fluency, there was no 

significant effect of support for representational understanding (F 
< 1). Finally, our results show an advantage of the WE-FL condi-
tion over the number-line control, t(115) = 2.41, p < .05, d = .27. 
The results from the experimental study raise interesting new 
questions about the relation between representational understand-
ing and representational fluency. It is surprising that there were no 
significant main effects for support for representational under-
standing or representational fluency alone; only the combination 
of both enhanced students’ learning from multiple graphical re-
presentations. Did support for understanding enable students to 
benefit from fluency-building support, or vice versa? We address 
this question in the remainder of this paper. 

4. DATA SET 
The analyses in this paper are based on the data obtained from the 
experimental study just described. Students in the experiment 
received a pretest on the day before they started to work with the 
Fractions Tutor. The day after students finished working with the 
Fractions Tutor, they received an immediate posttest. One week 
after the immediate posttest, students were given a delayed post-
test. All three tests were equivalent (i.e., they contained the same 
items with different numbers). Students worked with the Fractions 
Tutor for about ten hours and had to complete each tutor problem. 
All interactions with the Fractions Tutor were logged. 

4.1 Selecting Conditions to Include into Caus-
al Path Analysis Modeling 
In the light of the interaction effect between support for represen-
tational fluency and support for representational understanding 
through worked examples, the experimental conditions of interest 
for further analyses are worked example (WE), fluency (FL), and 
worked examples paired with support fluency (WE-FL). We thus 
selected these three conditions to include into the causal path 
analysis model. A total of 190 students were included in the anal-
ysis (n = 59 in the WE condition, n = 73 in the FL condition, and 
n = 58 in the WE-FL condition). Table 2 shows the means and 
standard deviation of students’ performance on pretest, immediate 
and delayed posttest by condition. 
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4.2 Defining Mediation Variables 
As the goal was to investigate whether support for representation-
al understanding helps students benefit from support for represen-
tational fluency or vice versa, we compared students’ perfor-
mance on worked-example problems (i.e., support for representa-
tional understanding) between the WE and the WE-FL condition, 
and students’ performance on fluency-building problems between 
the FL and the WE-FL condition. Specifically, we compared per-
formance on those tutor problems that were the same across these 
pairs of conditions. To compare the WE and WE-FL conditions, 
we used errors students made on problems P5 and P6 (see the 
blue-underlined problems in Table1). To compare the FL and 
WE-FL conditions, we used errors students made on problems P7 
and P8 (see the green-italic problems in Table1). We expect that, 
if representational understanding facilitates the acquisition of 
representational fluency, students in the WE-FL condition will 
make fewer errors on fluency-building problems than students in 
the FL condition. If representational fluency facilitates the acqui-
sition of representational understanding, we expect the WE-FL 
condition to make fewer errors on worked-examples problems 
than students in the WE condition. 

Table 2. Means and standard deviation (in parentheses) on 
pretests and posttests per condition. 

Condition Pretest Immediate 
posttest 

Delayed 
posttest 

WE .36 (.22) .43 (.20) .49 (.26) 

FL .31 (.21) .37 (.22) .44 (.24) 

WE-FL .39 (.21) .52 (.24) .58 (.26) 
A first step in this analysis was to use the tutor log data to identify 
measures of errors that students made on these problems. Rather 
than using the overall error rate, we applied the knowledge com-
ponent model [17] that underlies the problem structure of the 
Fractions Tutor to categorize the errors students made while 
working on the tutor problems. Doing so allows for a much more 
fine-grained analysis of students’ errors than the overall error rate 
does. The knowledge component model describes a meaningful 
set of steps within a tutor problem which provide practice oppor-
tunities for practicing a “unit” of knowledge. For example, every 
time a student is asked to enter the numerator of a fraction, he/she 
has the opportunity to practice knowledge about what the numera-
tor of a fraction is. Worked-example problems and fluency-
building problems cover a different set of knowledge components, 
but the same knowledge components occur repeatedly across dif-
ferent worked example problems and fluency-building problems, 
respectively. Altogether, the knowledge component model led to 
12 types of errors that students could make on worked-example 
problems, and 11 types of errors that students could make on flu-
ency-building problems. 

Next, we had to narrow the number of error categories to include 
in the causal path analysis model. We included only those error 
types which (1) were significant predictors of students’ posttest 
performance, while controlling for pretest performance, and (2) 
significantly differed between conditions. To determine whether 
an error type was a significant predictor of students’ immediate 
posttest performance, we conducted linear regression analyses 
with posttest performance as the dependent variable, and pretest 
performance and number of error type as predictors. 

To determine whether error types differed significantly between 
conditions, we conducted Chi-square tests with number of error 
type as dependent variable and condition as independent variable 

(i.e., WE vs. WE-FL for error types that students could make on 
worked-example problems, and FL vs. WE-FL for error types that 
students could make on fluency-building problems). For both 
analyses, we adjusted for multiple comparisons using the Bonfer-
roni correction. On worked-example problems, six error types 
differed significantly between conditions, but only two error types 
were significant predictors of posttest performance (both of them 
passed both the Chi-square test and the regression test). On fluen-
cy-building problems, eight error types differed significantly be-
tween conditions, and four were significant predictors of posttest 
performance (three of them passed both the Chi-square test and 
the regression test). Table 3 provides an overview of the error 
types we selected for further analyses. 

Table 3. Selected error types and number of error-types per 
condition. 

Error type Description # in 
WE  

# in 
FL  

# in 
WE-FL  

place1Error Locating 1 on the 
number line given a 
dot on the number line 
and the fraction it 
shows 

150 n/a 222 

SE-Error Self-explanation error, 
response to reflection 
questions in drop-
down menu format 

132
0 

n/a 1629 

equivalen-
ceError 

Finding equivalent 
fraction representa-
tions 

n/a 289
9 

2157 

improper-
MixedError 

Finding representa-
tions of improper frac-
tions 

n/a 138
0 

1608 

Name-
Circle-
MixedError 

Finding circle repre-
sentations that show 
the same fraction as a 
number line or a rec-
tangle 

n/a 355 126 

5. PATH ANALYSIS MODELING 
In order to investigate whether and how error types mediate the 
effect of condition, we first specified, estimated, and tested two 
path analytical structural equation models [19-20] – one which 
compared the WE and WE-FL conditions using error types made 
on the worked-example problems as mediators, and one which 
compared the FL and WE-FL conditions using error types made 
on the fluency-building problems as mediators. Structural equa-
tion models provide a unified framework within which to test 
mediation hypotheses, to estimate total effects, and also to sepa-
rate direct from indirect effects. The models that represented our 
hypotheses in both experiments were decisively rejected by the 
data, and in such a case it is not appropriate to use the model to 
test mediation hypotheses or estimate effects. Our strategy was to 
use the Tetrad IV program1 to search for alternative models that 

1 Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, 
contains a causal model simulator, estimator, and over 20 model 
search algorithms, many of which are described and proved 
asymptotically reliable in [23] Spirtes, P., Glymour, C. and 
Scheines, R. Causation, Prediction, and Search. MIT Press, 
2000.   
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are both theoretically plausible and consistent with the data. In 
this section, we describe the path analytic models that represent 
our hypotheses, describe the search algorithms we use to find for 
alternative models, and briefly summarize the results of our 
search. 

5.1 Modeling our Hypotheses 

 
Figure 2. Path model for understanding-first hypothesis. 

 

 
Figure 3. Path model for fluency-first hypothesis. 

Our model hypotheses correspond to the understanding-first hypo-
thesis and the fluency-first hypothesis described above. The un-
derstanding-first hypothesis predicts that support for representa-
tional understanding enhances students’ ability to benefit from 
fluency-building problems by equipping students with the know-
ledge they need to attend to relevant features of the graphical 
representations while developing representational fluency. There-
fore, students who receive support for representational under-
standing should make fewer errors on fluency-building problems 
compared to students who do not receive support for representa-
tional understanding. Therefore, the understanding-first hypothe-
sis predicts that support for representational understanding in-
creases learning by reducing the number of errors made on fluen-
cy-building problems. Figure 32 depicts the model we specified to 

2 In path models of this type, also called "causal graphs" [22] Ib-
id., each arrow, or directed edge, represents a direct causal rela-
tionship relative to the other variables in the model.  For exam-
ple, in Figure 3 the condition is a direct cause of the mediator 

test the understanding-first hypothesis. Each node in the path 
model refers to a variable in the data set: WE = whether or not 
students receive worked-example support for representational 
understanding (i.e., whether they are in the FL vs. in the FL-WE 
condition), nameCircleMixedError, equivalenceError, and im-
properMixedError being the errors students could make on fluen-
cy-building problems (see Table 3), pre = performance on the 
pretest, post = performance on the immediate posttest, delpost = 
performance on the delayed posttest. 
The fluency-first hypothesis predicts that support for representa-
tional fluency enhances students’ ability to benefit from support 
for representational understanding because representational fluen-
cy frees up the cognitive resources that students can invest in 
sense-making processes that lead to representational understand-
ing. Therefore, students who receive support for representational 
fluency should make fewer errors on worked-example problems, 
compared to students who do not receive support for representa-
tional fluency. Therefore, the fluency-first hypothesis predicts that 
support for representational fluency increases learning by reduc-
ing the number or errors made on worked-example problems. 
Figure 4 depicts the model that we specified to test the fluency-
first hypothesis. Each node in the path model refers to a variable 
in the data set: FL = whether or not students receive support for 
representational fluency (i.e., whether they are in the WE vs. in 
the FL-WE condition), SE-Error and place1Error being the errors 
students could make on worked-example problems (see Table 3),  
pre = performance on the pretest, post = performance on the im-
mediate posttest, delpost = performance on the delayed posttest. 
Using normal theory maximum likelihood to estimate the parame-
ters of these models, we find that in each case the deviation be-
tween the estimated and the observed covariance matrix is too 
large to be explained by chance (for the model for the understand-
ing-first hypothesis in Figure 3: χ² = 30.88, df = 9, p < .00013, and 
for the model for the fluency-first hypothesis in Figure 4: χ² = 
49.14, df = 6, p < .0001), thus the models do not fit the data and 
the parameter estimates cannot be trusted4. 

5.2 Model Search 
To search for alternatives, we used the GES algorithm in Tetrad 
IV along with background knowledge constraining the space of 
models searched [19] to those that are theoretically tenable and 
compatible with our experimental design. In particular, we assume 
that our intervention variables are exogenous, that our interven-
tion variables are causally independent, that the pretest is exogen-

variables, but only affect the posttest indirectly through these 
mediators.   

3 The usual logic of hypothesis testing is inverted in path analysis. 
The p-value reflects the probability of seeing as much or more 
deviation between the covariance matrix implied by the esti-
mated model and the observed covariance matrix, conditional 
on the null hypothesis that the model that we estimated was the 
true model. Thus, a low p-value means the model can be re-
jected, and a high p-value means it cannot.  The conventional 
threshold is .05, but like other alpha values, this is somewhat 
arbitrary. The p-value should be higher at low sample sizes and 
lowered as the sample size increases, but the rate is a function of 
several factors, and generally unknown.   

4 We also tested variations of these models in which we added 
direct paths from the condition variables to the post-test and de-
layed post-test. These variants are also clearly rejected by our 
data. 
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ous and causally independent of intervention, that the mediators 
are prior to the immediate posttest and to the delayed posttest, and 
that the immediate posttest is prior to the delayed posttest. Even 
under these constraints, there are at least 225 (over 33 million) 
distinct path models for the understanding-first hypothesis, and 
225 (over 33 million) for the fluency-first hypothesis.  
The qualitative causal structure of each linear structural equation 
model can be represented by a Directed Acyclic Graph (DAG). If 
two DAGs entail the same set of constraints on the observed cova-
riance matrix,5 then we say that they are empirically indistin-
guishable. If the constraints considered are independence and 
conditional independence, which exhaust the constraints entailed 
by DAGs among multivariate normal varieties, then the equiva-
lence class is called a pattern [20-21]. Instead of searching in 
DAG space, the GES algorithm achieves efficiency by searching 
in pattern space. The algorithm is asymptotically reliable,6 and 
outputs the pattern with the best Bayesian Information Criterion 
(BIC) score.7 The pattern identifies features of the causal structure 
that are distinguishable from the data and background knowledge, 
as well as those that are not. The algorithm’s limits are primarily 
in its background assumptions involving the non-existence of 
unmeasured common causes and the parametric assumption that 
causal dependencies can be modeled with linear functions. 

5.3 Results 
Figure 5 shows a model found by GES for the understanding-first 
hypothesis, with coefficient estimates included. The model fits the 
data reasonably well8 (χ2 = 16.10, df = 6, p = .013). Students with 
higher pretest scores make fewer nameCircleMixedErrors, and 
they perform better on the immediate and the delayed posttest. 
Receiving worked-example support for representational under-
standing (i.e., being in the WE-FL condition and not in the FL 
condition) increases nameCircleMixedErrors, which in turn de-
creases performance on the immediate posttest. In other words, 
nameCircleMixedErrors mediate a negative effect of worked ex-
amples on students’ learning. Receiving worked-example support 
for representational understanding also reduces equivalenceErrors 
and improperMixedErrors. Since making more improperMixedEr-
rors leads to worse performance on the immediate and the delayed 
posttests, equivalenceErrors and improperMixedErrors mediate 
the positive effect of the worked-example support on students’ 
learning. Support for representational understanding through 
worked examples does not have a direct impact on students’ post-
test performance. The overall positive effect of worked examples 
on students’ learning through equivalenceErrors and improper-
MixedErrors is larger than the negative effect through nameCir-
cleMixedErrors. (See Table 3 for a description of the errors.) 

5 An example of a testable constraint is a vanishing partial correla-
tion, e.g., ρXY.Z = 0. 

6 Provided the generating model satisfies the parametric assump-
tions of the algorithm, the probability that the output equiva-
lence class contains the generating model converges to 1 in the 
limit as the data grows without bound. In simulation studies, the 
algorithm is quite accurate on small to moderate samples. 

7 All the DAGs represented by a pattern will have the same BIC 
score, so a pattern’s BIC score is computed by taking an arbi-
trary DAG in its class and computing its BIC score. 

8 The usual logic of hypothesis testing is inverted in path analysis: 
a low p-value means the model can be rejected. 

Figure 6 shows a model found by GES for the fluency-first hypo-
thesis. The model fits the data well (χ2 = 8.32, df = 5, p = .14). 
Students with higher pretest scores make fewer SE-Errors and 
perform better on both posttests. Having fluency-building support 
(i.e., being in the WE-FL condition as opposed to being in the WE 
condition) increases SE-Errors, which reduces performance on the 
immediate and the delayed posttest. In other words, SE-Errors 
mediate a negative effect of fluency-building support. There are 
no further mediations of having fluency-building support, but 
there is a direct positive effect of fluency-building support on 
students’ performance on the immediate posttest. (See Table 3 for 
a description of the errors.) 

 
Figure 4. The model found by GES for the understanding-first 

hypothesis, with parameter estimates included. 

 
Figure 5. The model found by GES for the fluency-first hypo-

thesis, with parameter estimates included. 

6. DISCUSSION 
Taken together, results from the causal path analysis models sup-
port the understanding-first hypothesis but not the fluency-first 
hypothesis: receiving worked-example support for representation-
al understanding helps students learn from fluency-building prob-
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lems. The model in Figure 5 demonstrates that, although students 
who receive worked-example support make more nameCircle-
MixedErrors, they make fewer equivalenceErrors and improper-
MixedErrors. NameCircleMixedErrors are possible early in the 
Fractions Tutor curriculum, whereas equivalenceErrors and im-
properMixedErrors occur later in the Fractions Tutor curriculum. 
The analysis therefore suggests that support for representational 
understanding reduces errors later during the learning phase, 
which leads to better overall learning. This finding is particularly 
interesting when we recall that we only compare the errors stu-
dents make on fluency-building problems P7 and P8 (see Table 
1). For the FL condition, problems P5 and P6 are also fluency-
building problems, whereas for the WE-FL condition, problems 
P5 and P6 are worked-examples problems. That is, students in the 
FL condition receive more practice on fluency-building problems, 
which should increase their performance on fluency-building 
problems. Based on practice effects, we would thus expect that 
students in the FL condition would outperform students in the 
WE-FL condition on problems P7 and P8 (e.g., P7 is the first time 
the WE-FL condition encounters a fluency-building problem, but 
the third time the FL condition encounters a fluency-building 
problem, for the given topic). However, we find the opposite for 
errors that occur later in the curriculum: worked-example support 
for representational understanding leads to better performance on 
fluency-building problems, even compared to students who re-
ceived more practice on the same types of fluency-building prob-
lems. Since higher performance on these problems (i.e., fewer 
equivalenceErrors and fewer improperMixedErrors) leads to bet-
ter performance on the immediate posttest, while controlling for 
pretest, it seems that support for representational understanding 
prepares students to learn better from subsequent fluency-building 
problems. 
The model in Figure 6 does not provide support for the fluency-
first hypothesis. We do not find evidence that fluency-building 
support helps students benefit from support for representational 
understanding. Although we find a direct positive effect of fluen-
cy-building support on students’ learning, the mediation effect 
shown in Figure 6 is evidence that receiving fluency-building 
support comes at the cost of lower performance on worked-
examples problems: students tend to make more SE-Errors and 
more place1Errors. This finding is somewhat expected.  Students 
in the WE condition work on twice as many worked-examples 
problems than the WE-FL condition, so they receive more prac-
tice on the worked-examples problems compared to the WE-FL 
condition (see Table 1). As students in the WE-FL condition have 
less practice on worked-examples problems, they are expected to 
perform somewhat worse on those problems – and that is what the 
model in Figure 6 confirms. Yet, since we do not find evidence 
that receiving fluency-building support also benefits students’ 
learning from worked-example support for representational under-
standing, our results do not support the fluency-first hypothesis. 
Our findings from path analysis modeling demonstrate the impor-
tance of model search. None of our initial hypothesis models fit 
the data, but there are thousands of plausible alternatives. Further, 
estimating path parameters with a model that does not fit the data 
is scientifically unreliable. Parameter estimates, and the statistical 
inferences we make about them with standard errors etc., are all 
conditional on the model specified being true everywhere except 
the particular parameter under test.  
Even if our initial hypotheses had fit the data well, it would have 
been important to know whether there were alternatives that ex-
plained the same data. The GES algorithm implemented in Tetrad 
IV enabled us to find plausible models that fit the data well. The 

models we found in Figures 5 and 6 allow us to estimate and test 
path parameters free from the worry that the model within which 
the parameters are estimated is almost surely mis-specified, as is 
the case for the models in Figures 3 and 4.  
Several caveats need to be emphasized, lest we give the false im-
pression that we think we have “proved” the causal relationships 
that appear in the path diagrams shown in Figures 5 and 6. First, 
the GES algorithm assumes that there are no unmeasured con-
founders (hidden common causes), an assumption that is almost 
certainly false in this and in almost any social scientific case, but 
one that is routinely employed in most observational studies.9 In 
future work, we will apply algorithms (e.g., FCI) that do not make 
this assumption, and see whether our conclusions are robust 
against this assumption. Second, although we did include inter-
vention interaction in our model search and did test for interac-
tions between pretest and mediators, by no means were our tests 
exhaustive, and by no means can we rely on the assumption that 
the true relations between the variables we modeled are linear, as 
the search algorithms assume. The assumption of linear relation-
ships is reasonable but not infallible. Third, we have a sample of 
190 students, and although that is sizable compared to many Cog-
nitive Tutor studies, model search reliability goes up with sample 
size, but down with model complexity and number of variables, 
and is impossible to put confidence bounds on finite samples [23].  

7. CONCLUSIONS AND FUTURE WORK 
Our findings provide important insights into the nature of the 
interaction between students’ acquisition representational under-
standing and representational fluency. Our analysis supports the 
notion that the acquisition of representational understanding en-
hances students’ ability to benefit from instructional support for 
representational fluency, more so than the other way around. 
Therefore, our findings suggest that instruction should provide 
support for representational understanding before providing sup-
port for representational fluency. 
Although our analyses provide support for the understanding-first 
hypothesis, but not for the fluency-first hypothesis, both remain 
valid hypotheses. One important caveat of the analyses presented 
here is that, within each curricular topic of the Fractions Tutor, all 
students in the WE-FL condition received support for representa-
tional understanding before support for representational fluency 
(i.e., there was no FL-WE condition). We therefore cannot draw 
definite conclusions about the relative effectiveness of providing 
support for representational understanding before support for 
representational fluency (WE-FL) and providing support for re-
presentational fluency before support for representational under-
standing (FL-WE). Our findings based on causal path analysis 
modeling merely suggest that the WE-FL condition would lead to 
better learning than a FL-WE condition. This notion remains to be 
tested empirically. 
Future research should also investigate whether our findings are 
specific to the domain of fractions learning, and to the acquisition 
of representational understanding and representational fluency in 
making connections between multiple graphical representations. 
Graphical representations are universally used as instructional 
tools to emphasize and illustrate conceptually relevant aspects of 
the domain content. Furthermore, in any given domain, students 

9 Although our data are from a study in which we intervened on 
intervention, we did not directly intervene on our mediator or 
outcome variables. Thus these parts of our model are subject to 
the same assumptions as a non-experimental study.  
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need to develop representational fluency in using graphical repre-
sentations to solve problems, and they need to effortlessly trans-
late between different kinds of representations. But representa-
tional understanding and representational fluency are not limited 
to learning with graphical representations: representational under-
standing and representational fluency also play a role in using 
symbolic and textual representations. For example, should stu-
dents acquire representational fluency in applying a formula to 
solve physics problems before understanding the conceptual as-
pects the formula describes, or should they first conceptually un-
derstand the phenomenon of interest and then learn to apply a 
formula to solve problems related to that phenomenon? This is a 
crucial question for instructional design and one that remains 
open. While the analysis presented in this paper takes an impor-
tant step towards answering this question by providing novel in-
sights into how representational understanding and representa-
tional fluency interact, more research is needed to investigate 
implications and applications related to the question of how best 
to support students to develop expertise with representational 
understanding and representational fluency.  
The use of search algorithms over plausible causal path analysis 
models is a promising method to analyze the effects of instruc-
tional interventions on, because we can get insights into how an 
intervention affects problem-solving behaviors, and how these 
effects account for the advantage of one intervention over the 
other. Basing our analysis on cognitive task analysis and know-
ledge component modeling, we make use of common techniques 
in the analysis of tutor log data [23]. The results from our causal 
path analysis not only provide insights into the nature of the inte-
raction of the experimental study, but also raise new hypotheses 
that can be empirically tested in future research. Thereby, our 
findings illustrate that causal path analysis modeling is a useful 
technique to augment regular tutor log data analysis. 
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ABSTRACT 
Cognitive Tutors are primarily developed as instructional systems, 
with the goal of helping students learn. However, the systems are 
inherently also data collection and assessment systems.  In this 
paper, we analyze data from over 3,000 students in a school 
district using Carnegie Learning’s Middle School Mathematics 
tutors and model performance on standardized tests. Combining a 
standardized pretest score with interaction data from Cognitive 
Tutor predicts outcomes of standardized tests better than the 
pretest alone. In addition, a model built using only 7th grade data 
and a single standardized test outcome (Virginia’s SOL) 
generalizes to additional grade levels (6 and 8) and standardized 
test outcomes (NWEA’s MAP). 

Keywords 

Cognitive Tutors, Assessment, Mathematics. 

1. INTRODUCTION 
Cognitive Tutors are primarily developed as instructional systems, 
with a focus on improving student learning. While the systems 
continually assess student knowledge with respect to a set of 
underlying knowledge components [6], the standard for 
effectiveness of an educational system is usually taken to be the 
ability of that system to produce improved performance on an 
external measure, typically a standardized test. 

Carnegie Learning’s Cognitive Tutors for mathematics have done 
well on such measures [13, 15, 18] but, in these studies, the 
tutoring system has been, essentially, treated as a black box. We 
know that, as a whole, students using a curriculum involving the 
Cognitive Tutor outperformed students using a different form of 
instruction on standardized tests, but we don’t know what specific 
aspects of tutor use were associated with improved performance. 
An understanding of the process variables (time, errors, hint usage 
and other factors) that are correlated with learning can provide us 
with insight into the specific student activities that seem to lead to 
learning. Another perspective on the Tutor is that, if we are able to 
strongly correlate Cognitive Tutor data with standardized test 
data, then the Cognitive Tutor itself may be considered an 
assessment, which is validated with respect to the external 
standardized test. In addition, to the extent that we can identify 
process variables that predict external test scores, we can provide 
guidance to teachers as to expectations for their students on the 
state examinations. 

In most cases, Carnegie Learning does not have access to student-
level outcome data on standardized tests. For the study reported 
here, we partnered with a school district in Eastern Virginia. The 
district provided Carnegie Learning with student data for all 3224 
middle school students who used Cognitive Tutor in the district 

during the 2011/12 school year. The data included student 
demographics and outcomes on the Virginia Standards of 
Learning (SOL) assessment and NWEA’s Measures of Academic 
Progress (MAP) assessment. The district also provided MAP 
scores from the Fall of 2011, which provides information about 
student abilities prior to their encounter with the Cognitive Tutor. 
This dataset allows us to explore which particular behaviors 
within Cognitive Tutor are associated with improved outcomes 
and to test whether we are better able to predict outcomes 
knowing student behaviors within the tutor than we could be able 
to predict from demographic and prior knowledge variables. 

While other analyses [5, 14] have modeled outcomes based on 
tutor process data, the current analysis goes beyond previous 
efforts by building a model based on a single grade level and 
outcome and then applying the model to two outcome measures 
across three grade levels. 

1.1 Virginia’s Standards of Learning (SOL) 
Assessment 
The Virginia Department of Education’s Standards of Learning 
(SOL) provide minimum expectations for student knowledge for 
several subjects at the end of each grade level or after specific 
courses [21]. Students take standardized tests based on the 
mathematics SOL annually for grades 3 through 8 as well as after 
taking particular courses after grade 8 (e.g., after taking Algebra 
I). The SOL exam includes multiple choice items as well as 
“technology enhanced” items that may include drag-and-drop, fill-
in-the-blank, graphing and “hot spot” identification in a picture. 

With the advent of the No Child Left Behind Act, there is great 
interest in developing predictive models of student performance 
on high-stakes tests like the SOL mathematics assessment to 
identify students that may need remediation. Cox [8], for example, 
develops regression models to predict grade 5 SOL mathematics 
assessment scores using student scores on Mathematics 
Curriculum Based Measurement (M-CBM) benchmark 
assessments, which are shorter, formative assessments that track 
student progress over time. This study reports that M-CBM alone 
can account for roughly 40% to 60% of the variance in SOL 
assessment scores across three Virginia school districts.  

1.2 NWEA’s Measures of Academic 
Progress® (MAP) Assessment and RIT score 
NWEA’s MAP is a computer-based adaptive assessment.  MAP 
assessments deliver student scores on the Rasch Unit (RIT) scale, 
an equal interval measurement, intended to provide scores 
comparable across grade levels and to help track student progress 
from year to year [20].  For the district in our study, the MAP 
assessment was administered in both the fall and spring semesters.  
NWEA recently published data correlating MAP performance 
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with Virginia SOL assessment performance for over 5,000 
students. For 2012 data they report correlations (as Pearson’s r) of 
0.759, 0.797, and 0.75 between MAP scores and SOL 
mathematics assessment scores for grades 6, 7, and 8, respectively 
[19]. These figures are comparable to the correlations we report 
here between RIT and SOL in grades 6 and 7, but the correlation 
for grade 8 was lower (r of 0.755, 0.704 and 0.551 for grades 6, 7, 
8, respectively). 

1.3 Cognitive Tutor 
The Cognitive Tutor presents a software curriculum as a sequence 
of “units,” which are major topics of instruction. Units are divided 
into one or more sections, which represent subtopics. Each section 
is associated with one or more skills (or knowledge components), 
which are the target of the mastery learning. Each section has a 
large pool of available problems (from 10s to 1000s, depending 
on the section), which are chosen to remediate students on each of 
the target skills. The Tutor considers a student to have mastered a 
section when Bayesian Knowledge Tracing [7] judges that there is 
at least a 95% probability that the student knows the skill. When a 
student masters all of the skills in a section, the system allows the 
student to proceed to the next section (or unit, if this is the final 
section in a unit). When the student completes a problem without 
mastering all of the skills for that section, the Tutor picks a new 
problem for the student, focusing on the skills that still need to be 
mastered. Students require different numbers of problems to 
master all of their skills. 

Although the intent of the system is for students to progress 
through topics as they master them, we recognize that there will 
always be some students who are not learning from the tutor’s 
instruction (or who are learning too slowly). For this reason, each 
section specifies a maximum number of problems. If the student 
reaches the maximum without mastering all skills in the section, 
the student is advanced to the next section without mastery. 
Teachers are notified of this advancement in reports. Thus, in our 
models, we make a distinction between sections (or skills) 
encountered and sections (or skills) mastered. Teachers may also 
manually move a student to another point in the curriculum, 
which would also result in an encounter with a section (or skill) 
without mastery. 

Problems within the Cognitive Tutor are completed in steps, each 
of which represents a discrete entry into the system (such as 
filling in a text field). The tutor evaluates each step and provides 
immediate feedback. Students can also ask for help on each step. 
The number of steps required to complete a problem depends on 
the complexity of the problem and the particular strategy that the 
student uses to complete the problem. Some problems may be 
completed in 5-10 steps but others may require 30 or more. 
Within a section, problems typically require the same (or very 
similar) number of steps. Because the variability of problems 
across sections affects the potential for making errors and asking 
for hints (as well as the expected time to complete the problem), 
we normalize hints, errors and time within each section and then 
calculate an average across sections, for each student. This 
normalization also helps account for the fact that different 
students encountered different sections (depending on grade level 
and custom sequences of units), so we should have different 
expectations about time, hints and errors per problem within the 
sections they did encounter. 

The software includes various instructional activities and supports 
in addition to the Cognitive Tutor. These include basic lesson text, 
multiple-choice tests, step-by-step examples and other 
components. None of these other activities directly affect our 

assessment of mastery. For this reason, we distinguish between 
“problem time” (the time that students spend within Cognitive 
Tutor problems) and the total time that students spend logged in to 
the tutor. 

2. DISTRICT IMPLEMENTATION 
The students in this study used Cognitive Tutor software 
developed for middle school mathematics (grades 6, 7 and 8) in 
12 schools in the district. The software was used by 3224 
students: 1060 in sixth grade; 1354 in seventh grade and 810 in 
eighth grade. 

Carnegie Learning delivers software sequences aligned to 
educational standards for these grades. The sixth grade sequence 
contains 45 units and 131 sections; the seventh grade sequence 
contains 34 units and 92 sections and the eighth grade sequence 
contains 37 units and 88 sections. The school district also created 
software sequences targeted towards students who were 
performing below grade level, as part of a Response to 
Intervention (RTI) implementation [10]. 

Carnegie Learning recommends that, when used as a basal school 
curriculum, students use the Cognitive Tutor as part of their math 
class two days/week. Assuming 45-minute classes and a 180-day 
school year, this would result in approximately 54 hours of use. 
Due to scheduling issues, absenteeism and other factors, it is 
common for districts to average only 25 hours, however. RTI 
implementations may involve more intensive (5 days/week) 
practice on prerequisite skills, typically completed in an RTI class 
which takes place in parallel with work in the basal class. Thus, 
students in an RTI sequence may be asked to work on the Tutor 
twice as much (or more) than those who are not in an RTI 
sequence. On the other hand, if students in the RTI class are able 
to demonstrate mastery of the target material, they are removed 
from that class, so the RTI class does not necessarily last all year. 

The Tutor is available to students through a browser, so they can 
go home (or elsewhere) and continue work that they began at 
school. However, many students do not use the Tutor outside of 
class and so, for most students, the amount of time that they spend 
with the tutor is dictated by the frequency with which their teacher 
tells them to use the software. 

Our analysis does not distinguish between students who used the 
Tutor in an RTI capacity, as a basal curriculum or in some other 
capacity. 

Across the schools and grade levels in our data set, usage varied 
widely, from median of 1.05 hours in grade 8 in one school to a 
median of 29.86 hours in grade 7 in a different school. 

Figure 1 provides a schematic for understanding overall 
performance of students at the schools involved in the study. 
There are three graphs, representing the three grade levels. Each 
school is represented by a dot, with the size of the dot 
proportional to the number of students in that school and grade 
level. The vertical position of the dot represents the school’s 
overall 2012 SOL score. The horizontal line represents the state 
average for the grade level. The figure shows that students in the 
district reflect a range of abilities relative to the state, with 
students somewhat underperforming the state mean in all grades. 
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Figure 1: School-level SOL math results for the schools in the 
study. The size of the dot represents the number of students in 
the study. The horizontal line represents the state average.  

 

3. ANALYSIS APPROACH 
Our primary purpose in this work is to build a general model that 
can be used to predict outcomes from standardized tests based on 
usage and behaviors within Cognitive Tutor. To this end, we build 
a model based on a subset of the students and a single outcome 
variable and then test the model on the rest of the students and an 
additional outcome variable. Since the seventh grade cohort was 
the largest in our data, we chose to build the model on the seventh 
graders. We chose SOL as the outcome measure in building our 
model, because it is the most important outcome to the schools 
using Cognitive Tutor. 

Since we expected use of Cognitive Tutor to influence outcomes 
only if there was some substantial use of Cognitive Tutor over the 
school year, we excluded students who, in total, spent less than 5 
hours using Cognitive Tutor. This reduced the number of students 
considered by the model from 1354 7th graders (and 3224 students 
in all grades) to 940 7th graders (and 2018 students overall). 

In order to explore the influence of different kinds of information, 
we constructed 5 models: 

• M1 – includes only RIT pretest score as a predictor 

• M2 – includes only Cognitive Tutor process variables 

• M3 – includes the Cognitive Tutor process variables 
used in M2, plus student demographics 

• M4 – includes RIT pretest score plus student 
demographics 

• M5 – includes M3 variables, plus RIT pretest score 
To build M2, we used stepwise regression to identify the 
Cognitive Tutor process variables, of those considered (see 
Variable Selection, below), that minimized the Bayesian 
Information Criterion (BIC). This model considered only 7th grade 
data and only SOL as an outcome. To build M3, we included 
those variables selected for M2 and student demographic variables 
and used stepwise regression (using BIC) to choose the most 
predictive demographic variables, keeping the process variables 

fixed. We used 10-fold cross-validation of these models to ensure 
that we were not overfitting, but the cross-validated models were 
very similar to the model found by simple stepwise regression, so 
we only consider the stepwise regression model here. 

3.1 Cognitive Tutor Process Variables 
Since overall usage of the Tutor varied substantially between 
students, we reasoned that a good model would take into account 
variables that represent this overall usage (either as represented by 
time or by various completion measures). Since most usage of the 
tutor is controlled by the teacher (or the class that the student is 
in), variance within a class might be better captured by metrics 
representing activities taken within a problem. 

Many of the variables we considered were highly skewed in the 
data, and so, following common practice, we applied log 
transforms to them. For example, Figure 2 (left) shows the 
distribution of time spent on the tutor (excluding students who 
spent fewer than 5 hours). Although the median of the distribution 
is 19.8 hours, there is a long tail of students who spend a much 
longer time using the tutor. A log transform produces the more 
normal distribution shown in Figure 2b. 

 
Figure 2: Distribution of total time on the tutor (left graph) 
and the log-transformed distribution (right graph). 
Since we are modeling students that completed different 
mathematics topics (different units and sections within Cognitive 
Tutor), we normalized many of these process variables within 
section. This normalization results in variables that represent the 
difference between a student’s behavior and the average student’s 
behavior, in standard deviation units, so that values are 
comparable across sections of the curriculum. In cases where we 
log transformed the data, normalization followed the log 
transformation. To compute a value for each student, we averaged 
the normalized (z) scores across all of the sections that the student 
encountered. For “aggregate” variables, which sum across 
sections of the curriculum, we normalized with respect to the 
distribution of data across the full school year. Since we 
normalize all variables in the model, the magnitude of the 
coefficients gives a sense of the relative impact of each variable. 

Based on some preliminary correlations with outcomes in these 
data and other datasets, we considered 13 Cognitive Tutor process 
variables for our model: 
Aggregate variables 

• Total_time: the total amount of time that the student 
was logged in to the tutor. This variable was log 
transformed. 

• Total_problem_time: the amount of time that students 
spent on the problem-solving activities within the tutor. 
This differs from total_time by excluding time spent 
reading lesson content, viewing worked examples and 
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several other activities. This variable was log 
transformed. 

• Percent_non_problem_time: the percentage of time 
that the student was logged in to the software but did 
things other than solving problems in Cognitive Tutor. 
This variable was log transformed.  

• Sections_encountered: the total number of sections 
attempted by the student. This variable was log 
transformed. 

• Skills_encountered: the total number of skills within 
the sections that the student encountered. This variable 
was log transformed. 

• Percent_skills_mastered: the percentage of skills 
encountered that reached mastery. This variable was 
subtracted from 1 and log transformed. 

• Percent_sections_mastered: the percentage of sections 
encountered that were mastered. This variable was 
subtracted from 1 and log transformed. 

• Sections_mastered_per_hour: This is the average 
number of sections mastered by the student for each 
hour of time spent on problems. We consider this 
variable to be an indicator of the efficiency with which 
the student uses the system. Efficiency may be affected 
by the student’s prior knowledge and conscientiousness 
but also by the extent to which teachers are effective in 
assisting students when they get stuck. This variable 
was log transformed. 

Section-normalized variables 

• Time_per_problem: the average amount of time spent 
on each problem. This variable was log transformed and 
normalized 

• Hints_per_problem: the average of the number of hints 
requested in each problem. This variable was log 
transformed and normalized. 

• Errors_per_problem: the average of the number of 
errors committed in each problem. This variable was log 
transformed and normalized. 

• Assistance_per_problem: the average of the sum of the 
number of hints and the number of errors in each 
problem. This variable is an indicator of the extent to 
which students struggle to complete problems and was 
log transformed and normalized. 

• Problems_per_section: the number of problems 
required to master the skills in the section (or, for non-
mastered sections, the maximum number of problems in 
the section). This variable was log transformed and 
normalized. 

3.2 Demographic Variables 
In addition to process variables, we considered the following 
student demographic variables (note that statistics are calculated 
based on the 2018 students with more than 5 hours usage): 

• Sex: male or female. In our sample, there were 1027 
boys and 991 girls. 

• Age: in days (as of 06/01/12). In 6th grade,, the mean 
was 4493 with standard deviation 163. In 7th grade, 
mean was 4868 with standard deviation of 172. In 8th 

grade, the mean was 5269, with standard deviation of 
184. 

• Lunch_status: this is a common proxy for socio-
economic status. We coded this as a binary variable 
indicating whether students were eligible for free or 
reduced lunch prices. 72.5% of students were in this 
category. 

• Limited_English_Proficiency: A binary variable 
coding whether the student was identified as having a 
poor mastery of English. 6.9% of students in our sample 
were identified as being in this category. 

• Race: The school provided coding in six categories, 
shown here: 

Description Students 

American Indian 20 

Asian 72 

Black/African American 1064 

White 785 

Hawaiian /Pac. Islander 5 

Multi-racial 72 

 

• Hispanic_origin: A binary variable representing 
whether the student is of Hispanic origin. 17.1% of 
students were identified as Hispanic. 

• Special_education_status: We coded this status as 
representing four categories: no special status, learning 
disability, physical disability or other (which included 
students with multiple disabilities and those that were 
listed as special ed but not classified). 9.6% of students 
were identified with a learning disability, 8.4% with 
physical disability and 1% with other. 

4. RESULTS 
4.1 Fitted Models 
The process variables found in M2 and included in M3 and M4 
were total_problem_time, skills_encountered, 
sections_encountered, assistance_per_problem and 
sections_mastered_per_hour. A summary of the standardized 
model (M2) coefficients is shown in Table 1.  

Table 1: Cognitive Tutor process variables and standardized 
coefficients included in the models predicting SOL. 

Variable Coefficient p value 

assistance_per_problem -0.351 <2e-16 

sections_encountered 0.422 0.004028 

sections_mastered_per_hour 0.390 6.71E-10 

skills_encountered -0.456 0.000141 

total_problem_time 0.258 0.000502 

 

Three variables (total_problem_time, skills_encountered and 
sections_encountered) represent aggregate usage of the tutor. 
Skills_encountered is entered with a negative coefficient, perhaps 
trading off with the (positive) sections_encountered and 
indicating that students benefitted from completing a larger 
number of sections, particularly if the sections involved a 
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relatively small number of skills. Although it is tempting to 
interpret sections with small numbers of skills as simpler (or 
shorter) sections, the number of skills tracked in a section is not 
always a measure of complexity, particularly in sections that 
include a number of skills that many students have previously 
mastered [17]. 
The model also includes assistance_per_problem, and 
sections_mastered_per_hour. Together, these variables reflect 
students’ ability to efficiently work through problems, staying on 
task, making few errors and not overly relying on hints. 

Demographic variables found in M3 and used in M4 and M5 
included lunch_status and Age. Student of low socio-economic 
status (i.e., those that qualify for free and reduced-price lunches 
indicated by lunch_status) perform significantly worse on the 
SOL, even after accounting for Cognitive Tutor process variables. 
Age is also a factor in the model indicating that, after accounting 
for other model variables, students who are older tend to 
underperform their younger classmates. Although significant, the 
age effect is small. One year increase in age, within grade, results 
in a score reduction of 8 points. Consider that 8-point difference 
relative to the larger differences in school-level SOL scores 
shown in Figure 1. 

 
Table 2: Variables and standardized coefficients for M3 

applied to SOL 
Variable Coefficients p value 

assistance_per_problem -0.340 <2e-16 

sections_encountered 0.369 0.011183 

sections_mastered_per_hour 0.368 4.04E-09 

skills_encountered -0.403 0.000663 

total_problem_time 0.240 0.001043 

lunch_status -0.106 3.30E-05 

age -0.071 0.003737 

 

We were surprised to find that special education status was not a 
significant predictor. Figure 3 shows why: in these data, student 
SOL scores do not vary much with respect to special education 
status. 

  
Figure 3: SOL score by special education status. 
 

Table 3 shows a summary of the complete M5. Once RIT is 
included, age and sections_encountered are no longer significant 
predictors, although all other predictors are still significant. 

A summary of the model fits is shown in Table 4. It is notable that 
RIT_pretest predicts SOL scores somewhat better than the 
Cognitive Tutor process model (R2 of 0.50 for M1 vs. 0.43 for 
M2) and that adding demographics to either Cognitive Tutor 
process variables (M3) or RIT alone (M4) increases the predictive 
validity of the model only slightly. The combination of RIT and 
Cognitive Tutor process variables (M5) increases the fit of the 
model substantially, compared to either M3 or M4. This may 
indicate that the RIT pretest and the Cognitive Tutor process 
variables are capturing different and complementary aspects of 
student knowledge, motivation and preparedness. 

Despite containing the most variables, M5 is the only model that 
shows a substantially lower BIC score than M1 (RIT alone), 
indicating that these variables, in combination, provide substantial 
explanatory power. 
 

Table 3: Variables and standardized coefficients for M5, as 
applied to SOL 

Variable Coefficients p value 

assistance_per_problem -0.134 1.02E-05 

sections_encountered 0.188 0.141868 

sections_mastered_per_hour 0.272 7.80E-07 

skills_encountered -0.262 0.011882 

total_problem_time 0.219 0.000669 

lunch_status -0.070 0.00166 

age -0.028 0.197271 

RIT pretest 0.476 <2e-16 

 
Table 4: Summary of fits for models of SOL 

Model 

Number 
of 

variables BIC  R2 

M1 (RIT) 1 2041.451 0.50 

M2 (CT) 5 2181.015 0.43 

M3 (CT+Demog) 7 2167.764 0.45 

M4 (RIT+Demog) 3 2030.582 0.51 

M5 (Full) 8 1928.369 0.57 

 
4.2 Generalizing to other grades 
Table 5 shows fit for the models as applied to sixth and eighth 
grade students’ SOL scores (and as applied to the full population 
of students), using the variables and coefficients found by fitting 
the seventh grade student data. The model fits the sixth grade data 
remarkably well, with an R2 of 0.62, higher even than the fit to the 
seventh grade data. The fit to eighth grade data is not as strong, 
with an R2 of 0.32. This may be due to both the smaller original 
population in eighth grade and the relatively low usage. Median 
usage for eighth graders was only 16.3 hours (as opposed to 20.3 
hours in sixth grade), and only 438 students (54%) of eighth 
graders used the tutor for more than five hours. 

300

400

500

600

Learning Disability No Disability Physical Disability

SO
L 

sc
or

e

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 173



www.manaraa.com

 

Table 5: Summary of fits of the model as applied to SOL for 
held-out students (grades 6 and 8) and to the whole population 

(grades 6,7,8) 

R2 Grade 6 Grade 8 All grades 

M1 0.57 0.30 0.40 

M2 0.46 0.18 0.38 

M3 0.46 0.18 0.42 

M4 0.57 0.30 0.43 

M5 0.62 0.32 0.51 

 

Figure 4 demonstrates the fit of M5 to the SOL data for all grade 
levels. 

 
Figure 4: Relationship of predicted SOL using M5 to actual 
SOL scores for students at all grade levels. 
 

Although the fit is very good (R2=0.51), the model appears to be 
slightly underpredicting SOL scores for the best students and 
slightly overpredicting SOL scores for the worst students. 

4.3 Generalizing to the RIT posttest 
Our next question was whether the variables we found for 
modeling SOL would also produce a good model of RIT score. In 
order to do this, we used the variables from M5 and regressed the 
model against the RIT posttest score, again fitting the seventh 
grade students. Table 6 shows the resulting standaradized 
coefficients. 

Note that, with RIT as the outcome variable, 
sections_mastered_per_hour, total_problem_time and age are no 
longer significant predictors for the model. It may be that RIT, as 
an adaptive test, imposes less time pressure on students, since 
there is no apparent set of questions to be completed in a fixed 
amount of time. 
 
 

Table 6: Standardized coefficients and p values for M5, 
predicting RIT posttest scores 

Variable Coefficients p value 

assistance_per_problem -0.186 1.68E-15 

sections_encountered 0.267 0.006 

sections_mastered_per_hour 0.031 0.45747 

skills_encountered -0.206 0.00927 

total_problem_time 0.003 0.95771 

lunch_status -0.044 0.0092 

age 0.008 0.64494 

RIT pretest 0.677 <2e-16 

 

Table 7 shows fits for the five models, as applied to the RIT 
posttest. As expected, RIT pretest predicts RIT posttest better than 
the RIT pretest predicts the SOL posttest (R2 for M1/SOL for 7th 
grade is 0.50 vs. 0.72 for M1/RIT). Even given this good fit for 
M1, process variables and demographics significantly improve the 
model, reducing BIC from 1502 to 1409. 
 

Table 7: R2 and BIC for models as applied to RIT posttest. 

 R2 BIC 

 Grade 6 Grade 7 Grade 8 All Grade 7 

M1 0.67 0.72 0.59 0.68 1502.128 

M2 0.46 0.49 0.26 0.41 2085.297 

M3 0.48 0.50 0.27 0.40 2077.530 

M4 0.68 0.72 0.59 0.68 1501.578 

M5 0.71 0.75 0.60 0.71 1408.899 
 

The fit to the full population is illustrated in Figure 5. 

 
Figure 5: Relationship of predicted RIT posttest scores using 
M5 to actual RIT posttest scores for students at all grade 
levels. 
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To this point, we have been considering the full population to be 
the population of students who used Cognitive Tutor for at least 5 
hours. Figure 6 shows how the model applies to all students who 
used the Cognitive Tutor for any period of time. 

Figure 6: M5 Root Mean Square Error (from predicted SOL 
outcome), as a function of total time on the Tutor. Numbers 
above the bars represent the number of students represented 
by the bar. 
Figure 6 demonstrates that the model’s ability to predict SOL 
scores decreases dramatically for students with low Cognitive 
Tutor usage. This is to be expected: outcomes for students who 
used the software very infrequently are only lightly influenced by 
anything they may have learned from the Tutor, and the relatively 
small amount of data that the Tutor was able to collect from such 
students represents a noisy estimate of the student’s abilities. Our 
choice of 5 hours as a cutoff point was based on experience with 
other data sets. Figure 6 validates this cutoff for our data. 

5. DISCUSSION 
The work presented here provides a good model of how we might 
use Cognitive Tutor, either with or without additional data, to 
predict student test outcomes on standardized tests. The model 
was able to generalize to different student populations, and the 
variables found for a model to predict SOL provided strong 
predictions of RIT as well. 

Surprisingly to us, demographic factors proved to be relatively 
unimportant to our models. 

Since we were able to improve on the RIT pretest model by 
adding Cognitive Tutor process variables, our efforts show that 
such variables provide predictive power beyond that provided by 
a standardize pretest, even when the pre- and post-test are 
identical (as in the case with the RIT outcome). A consideration of 
the types of information that may be contained in Cognitive Tutor 
data but not in pretest data provide us with guidance on how we 
might extend this work and improve our model. We will consider 
5 broad categories of factor: learning, content, question format, 
process and motivation. 

Learning: The most obvious difference between the RIT pretest 
and the Cognitive Tutor process variables is that the RIT provide 
information about students at the beginning of the school year, 
while Cognitive Tutor data is collected throughout the year. One 
extension of this work in exploring the role of learning would be 

to look at how well the model presented here would predict 
outcomes if we only considered data from the first six months (or 
three months – or less) of the school year. If such an early 
prediction model were to work, it could act as an early warning 
system for teachers and administrators [1]. 

Content: Although both RIT and Cognitive Tutor are designed to 
align to the SOL, it is possible that differences in that alignment 
are responsible for some of the improvement that Cognitive Tutor 
provides over RIT alone in predicting SOL scores. Feng et al.[9], 
using the ASSISTment system, built a one-parameter IRT model 
to predict test outcomes, an approach which allows them to 
weight different ASSISTment items better with respect to the 
outcome variable. Our models considered all skills and sections to 
have equivalent predictive power, but a more sophisticated model 
could take content alignment into account. 

Question format and problem solving: Cognitive Tutor problems 
involve multiple steps and the kind of strategic decision making 
that is characteristics of problem solving. Traditional standardized 
tests are multiple choice or single-step fill-in-the-blank and tend 
to assess more procedural and less conceptual knowledge. In past 
research [13], Cognitive Tutor students have shown stronger 
performance (relative to control) on open-ended responses than on 
traditional standardized tests. Part of the prediction within SOL 
may be due to the closer alignment between Cognitive Tutor and 
the technology-enhanced SOL question types. Most states in the 
United States (but not Virginia) have adopted the Common Core 
State Standards. Two consortia, Partnership for Assessment of 
Readiness for College and Careers (PARCC) and Smarter 
Balanced Assessment Consortium (SBAC), are developing new 
assessments to align with these standards. Both consortia are 
including substantial non-traditional items, including some multi-
step problem solving. In order to align with the Common Core 
assessments, the 2012-13 version of MAP includes technology-
enhanced items, similar to those in SOL. It remains to be seen 
whether such a change would account for some of the variance 
now explained by Cognitive Tutor variables in our models. 
Process: By process, we mean the way that students go about 
working in Cognitive Tutor. In the SOL models, the strongest 
Cognitive Tutor predictor of outcomes was the number of sections 
completed per hour. We characterize this variable as coding some 
kind of efficiency; it captures students who are able to get to work 
and stay on task (and also who are able to generally succeed at the 
task). Unlike most standardized tests, online systems like 
Cognitive Tutor have the ability to take both time and correct 
performance into account. 

In models of both SOL and RIT, a strong predictor was the 
amount of assistance (hints and errors) required by the student. 
Although assistance can be an indicator of lack of knowledge 
(leading to large numbers of hints and errors), it may also be an 
indicator of lack of confidence (in students who ask for hints 
rather than risk making an error) or gaming the system. 

In this paper, we have only considered variables aggregated at the 
level of problem. For example, our data considers the number of 
hints and errors per problem but not the pattern or timing of those 
hints and errors. This simplification was required because more 
detailed data were not available for all students in this data set. 
However, other work [e.g. 2, 3] has shown that more detailed 
“detectors” of gaming and off-task behavior, which rely on 
patterns and timing of actions within Cognitive Tutor, can be 
strong predictors of outcomes. We would expect such detectors to 
be more sensitive to student behavior than the relatively coarse-
grained measures used here. 
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Motivation and non-cognitive factors: Much recent work has 
pointed to the powerful effect that attitudes towards learning can 
have on standardized test outcomes [11, 12]. Pardos et al. [16] 
were able to use detectors of student affect (including boredom, 
concentration, confusion, frustration) to predict standardized test 
outcomes. Such affect detectors have already been developed for 
Cognitive Tutor [4] and, in principle, could be added to our 
models. 

While we are very encouraged with the results that we have seen 
in this paper, we recognize that more detailed data may provide us 
better ability to predict student test outcomes from Cognitive 
Tutor data. 
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ABSTRACT 

Research shows that middle school is an important juncture for a 

student where he or she starts to be conscious about academic 

achievement and thinks about college attendance. It is already 

known that access to financial resources, family background, 

career aspirations and academic ability are indicative of a 

student’s choice to attend college; though these variables are 

interesting, they do not necessarily give sufficient actionable 

information to instructors or guidance counselors to intervene for 

individual students. However, increasing numbers of students are 

using educational software at this phase of their education, and 

detectors of specific aspects of student learning and engagement 

have been developed for these types of learning environments. If 

these types of models can be used to predict college attendance, 

it may provide more actionable information than the previous 

generation of predictive models. In this paper, we predict college 

attendance from these types of detectors, in the context of 3,747 

students using the ASSISTment system in New England, 

producing detection that is both successful and potentially more 

actionable than previous approaches; we can distinguish between 

a student who will attend college and a student who will not 

attend college 68.6% of the time.  

Keywords 

College Enrollment, Affect Detection, Knowledge Modeling, 

Educational Data Mining  

1. INTRODUCTION 
The processes leading a student to choose to attend college starts 

early, and decisions can begin to solidify as early as middle 

school (ages 12-14). Especially in the United States, successful 

learning experiences which develop key skills build positive self-

beliefs, interests, goals and actions, making students likely to 

actively seek and plan higher educational goals and career 

aspirations [31]  As students go through middle school, they 

increasingly find themselves engaged or disengaged from school 

and learning. This process is driven in part by changes in 

students’ self-perceptions, whether they see themselves as smart 

and capable of taking the courses in high school. This leads to 

students making decisions about how academic achievement, 

certain careers, and college majors fit into their self-perception 

[14]. 

It is during middle school that students either start to value 

academic achievement or begin to get off track and start to 

become frustrated and disengaged in school [8]. Research 

findings suggest that middle school students often think about 

going to college but fail to get support in planning how to 

achieve this [14].The transition to middle school in the United 

States has been associated with a decline in academic 

achievement, performance motivation, and self-perception [33]. 

For students who fail to develop a plan (or obtain support) for a 

college future, this has a dramatic effect on what eventually 

happens to the students.   

Disengagement not only leads to negative attitudes about higher 

education, but also to poorer learning [17, 27, 29]. This leads to 

an unsuccessful learning experience when they reach high 

school, ultimately leading to dropping out, or disinterest in 

pursuing post-secondary education [7]. Multiple studies have 

shown that it is possible to predict which students will eventually 

drop out of high school,  as early as late elementary or middle 

school [7, 9, 10, 35], with evidence that some particularly 

predictive factors include problem behaviors [7, 35] and shifts in 

academic achievement over time [9, 10]. Indicators of fairly 

extreme forms of disengaged behavior (low attendance, 

misconduct) and academic failure in sixth grade have been 

shown to be strong predictors of students falling off the path 

towards graduation and therefore eventual college attendance, 

within longitudinal analysis [7].  

By contrast, students who have already made college plans when 

they are in middle school tend to be more likely to attend college 

in spite of challenges [13]. They tend to plan appropriate courses 

to take when they enter high school, and get involved in relevant 

extracurricular activities that contribute to college admission 

[14]. In effect, they become interested in achieving a good 

academic record. Thus, examining the factors that influence 

students’ engagement and disengagement during middle school 

is crucial so as to understand better the factors that lead students 

to fail to attend college, and the possible paths to re-engaging 

students.  

However, one of the major limitations to this past research is that 

it identifies changes in student engagement only through fairly 

strong indicators of disengagement, such as failing grades [9, 10, 

11], problem behaviors such as violence in school [47] and non-

attendance [35]. By the time these indicators are commonplace, it 

may be quite late to make an intervention. If it were possible to 

identify useful and actionable antecedents to these changes, it 

might be possible to intervene more effectively. 

One potential source of data on early change in engagement is 

the log files from educational software. In recent years, the use of 
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educational software at the middle school level has expanded 

considerably, with systems such as ASSISTments [40] being used 

by rapidly increasing numbers of students. At the same time, 

educational data mining (EDM) techniques have been applied to 

logs from educational software to model a range of affect and 

engagement constructs, including gaming the system [4], off-task 

behavior [1], carelessness [45], boredom [22, 37, 44], frustration 

[22, 37, 44], and engaged concentration [22, 37, 44],. Automated 

detectors of disengaged behaviors can predict differences in 

learning, both in the relatively short term [cf. 17] and over the 

course of a year [26, 37]. Within this paper, we extend this work 

to study how learning and engagement in middle school – as 

assessed by this type of automated detector – can be used to 

predict college enrollment. To our knowledge, this is the first 

study that aims at predicting college enrollment from affect and 

engagement inferred from the logs of educational software used 

years earlier. We conduct this research in a data set of 3,747 

students who used the ASSISTment system [40], between 2004 

and 2007. We discuss which aspects of learning and engagement 

predict college enrollment, and conclude with a discussion of 

potential implications for the design and interventions of 

interactive educational systems for sustained attendance and 

engagement in school.  

2. METHODOLOGY 

2.1 The ASSISTment System 
Within this paper, we investigate this issue within the context of 

ASSISTments. The ASSISTment system, shown in Figure 1, [40] 

is a free web-based tutoring system for middle school 

mathematics that assesses a student’s knowledge while assisting 

them in learning, providing teachers with detailed reports on the 

skills each student knows. The ASSISTment system, shown in 

Figure 1, provides feedback on incorrect answers. Within the 

system, each mathematics problem maps to one or more 

cognitive skills. When students working on an ASSISTment 

answer correctly, they proceed to the next problem. If they 

answer incorrectly, they are provided with scaffolding questions 

which break the problem down into its component steps. The last 

step of scaffolding returns the student to the original question (as 

in Figure 2). Once the correct answer to the original question is 

provided, the student is prompted to go to the next question. 

2.2 Data 

2.2.1 ASSISTments Data 
Action log files from the ASSISTment system were obtained for 

a population of 3,747 students that came from middle schools in 

New England, who used the system at various times starting 

from school years 2004-2005 to 2006-2007 (with a few students 

continuing tutor usage until 2007-2008 and 2008-2009). These 

students were drawn from three districts who used the 

ASSISTment system systematically during the year. One district 

was urban with large proportions of students requiring free or 

reduced-price lunches due to poverty, relatively low scores on 

state standardized examinations, and large proportions of 

students learning English as a second language. The other two 

districts were suburban, serving generally middle-class 

populations. Overall, the students made 2,107,108 actions within 

the software (where an action consisted of making an answer or 

requesting help), within 494,150 problems, with an average of 

132 problems per student. Knowledge, affect, and behavior 

models were applied to this dataset, creating features that could 

be used for our final prediction model of college enrollment. 

 

 

Figure 1. Example of an ASSISTments Problem. If a student 

gets it incorrect, scaffolding problems are there to aid the 

student in eventually getting the correct answer. 

 

 

Figure 2. Example of Scaffolding in an ASSISTments 

Problem. 
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2.2.2 College Enrollment Data 
For college enrollment information, enrollment records of these 

3,747 students were requested from the National Student 

Clearinghouse (http://www.studentclearinghouse.org). For the 

purposes of the analyses in this paper, we identified solely 

whether each student was enrolled in a college or not, and used 

this as our labels in training our model. Additional information 

(such as whether the student graduated from college) is generally 

available from the Clearinghouse, but will not be available for 

these students for a few more years.  

2.3 Creation of Model Features 
In order to predict and analyze college enrollment, we distilled a 

range of features from the log files of ASSISTments, including 

student knowledge estimates, student affect (boredom, engaged 

concentration, confusion), student disengaged behaviors (off-

task, gaming the system, carelessness), and other information of 

student usage (the proportion of correct actions and the number 

of first attempts on problems made by the student, a proxy for 

overall usage). These features were either directly distilled from 

the logs or obtained from automated detectors applied to the data 

set.  

2.3.1 Student Knowledge Features 
Estimates of student knowledge were computed using Bayesian 

Knowledge Tracing (BKT) [20], a model used in several ITSs to 

estimate a student’s latent knowledge based on his/her 

observable performance. This model can predict how difficult the 

current problem will be for the current student, based on the 

skills involved in that problem. As such, this model can 

implicitly capture the tradeoff between difficulty and skill for the 

current context. This model can inform us whether student skill 

is higher than current difficulty (resulting in a high probability of 

correctness), when current difficulty is higher than student skill 

(resulting in a low probability of correctness), and when 

difficulty and skill are in balance (medium probabilities of 

correctness). To assess student skill, BKT infers student 

knowledge by continually updating the estimated probability a 

student knows a skill every time the student gives a first 

response to a new problem. It uses four parameters, each 

estimated separately per skill – LO, the initial probability the 

student knows the skill; T, the probability of learning the skill at 

each opportunity to use that a skill; G, the probability that the 

student will give a correct answer despite not knowing the skill; 

and S, the probability that the student will give an incorrect 

answer despite knowing the skill. In this model, the four 

parameters for each skill are held constant across contexts and 

students (variants of BKT relax these assumptions). BKT uses 

Bayesian algorithms after each student’s first response to a 

problem in order to re-calculate the probability that the student 

knew the skill before the response. Then the algorithm accounts 

for the possibility that the student learned the skill during the 

problem in order to compute the probability the student will 

know the skill after the problem [20]. With the data from the 

2004-2005 to 2006-2007 logs, BKT model parameters were fit by 

employing brute-force grid search [cf. 3]. 

2.3.2 Affect and Behavior Features 
To obtain affect and behavior assessments, we leverage existing 

detectors we developed of student affect and engaged/disengaged 

behavior within the ASSISTment system [37], to help us 

understand student affect and behavior across contexts. Detectors 

of three affective states are utilized: engaged concentration, 

boredom, and confusion. Detectors of three disengaged behaviors 

are utilized: off-task, gaming, and slip or carelessness. These 

detectors of affect and behavior are identical to the detectors 

used in [37]. They were developed in a two-stage process: first, 

student affect labels were acquired from the field observations 

(reported in [37]), and then those labels were synchronized with 

the log files generated by ASSISTments at the same time 

(forming our first dataset). This process resulted in automated 

detectors that can be applied to log files at scale, specifically the 

data set used in this project (the 2004-2005 to 2006-2007 data 

set). To enhance scalability, only log data was used as the basis 

of the detectors, instead of using physical sensors. The research 

presented in this paper could not have been conducted if physical 

sensors were used. The detectors were constructed using only log 

data from student actions within the software occurring at the 

same time as or before the observations, making our detectors 

usable for automated interventions, as well as the discovery with 

models analyses presented in this paper.  

The affect detectors’ predictive performance were evaluated 

using A' [28] and Cohen’s Kappa [18]. An A' value (which is 

approximately the same as the area under the ROC curve [28]) of 

0.5 for a model indicates chance-level performance for correctly 

determining the presence or absence of an affective state in a 

clip, and 1.0 performing perfectly. Cohen’s Kappa assesses the 

degree to which the model is better than chance at identifying the 

affective state in a clip. A Kappa of 0 indicates chance-level 

performance, while a Kappa of 1 indicates perfect performance. 

A Kappa of 0.45 is equivalent to a detector that is 45% better 

than chance at identifying affect. 

As discussed in [37], all of the affect and behavior detectors 

performed better than chance. Detector goodness was somewhat 

lower than had been previously seen for Cognitive Tutor Algebra 

[cf. 6], but better than had been seen in other published models 

inferring student affect in an intelligent tutoring system solely 

from log files (where average Kappa ranged from below zero to 

0.19 when fully stringent validation was used) [19, 22, 44]. The 

best detector of engaged concentration involved the K* 

algorithm, achieving an A' of 0.678 and a Kappa of 0.358. The 

best boredom detector was found using the JRip algorithm, 

achieving an A' of 0.632 and a Kappa of 0.229. The best 

confusion detector used the J48 algorithm, having an A’ of 0.736, 

a  Kappa of 0.274. The best detector of off-task behavior was 

found using the REP-Tree algorithm, with an A’ value of 0.819, 

a Kappa of 0.506. The best gaming detector involved the K* 

algorithm, having an A’ value of 0.802, a Kappa of 0.370. These 

levels of detector goodness indicate models that are clearly 

informative, though there is still considerable room for 

improvement. The detectors emerging from the data mining 

process had some systematic error in prediction due to the use of 

re-sampling in the training sets (models were validated on the 

original, non-resampled data), where the average confidence of 

the resultant models was systematically higher or lower than the 

proportion of the affective states in the original data set. This 

type of bias does not affect correlation to other variables since 

relative order of predictions is unaffected, but it can reduce 

model interpretability. To increase model interpretability, model 

confidences were rescaled to have the same mean as the original 

distribution, using linear interpolation. Rescaling the confidences 
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this way does not impact model goodness, as it does not change 

the relative ordering of model assessments. 

2.3.2.1 Application of Affect and Behavior Models to 

Broader Data Set 
Once the detectors of student affect and behavior were 

developed, they were applied to the data set used in this paper. 

As mentioned, this data set was comprised of 2,107,108 actions 

in 494,150 problems completed by 3,747 students in three school 

districts. The result was a sequence of predictions of student 

affect and behavior across the history of each student’s use of the 

ASSISTment system. 

2.3.2.2 Carelessness Detection using Logs 
Different from the process above, the incidence of carelessness 

within the Cognitive Tutor was traced with a model designed to 

assess “slips” [2]. Slips in that paper are operationalized in a 

fashion essentially identical to prior theory of how to identify 

careless errors [16]. The model used in [2], termed the 

Contextual Slip model, contextually estimates the probability 

that a specific student action indicates a slip/carelessness, 

whenever the student reaches a problem step requiring a specific 

skill, but answers incorrectly.   The probability of 

carelessness/slip is assessed contextually, and is different 

depending on the context of the student error. The probability 

estimate varies based on several features of the student action 

and the situation in which it occurs, including the speed of the 

action, and the student’s history of help-seeking from the tutor. 

As such, the estimate of probability of carelessness/slip is 

different for each student action.  

The Contextual Slip model is created using the BKT approach 

previously discussed. Note that in the BKT model – used in 

creating the Contextual Slip model  – the four parameters for 

each skill are invariant across the entire context of using the 

tutor, and invariant across students. We use BKT as a baseline 

model to create first-step estimations of the probability that each 

action is a contextual slip. These estimations are not the final 

Contextual Slip model, but are used to produce it. Specifically, 

we use BKT to estimate whether the student knew the skill at 

each step. In turn, we use these estimates, in combination with 

Bayesian equations, to label incorrect actions with the probability 

that the actions were slips, based on the student performance on 

successive opportunities to apply the rule. More specifically,  

given the probability that the student knows the skill at a specific 

time, Bayesian equations and the static BKT parameters are 

utilized to compute labels for the Slip probabilities for each 

student action (A) at time N, using future information (two 

actions afterwards – N+1, N+2). In this approach, we infer the 

probability that a student’s incorrectness at time N was due to 

not knowing the skill, or whether it is due to a slip. The 

probability that the student knew the skill at time N can be 

calculated, given information about the actions at time N+1 and 

N+2 (AN+1,N+2), and the other parameters of the Bayesian 

Knowledge Tracing model: 

P(AN is a Slip | AN is incorrect) = P(Ln | AN+1,N+2 ).  (1) 

This gives us a first estimate that a specific incorrect answer is a 

slip. However, this estimate uses data on the future, making it 

impossible to use to assess slip in real-time. In addition, there is 

considerable noise in these estimates, with estimates trending to 

extreme values that over-estimate slip in key situations due to 

limitations in the original BKT model [2]. But these estimated 

probabilities of slip can be used to produce a less noisy model 

that can be used in real time, by using them as training labels 

(e.g. inputs) to machine-learning. Specifically, a linear regression 

model is created that predicts slip/carelessness contextually.  The 

result is a model that can now predict at each practice 

opportunity whether an action is a slip, using only data about the 

action itself, without any future information. This model has 

been shown to predict post-test scores, even after student 

knowledge is controlled for [3]. 

Once these labels are obtained from BKT, the labels are 

smoothed by training models with each student action originally 

labeled with the probability estimate of slip occurrence, using 

information on that student action generated on our tutor logs. 

For each action, a set of numeric or binary features from the 

ASSISTments logs were distilled, based on earlier work by [5]. 

As in previous work to model slipping, the features extracted 

from each student action within the tutor were used to predict the 

probability that the action represents a slip/carelessness. The 

prediction took the form of a linear regression model, fit using 

M5-prime feature selection in the RapidMiner data mining 

package [32]. This resulted in numerical predictions of the 

probability that a student action was a careless error, each time a 

student made a first attempt on a new problem step. Linear 

regression was chosen as an appropriate modeling framework 

when both predictor variables and the predicted variable are 

numeric. In addition, linear regression functions well with noisy 

educational data, creating relatively low risk of finding an “over-

fit” model that does not function well on new data. 

Six-fold student-level cross-validation [24] was conducted to 

evaluate the carelessness detector’s goodness. Cross-validating at 

this level allows us to assess whether the model will remain 

effective for new students drawn from the same overall 

population of students studied. Carelessness models were trained 

separately per school year of the ASSISTments data set. They 

were assessed in terms of cross-validated correlation. The 

carelessness models trained within the ASSISTments data 

achieved a cross-validation correlation of r = 0.458 on the 

average.  

2.4 Logistic Regression 
Models were built to predict whether a student attended college. 

Aggregate predictor variables were created by taking  the average 

of the predictor feature values for each student, resulting in one 

record per student (in other words, taking the average boredom 

per student, average confusion per student, etc.). 

A multiple-predictor logistic regression model was fitted to 

predict whether a student will enroll in college from a 

combination of features of his or her student affect, engagement, 

knowledge and other information on student usage (the 

proportion of correct actions,  and the number of first attempts on 

problems made by the student, a proxy for overall usage) of a 

tutoring system during middle school. We used logistic 

regression analysis since we have a dichotomous outcome – 

whether or not the student would be enrolled in college – 

resulting in a non-linear relationship between our predictors and 

outcome variable. Choosing logistic regression allows for 

relatively good interpretability of the resultant models, while 

matching the statistical approach used in much of the other work 

on predicting college attendance [12, 23, 36, 46]. In essence, the 
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logistic model predicts the logit (natural logarithm of an odds 

ratio [cf. 39]) of an outcome variable from a predictor or set of 

predictors. The odds ratio in logistic regression is the odds of an 

event occurring given a particular predictor, divided by the odds 

of an event occurring given the absence of that particular 

predictor. An odds ratio over 1.0 signifies that the independent 

variable increases the odds of the dependent variable occurring; 

correspondingly, an odds ratio under 1.0 signifies that the 

independent variable decreases the odds of the dependent 

variable occurring.   

Features were selected using a simple backwards elimination 

feature selection, based on each parameter’s statistical 

significance. All predictor variables were standardized (using z-

scores), in order to increase interpretability of the resulting odds 

ratios (note that this does not impact model goodness or 

predictive power in any fashion). The odds ratio indicates the 

odds that a class variable increases per one unit change of a 

predictor (per one SD change for standardized predictors). 

Standardizing the predictors enables us to show a clear indication 

of each predictor’s contribution to the class variable (college 

enrollment).  

3. RESULTS 
Before developing the model, we looked at our original, non-

standardized features and how their values compare between 

those who were labeled to have attended college and those who 

have not (Table 1).   

Table 1. Features for Students who Attended College (1, n = 

2166) and did not Attend college (0, n = 1581)  

 Coll

-ege 

Mean Std. 

Dev. 

Std. 

Error 

Mea

n 

t-value 

Slip/ 

Carelessness 

0 0.132 0.066 0.002 -13.361 

(p<0.01) 1 0.165 0.077 0.002 

Student 

Knowledge 

0 0.292 0.151 0.004 -15.481 

(p<0.01) 1 0.378 0.180 0.004 

Correctness 0 0.382 0.161 0.004 -17.793 

(p<0.01) 1 0.483 0.182 0.004 

Boredom 0 0.287 0.045 0.001 5.974 

(p<0.01) 1 0.278 0.047 0.001 

Engaged 
Concentration 

0 0.483 0.041 0.001 -11.979 

(p<0.01) 1 0.500 0.044 0.001 

Confusion 0 0.130 0.054 0.001 5.686 

(p<0.01) 1 0.120 0.052 0.001 

Off-Task 0 0.304 0.119 0.003 1.184 

p=0.237 1 0.300 0.116 0.002 

Gaming 0 0.041 0.062 0.002 8.862 

(p<0.01) 1 0.026 0.044 0.001 

Number of 

First Actions 

0 114.500 91.771 2.308 -8.673 

(p<0.01) 1 144.560 113.357 2.436 

From Table 1, initial observations show that average knowledge 

estimate, average correct, number of first actions, average 

slips/carelessness, and average engaged concentration had higher 

mean values for students who attended college. Average 

boredom, average confusion, average off-task and average 

gaming had higher mean values for those who did not attend 

college. Conducting an independent samples t-test (equal 

variances assumed) indicates that, with the exception of off-task, 

the difference of means of each feature between the two groups 

are statistically significant. 

These observations align with the individual effects of each 

feature on the prediction of college enrollment. For example, 

there is a strong positive relationship between college enrollment 

and average correct answers (CollegeEnrollment = 0.612 

Correctness + 0.346, 2(df = 1, N = 3747) = 304.141, p < 0.001, 

Odds Ratio (Correctness) = 1.844), indicating that success in 

ASSISTments lead to higher probability of attending college. The 

same strong positive relationship is seen between college 

enrollment and student knowledge estimate as the student learns 

with ASSISTments (CollegeEnrollment = 0.543 Student 

Knowledge + 0.345, 2(df = 1, N = 3747) = 236.683, p < 0.001, 

Odds Ratio (StudentKnowledge) = 1.722). Engaged 

Concentration is also shown to positively predict college 

attendance (CollegeEnrollment = 0.403 Engaged Concentration + 

0.325, 2(df = 1, N = 3747) = 140.557, p < 0.001, Odds Ratio 

(Engaged Concentration) = 1.497), a finding that supports 

studies relating this affective state to effective learning [21, 42]. 

And the more a student uses ASSISTments, the more likely that 

student will attend college (CollegeEnrollment = 0.321 Number 

of First Actions + 0.327, 2(df = 1, N = 3747) = 79.159, p < 

0.001, Odds Ratio(Number of First Actions) = 1.378). One non-

intuitive relationship is between carelessness and college 

enrollment. Taken by itself, the more a student becomes careless 

or commits more slips, the more likely the student is to attend 

college (CollegeEnrollment = 0.477 Slip/Carelessness + 0.338, 

2(df = 1, N = 3747) = 185.208, p < 0.001, Odds 

Ratio(Slip/Carelessness) = 1.612), evidence in keeping with past 

results that careless errors are seen in more successful students 

[16]. 

Conversely, the more a student is bored, the less likely that 

student is to attend college (CollegeEnrollment = -0.197 

Boredom + 0.318, 2(df = 1, N = 3747) = 35.387, p < 0.001, 

Odds Ratio(Boredom) = 0.821) a result in keeping with past 

evidence that boredom is associated with poorer learning [38], as 

well as high school dropout [25, 34, 43]. Confusion also is shown 

to be negatively associated with eventual college enrollment 

(CollegeEnrollment = -0.188 Confusion + 0.317, 2(df = 1, N = 

3747) = 32.051, p < 0.001, Odds Ratio(Confusion) = 0.829). 

Gaming the system is also negatively correlated with eventual 

college enrollment (CollegeEnrollment = -0.313 Gaming + 

0.314, 2(df = 1, N = 3747) = 78.821, p < 0.001, Odds Ratio 

(Gaming) = 0.731), perhaps unsurprising given its relationship 

with poorer learning [17]. 

A model for college enrollment including all data features was 

developed using Logistic Regression, and cross-validated at the 

student level (5-fold). The full data set model (Table 2) which 

included all features achieved a cross-validated A’ of 0.686 and 

cross-validated Kappa value of 0.239. This model was 

statistically significantly better than a null (intercept-only) 

model, 2(df = 9, N = 3747) = 390.146, p < 0.001. Statistical 
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significance was computed for a non-cross-validated model, as is 

standard practice. 

 

Table 2. Full Data Set Model of College Enrollment 

Features Coefficient 
Chi-

Square 

p-

value 

Odds 

Ratio 

Student 

Knowledge  
1.078 16.193 <0.001 2.937 

Slip/ 

Carelessness 
-1.100 25.873 <0.001 0.333 

Correctness 0.758 33.943 <0.001 2.133 

Boredom 0.069 0.308 0.579 1.071 

Engaged 

Concentration 
-0.175 2.207 0.137 0.839 

Confusion 0.201 20.261 <0.001 1.223 

Off-Task -0.036 0.188 0.665 0.965 

Gaming -0.047 0.720 0.396 0.954 

Number of 

First Actions 
0.269 27.094 <0.001 1.308 

Constant 0.354 99.735 <0.001 1.421 

 

This model can be refined by removing all features that are not 

statistically significant, using a backwards elimination procedure. 

Our final model (Table 3) achieves a cross-validated A’ of 0.686 

and a cross-validated Kappa value of 0.247, almost identical to 

the initial model with a full data set. The reduced model is both 

more parsimonious and more interpretable, so it is preferred.  (It 

is not more generalizable within the initial data set, but its 

parsimony increases the probability that it will be generalizable 

to entirely new data sets). This model is also statistically 

significantly better than the null model, 2(df = 6, N = 3747) = 

386.502, p < 0.001. Our final model also achieved a fit of R2 

(Cox & Snell) = 0.098, R2 (Nagelkerke) = 0.132, indicating that 

our predictors explaining 9.8% to 13.2% of the variance of those 

who attended college. Note that for our models, our R2 values 

serve as measures of effect sizes; when converted to correlations, 

they represent moderate effect sizes in the 0.31-0.36 range.  

 

Table 3. Final Model of College Enrollment 

Features Coefficient 
Chi-

Square 
p-value 

Odds 

Ratio 

Student 

Knowledge  
1.119 17.696 <0.001 3.062 

Correctness 0.698 47.352 <0.001 2.010 

Number of First 

Actions 
0.261 28.740 <0.001 1.298 

Slip/ 

Carelessness 
-1.145 28.712 <0.001 0.318 

Confusion 0.217 24.803 <0.001 1.242 

Boredom 0.169 12.249 <0.001 1.184 

Constant 0.351 100.011 <0.001 1.420 

 

As can be seen in Table 3, the first three predictors (student 

knowledge, correctness and number of first actions) maintained 

the same directionality as in Table 1, but slip/carelessness, 

confusion and boredom flipped direction when incorporated into 

the final multiple logistic regression model, though each 

remained significant. For example, in this model, the likelihood 

of college enrollment increases with boredom, once the other 

variables are taken into account (e.g. once we control for student 

knowledge, software use, and so on, and other forms of 

disengagement). This may be because once we remove 

unsuccessful bored students, all that may remain are students 

who become bored because the material is too easy [cf. 37].   

Similarly, once we control for other variables in the model, 

confusion is positively associated with college attendance. Again, 

once we remove students who are both confused and 

unsuccessful, all that is likely to remain are students who 

addressed their confusion productively [cf. 30]. For carelessness, 

once we control for other variables in the model, it is negatively 

associated with college attendance. Once we remove careless but 

successful students, all that is likely to remain are students who 

haven't overcome their carelessness [cf. 16]. 

4. DISCUSSION AND CONCLUSION 
Many factors influence a student’s decision to enroll in college. 

A lot of them external or social factors: financial reasons, 

parental support and school support. Another major factor, 

however, is one’s ability and engagement, which develop over 

early years, and begin to manifest strongly during the middle 

school years. In this paper, we apply fine-grained models of 

student knowledge, student affect (boredom, engaged 

concentration, confusion) and behavior (off-task, gaming, 

slip/carelessness) to data from 3,747 students using educational 

software over the course of a year (or more) of middle school to 

understand how the development of student learning and 

engagement during this phase of learning, can predict college 

enrollment. A logistic regression model is developed, and we 

find that a combination of features of student engagement and 

student success in ASSISTments can distinguish a student who 

will enroll in college 68.6% of the time. In particular, boredom, 

confusion, and slip/carelessness are significant predictors of 

college enrollment both by themselves and contribute to the 

overall model of college enrollment.  

The relationships seen between boredom and college enrollment, 

and gaming the system and college enrollment indicate that 

relatively weak indicators of disengagement are associated with 

lower probability of college enrollment. Success within middle 

school mathematics (indicated by correct answers and high 

probability of knowledge in ASSISTments) is positively 

associated with college enrollment , a finding that aligns with 

studies that conceptualize high performance during schooling as 

a sign of college readiness [41] and models that suggest that 

developing  aptitude predicts college attendance [15, 23].  

Findings in our data and final model support existing theories 

about indicators of college enrollment (academic achievement, 

grades). More importantly, it further sheds light on behavioral 

factors the student experiences in classrooms (which are more 

frequently and in many ways more actionable than the behaviors 

which result in disciplinary referrals). As the results here 

suggest, affect and disengagement are associated with college 

enrollment, suggesting that in-the-moment interventions 
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provided by software (or suggested by software to teachers) may 

have unexpectedly large effects, if they address negative affect 

and disengagement. Confused students can be properly guided 

and encouraged to resolve their confusion. Bored students can be 

provided with greater novelty to reduce boredom or support in 

emotional self-regulation. Students who game the system can be 

given alternate opportunities to learn material bypassed through 

gaming, as in past successful interventions. Further work can be 

explored in the interactions of these various factors which 

influence our predictions. 

Future endeavors in evaluating college attendance through data 

mining of interaction logs (pre-college) can further benefit from 

including additional possible interaction features in our model. 

Other machine learning algorithms or modeling can also be 

employed in our data in further understanding our research 

problem. It is possible that other classifiers, such as decision 

trees or support vector machines, may have performed better in 

predicting college enrollment. However, interpretability of the 

models may be reduced for these algorithms. Together with 

findings in this paper, further design considerations for 

educational software can be investigated that can influence not 

only effective learning during secondary education, but 

contribute as well to college interest and readiness. 
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ABSTRACT 

In this paper, we incorporate scaffolding and change of tutor 

context within the Bayesian Knowledge Tracing (BKT) 

framework to track students’ developing inquiry skills. These 

skills are demonstrated as students experiment within interactive 

simulations for two science topics. Our aim is twofold. First, we 

desire to improve the models’ predictive performance by adding 

these factors. Second, we aim to interpret these extended models 

to reveal if our scaffolding approach is effective, and if inquiry 

skills transfer across the topics. We found that incorporating 

scaffolding yielded better predictions of individual students’ 

performance over the classic BKT model. By interpreting our 

models, we found that scaffolding appears to be effective at 

helping students acquire these skills, and that the skills transfer 

across topics. 
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1. INTRODUCTION  
Many extensions to the classic Bayesian Knowledge Tracing 

(BKT) model [1] have been developed to improve performance at 

predicting skill within intelligent tutoring systems, and to increase 

the interpretability of the model. For example, extensions have 

been made to account for individual student differences [2, 3], to 

incorporate item difficulty [4], to address learning activities 

requiring multiple skills [5], and even to incorporate the effects of 

automated support given by the system [6-8]. Extensions have 

also been added to increase model interpretability and to provide 

insight about tutor effectiveness. For example, [6] incorporated 

scaffolding into BKT to determine if automated support improved 

students’ learning and performance. However, taking into account 

the differences in tutor contexts, the different facets of an activity 

or problem in which the same skills are applied, has only been 

studied in a limited fashion ([8] is one of the few examples). 

Context is important to consider because skills learned or 

practiced in one context may not transfer to new contexts [9], 

[10]. This, in turn, could reduce a model’s predictive performance 

if it is to be used across contexts. Explicitly considering the 

context in which skills are applied within knowledge modeling 

may also increase model interpretability and potentially reveal 

whether some skills are more generalizable, and thus 

transferrable. 

In this paper, we explore the impacts of incorporating two new 

elements to the BKT framework to track data collection inquiry 

skills [cf. 11] within the Inq-ITS inquiry learning environment 

[12]. These elements are scaffolding and change of tutor context. 

Like [6-8], we incorporate scaffolding by adding an observable 

and model parameters to account for its potential impacts on 

learning. We also add parameters and observables to account for 

change in the tutor context. In this work, we focus on one kind of 

tutor context, the specific science topic in which students practice 

and demonstrate inquiry skills. Predictive performance and 

interpretability of these extensions is addressed using data 

gathered from students who engaged in inquiry learning within 

scaffolded Inq-ITS activities on two Physical Science topics [12]. 

These proposed extensions are motivated by our prior work [13], 

[14] in constructing BKT models to track skills within an 

unscaffolded activities on a single science topic. Though these 

models could predict students’ performance, we noticed they had 

very low learning rate parameters. Since then, we added 

scaffolding to these activities that automatically provides 

feedback to students when they engage in unproductive data 

collection. By incorporating scaffolding into our BKT models, we 

aim to improve prediction and to determine the degree to which 

scaffolding impacts skill acquisition. In other words, to paraphrase 

Beck et al. [6], we want to know “Does our help help?” Explicitly 

modeling this improvement may enhance the learning 

environment’s ability to predict performance. In particular, if the 

scaffolding we provided is effective, we expect that learning rate 

should increase when students receive help by the system [cf. 6]. 

Similarly, the science topic (the context) in which skills are 

enacted may also play a role in models’ predictive capabilities. 

Specifically, it is possible that inquiry skills may be tied to the 

science topic in which they are learned [15]. In other words, 

students who practice and learn inquiry skills in one science topic 

may not be successful at transferring skill to other science topics 

[cf. 9, 10]. Thus, from the viewpoint of predicting student 

performance, changing topics may reduce the success of a 

standard BKT model at predicting future performance. By 

explicitly modeling this, we may be able to improve models’ 

predictive capabilities. In addition, by explicitly incorporating the 

science topic into models, it may become possible to discern from 

the model parameters the degree to which inquiry skills transfer. 

2. INQ-ITS LEARNING ENVIRONMENT 
We developed our models to track students’ scientific inquiry 

skills within the Inq-ITS learning environment (www.inq-its.org), 

formerly known as Science Assistments [12]. This environment 

aims to automatically assess and scaffold students as they 

experiment with interactive simulations across several science 

topic areas such as Physical, Life, and Earth Science. Each Inq-

ITS activity is a performance assessment of a range of inquiry 

skills; the actions students take within the simulation and work 

products they create are the bases for assessment. 

Inq-ITS inquiry activities all have a similar look-and-feel. Each 

activity provides students with a driving question, and requires 
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them to conduct an investigation with a simulation and inquiry 

support tools to address that question. These inquiry support tools 

include a hypothesizing widget, a data analysis widget, and graphs 

and tables for automatically displaying and summarizing data. 

The tools not only help students explore and keep track of their 

progress, but also enable assessment because they make students’ 

thinking explicit [12].  

The system also delivers scaffolds to students in a text-based 

format via a pedagogical agent named Rex, a cartoon dinosaur, 

shown in Figure 1. Primarily, Rex provides real-time feedback to 

students as they engage in inquiry. In other words, the system can 

“jump in” and support students as they work. Determination of 

who receives scaffolding is performed using both EDM-based 

detectors and knowledge engineered rules [12]. We will elaborate 

on these approaches to evaluate the data collection skills relevant 

to this paper in Section 4. 

In this paper, we focus on tracking skills across two Physical 

Science Topics, Phase Change and Free Fall. We now present an 

overview of the inquiry activities pertaining to these topics. 

2.1 Phase Change and Free Fall Activities 
The Phase Change activities [12] (Figure 1) foster understanding 

about the melting and boiling properties of ice. In these activities, 

students are given an explicit goal to determine if one of three 

factors (size of a container, amount of ice to melt, and amount of 

heat applied to the ice) affects various measurable outcomes (e.g. 

melting or boiling point). Students then formulate hypotheses, 

collect and interpret data, and warrant their claims to address the 

goal. The inquiry process begins by having students articulate a 

hypothesis to test using a hypothesis widget [12]. The widget is 

set of pulldown menus that provide a template of a hypothesis. 

For example, a student may state: “If I change the container size 

so that it decreases, the time to melt increases.” 
 

After stating a hypothesis, students then “experiment” by 

collecting data to test their hypotheses (see Figure 1). Here, 

students are shown the Phase Change simulation and graphs that 

track changes of the ice’s temperature over time. Students change 

the simulation’s variables, and then run, pause and reset it to 

collect their data (trials). A data table tool is also present that 

shows all the data collected thus far. 

Once students decide they collected enough data, they move to the 

final task, “analyze data”. Similar to hypothesizing, students use 

pull-down menus to construct an argument whether their 

hypotheses were supported based on the data they collected [12]. 

The second set of activities we developed, the Free Fall activities 

[11], are similar to the Phase Change activities. These activities 

aim to foster understanding about factors that influence the 

kinetic, potential and mechanical energy of a ball when it is 

dropped. In these activities, students again try to address a driving 

question related to Free Fall by conducting an investigation. 

As students collect data, they can receive real-time feedback from 

Rex (if feedback is turned on), as soon as the system detects they 

are not engaging in productive data collection (Figure 1). For 

example, if the system detects that a student is designing 

controlled experiments but is not collecting data to test their 

hypothesis (two skills associated with good data collection [12]), 

Rex will tell them “It looks like you did great at designing a 

controlled experiment, but let me remind you to collect data to 

help your test your hypotheses.” If the student continues 

struggling, “bottom-out” feedback is given [cf. 1]: “Let me help 

some more. Just change the [IV] and run another trial. Don't 

change the other variables. Doing this lets you tell for sure if 

changing the [IV] causes changes to the [DV]” ([IV] and [DV] are 

replaced with the student’s exact hypothesis) Thus, Rex’s 

scaffolds provide multi-level help, with each level providing more 

specific, targeted feedback when the same error is made 

repeatedly, similar to Cognitive Tutors [e.g. 1]. A goal of this 

paper is to gain insight about the efficacy of this scaffolding 

approach. 

 

Figure 1. Pedagogical Agent Rex automatically provides support 

to students as they experiment with a Phase Change simulation in 

the Inq-ITS learning environment. 

 

3. PARTICIPANTS AND PROCEDURE 
We collected data from 299 eighth grade students as they engaged 

in inquiry within Inq-ITS. These students attended three different 

schools in suburban Central Massachusetts. Students at each 

school had the same teacher, and were separated into class 

sections. Some had prior experience conducting inquiry in Inq-

ITS, and for others, this was their first experience.  

These data were collected as part of a study to determine the 

impacts of automated scaffolding on acquisition and transfer of 

data collection skills across science topics. In this study, students 

were assigned 5 Phase Change inquiry activities, and two weeks 

later, 5 Free Fall activities. Students were allotted approximately 

two class periods per science topic to complete the activities. Due 

to time constraints, some students did not finish all the activities 

in each science topic.  

Recall that in each activity, students formulated hypotheses, 

collected data and analyzed data. In the first 4 Phase Change 

activities, all students had scaffolding available as they formulated 

hypotheses. However, some students were randomly chosen to 

have data collection scaffolds available, whereas others did not. In 

the scaffolding condition, Rex (Figure 1) provided feedback to the 

students when they were evaluated as not demonstrating good 

data collection behavior. Students who were in the no-scaffolding 

condition received no feedback on their data collection. In the 

“analyze data” inquiry task, no students received scaffolding.  

Both groups then completed a fifth Phase Change activity with no 

scaffolding. This enabled us to measure immediate impacts of 

scaffolding on skill acquisition within the same science topic. 

Approximately two weeks later, all students engaged in inquiry 
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within the Free Fall activities. Students did not receive any 

feedback on their data collection within these activities. These 

activities were used to determine the impacts of scaffolding on 

transfer of skill across science topics. 

4. EVALUATING THE DEMONSTRATION 

OF DATA COLLECTION SKILL 
Within this work, we used automated methods for evaluating data 

collection skills [13, 16, 17]. This evaluation was used both to 

trigger scaffolding, and to provide observables of student 

performance for building Bayesian Knowledge Tracing models. 

Specifically, we aim to assess two process skills associated with 

productive data collection, designing controlled experiments and 

testing stated hypotheses [12]. These are demonstrated as students 

collect data using the simulation in the “experiment” stage of 

inquiry. Briefly, students design controlled experiments when 

they generate data that make it possible to determine what the 

effects of independent variables (factors) are on outcomes. They 

test stated hypotheses when they generate data that can support or 

refute an explicitly stated hypothesis. These skills are separable;  

students may test their hypotheses with confounded designs, or 

may design controlled experiments for a hypothesis not explicitly 

stated. Since these are process skills, students are assessed based 

on the actions they take while collecting data. 

We evaluate whether students demonstrate these skills by 

combining predictions made by data-mined detectors [13], with 

knowledge-engineered rules to handle specific edge cases. This 

process works briefly as follows. Detectors were constructed by 

applying machine learning to predict labels of student skill. These 

labels were generated using text replay tagging on log files [18] 

from students’ interactions within the Phase Change activities. In 

this process, a human coder labels whether or not students are 

demonstrating the inquiry skills by viewing a “chunk” of student 

actions (the text replay) that has been formatted to highlight 

relevant information to make that coding easier. These labels can 

be used as “ground truth” for whether or not students demonstrate 

a skill, and subsequently for building and validating detectors that 

replicate human judgment. 

To validate our detectors, we tested their predictive performance 

against held-out test sets of student data, data not used to construct 

the detectors. It is important to note that the students considered in 

this paper were not used to build the detectors. Performance was 

measured using A' [19] and Kappa (). Briefly, A’ is the 

probability that when given two examples of students’ data 

collection, one labeled as demonstrating skill and one not, a 

detector will correctly label the two. A’ is identical to the 

Wilcoxon statistic, and approximates the area under the ROC 

curve [19]. A' of 0.5 indicates chance-level performance, 1.0 

indicates perfect performance. Cohen’s Kappa () determines the 

degree to which the detector matches raw human judgment, with 

 = 0.0 indicating chance-level performance and  = 1.0 

indicating perfect performance.  

Using this validation process, we demonstrated that our detectors 

of can be used to evaluate students’ inquiry in Phase Change 

when they complete their experimentation [17]. More specifically, 

the designing controlled experiments detectors work well when 

students have run the simulation at least three times (thus 

collecting three pieces of data) in their experimentation. For data 

collections of this type, the detectors can distinguish a student 

who has designed controlled experiments when they have 

completed their data collection from a student who has not A’ = 

94% of the time. They also could identify the correct class 

extremely well,  = .75. The testing stated hypotheses detector 

also predicted quite well, without the limitation on the number of 

trials collected by the student, A’ = .91,  = .70. 

We also found that these detectors could also be used as-is to 

drive scaffolding in Phase Change [17], before students finished 

collecting their data. The designing controlled experiments 

detector could successfully be applied by the student’s third data 

collection with the simulation, and the testing stated hypotheses 

detector could be applied in as few as two simulation runs.   

Finally, these detectors have been shown to generalize to evaluate 

skill within the Free Fall activities [11], a different science topic 

from which they were built (Phase Change), and an entirely 

different cohort of students. Under student-level stratification, the 

designing controlled experiments detector could distinguish a 

student who designed controlled experiments from one who did 

not A’ = 90% of the time, and highly agreed with a human coder’s 

ratings, = .65. Performance for the testing stated hypotheses 

detector was also high, A’ = .91, = .62. 

As mentioned, though performance of these detectors is quite 

good for evaluation of data collection skill and for driving 

scaffolding, there are edge cases where the detectors did not 

perform as well. In particular, the designing controlled 

experiments detector cannot be applied when students collect only 

1 or 2 pieces of data with the simulation. The testing stated 

hypothesis detector cannot be applied when the student collects 

only a single trial. In these cases, which are well-defined, we 

authored simple knowledge engineered rules to evaluate students’ 

data collection for a single trial [20] and two trials [21, 22]. 

Thus overall, combining data mining and knowledge engineering 

enabled successful evaluation of students’ data collection process 

skills. In the next section, we describe the data distilled from 

students’ usage of the Phase Change and Free Fall activities. 

These data are used to develop and test the BKT extensions. 

5. DATASET FOR BKT MODELS 
Students’ skill demonstration was evaluated by the detectors and 

knowledge engineered rules outlined in Section 4. A full profile of 

student performances was generated for each skill and each 

activity. These evaluations are the observations used to build BKT 

models of latent skill.  

Certain students and evaluations were removed. First, we only 

consider students’ first opportunity to demonstrate skill prior to 

receiving scaffolding. More specifically, students can continue to 

collect data after they receive scaffolding, and be re-evaluated. 

These additional evaluations are not included in the data set. We 

do this to control for the possibility that specific scaffolds in our 

multi-level scaffolding approach may differentially impact 

learning. Thus, we look for the overall effects of scaffolding. 

Second, we removed 12 students who did not complete both the 

Phase Change and Free Fall activities due to absence. The final 

dataset contained 5878 unique evaluations of 287 students’ 

inquiry, 2939 evaluations for each data collection skill. 

6. EXTENSIONS TO BKT 
We amalgamated students’ performances across activities within a 

Bayesian Knowledge-Tracing framework [1]. BKT is a two-state 

Hidden Markov Model that estimates the probability a student 

possesses latent skill (Ln) after n observable practice opportunities 

(Pracn). In our work, latent skill is knowing how to perform the 

data collection skills, and a practice opportunity is an evaluation 

of whether skill was demonstrated during data collection in an 

inquiry activity. A practice opportunity begins when students 
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enter the “experiment” task in an inquiry activity. An opportunity 

ends when a student switches from the “experiment” task to the 

‘analyze data” task (see Section 2.1). As mentioned, the detectors 

/ knowledge engineered rules evaluate students’ actions, and these 

evaluations act as the observables. A student is evaluated as not 

having demonstrated skill (Pracn = 0) if one of two cases occurs. 

The first is if they are evaluated as not demonstrating a skill when 

they signal completion of data collection (e.g. attempt to switch to 

the “analyze data” task). The second is if, while collecting data, 

the system believes the student does not know either skill and 

provides scaffolding. This approach to address scaffolding’s 

impact on student correctness is similar to others [e.g. 4]. 

The classic BKT model [1] is characterized by four parameters, G, 

S, L0, and T. The Guess parameter (G) is the probability the 

student will demonstrate the skill despite not knowing it. 

Conversely, the Slip parameter (S) is the probability the student 

will not demonstrate the skill even though they know it. L0 is the 

initial probability of knowing the skill before any practice. 

Finally, T is the probability of learning the skill between practice 

attempts. From these values, the likelihood of knowing a skill 

P(Ln) is computed as follows: 

            |       (        |      )   , where 

      |         
             

               (         )   
 

      |         
         

           (         )       
 

This classic BKT model [1] carries a few assumptions. First, the 

model assumes that a students’ latent knowledge of a skill is 

binary; either the student knows the skill or does not. The model 

also assumes one set of parameters per skill and that the 

parameters are the same for all students. Finally, the classic model 

assumes that students do not forget a skill once they know it. 

Relevant to this work, the classic BKT model does not take into 

account whether students received any scaffolding from the 

learning environment [6] and does not account for the topic in 

which skills are demonstrated [8]. The same skill in different 

topics would either be treated as two separate skills (assuming no 

transfer), or as having no differences between topics (assuming 

complete transfer). Both of these assumptions are thought to be 

questionable [10, 23]. Below, we describe our approach to 

incorporate both of these factors. 

6.1 Taking Scaffolding into Account 
We introduce scaffolding into BKT as an observable, Scaffoldedn 

= {True, False}, because it can directly be seen if our pedagogical 

agent provided help to students as they collected data. A similar 

approach was taken by [6] to develop the Bayesian Evaluation and 

Assessment model. In their domain, reading, this scaffolding 

observable was true if a student received help just before reading 

a word (each word was treated as a skill). The observable was 

linked to all four BKT model parameters, meaning that 

scaffolding could have an impact on initial knowledge (L0), guess 

(G), slip (S) and whether or not students learn between practice 

opportunities (T). As a result, their BKT model contained 8 

parameters to account for scaffolding.  

Unlike [6], we instead chose to condition only the learning rate 

(T), for three reasons. First, the increase in the number of 

parameters could result in overfitting, especially since the classic 

BKT model is already known to be overparametrized [24]. 

Second, though the additional parameters may facilitate model 

interpretation, it is unclear whether conditioning all the classic 

BKT parameters on scaffolding improves predictive performance. 

In particular, [6] found no increase in predictive performance 

when accounting for scaffolding. Finally, the immediate effects of 

scaffolding on performance may not be relevant because we only 

look at first practice opportunities (thus looking at overall effects 

of scaffolding), and because there is a time delay between data 

collection performance attempts. In particular, students attend to a 

different inquiry task, analyzing data, after their data collection 

(see Section 2.1 for more details). 

In our extension, conditioning learning on whether students 

receive scaffolding yields two learning rate parameters, 

T_scaffolded and T_unscaffolded. Thus, this model tries to 

account for the differential impacts scaffolding may have on 

whether or not students learn a skill (e.g. the latent variable 

knowledge transitions from “doesn’t know” to “know” after 

practicing). Mathematically, the original equation for computing 

P(Ln) is conditionalized to account for the observable as follows: 

    |                        |        

(        |      )   (      )     

 

     |                          |         

(        |      )   (        ) 

6.2 Taking Science Topic (Context) into 

Account 
We also developed BKT extensions to the take into account the 

science topic in which students demonstrate their inquiry skills. 

Recall that students first practiced inquiry in Phase Change 

activities (possibly scaffolded or unscaffolded) and then practiced 

inquiry in unscaffolded Free Fall activities, a different science 

topic. As mentioned, modeling the change in science topic is of 

important since the degree to which inquiry skills transfer across 

topics is unclear [15]. We hypothesize that incorporating the 

change of science topic into our BKT framework may improve 

models’ predictive performance. 

We incorporate changing of science topics in two ways. First, we 

hypothesized that there may be a differential effect in learning 

between topics. For example, practice in Phase Change may 

prepare students to learn (and subsequently demonstrate) skills in 

Free Fall, called “preparation for future learning” [23]. To model 

differential learning between topics, we again break out the 

learning rate (T), this time for each topic: T_PhCh, T_FF. A new 

observable is also added for the current science topic, Topicn = 

{PhaseChange, FreeFall}. The result is a “BKT learn rate topic” 

model with a modification to the P(Ln) equation similar to the 

“scaffolded BKT model” described previously. 

Our second model for incorporating the change of science topics 

posits that students may not understand that the skills are 

applicable across topics. We model this notion by adding in a 

linear degradation factor, k  (0,1), to potentially offset the 

likelihood students know the skill P(Ln) when the science topic 

switches. If k = 1 this implies there is no effect on students’ 

knowledge when the topic switches. When k = 0, students will be 

presumed to not know the skill when the topic switches. One 

benefit of this approach is that it relaxes the assumption of skill 

independence if we had chosen to fit separate classic BKT models 

per skill, per science topic. Instead, k captures the potential for 

partial transfer of skill between science topics [cf. 10]. We also 

add an observable Topic_Switchn = {True, False} to address when 
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the science topic changes from Phase Change to Free Fall (just 

before the student’s first opportunity to practice in Free Fall). The 

corresponding P(Ln) modification for the “BKT skill degradation 

model” is: 

    |                     

   [      |       (        |      )   ]   

    |                      

      |       (        |      )      

Note that the degradation parameter k is different than modeling 

“forgetting” in the BKT framework [cf. 1, 8] in two ways. First, 

we note that the factor is applied to both conditional expressions 

in the P(Ln) equation, not just P(Ln-1|Pracn) as done when 

modeling forgetting. Second, in these earlier approaches 

forgetting is modeled at each practice opportunity, whereas our 

factor is applied at a single point, when the science topic switches.   

6.3 Combining Models 
The above models introduce three new potential observables to 

the BKT framework relevant to our learning environment: 

Scaffolded?  = {True, False}, Topic = {PhaseChange, FreeFall}, 

and Topic_Switch? = {True, False}. The models above 

individually incorporate the observables by conditioning the 

learning rate parameter, T, on them, or by adding a multiplicative 

reduction factor, k, to the computation of P(Ln). As part of this 

work, we also combined the extensions described above into 

larger models. The most complicated model incorporated all 

observables and contained seven parameters: (L0, G, S, 

T_Scaff_PhCh, T_Unscaff_PhCh, T_Unscaff_FF, k). We next 

describe our process for fitting these models. 

6.4 Model Fitting 
As in [3], [13], we use brute force search to find the best fitting 

parameters. This method has been found to produce comparable 

or better model parameters than other methods [25]. In this 

approach, all potential parameter combinations in the search space 

are tried at a grain-size of 0.01. The best parameter set yields the 

lowest sum of squares residual (SSR) between the likelihood that 

the student would demonstrate skill, P(Show_Skilln), and the 

actual data. This likelihood is computed as follows [1]: 

                                           

Once this set has been found, another brute force search around 

those parameters is run at a grain-size of 0.001 to find a tighter fit. 

We bound G to be less than 0.3 and S to be less than 0.1 [cf. 25]; 

all other parameters can be assigned values in (0.0, 1.0).  

When fitting our models, we found the brute force search to be 

realistically tractable only up to fitting 5 parameter models. To fit 

the combined models with more parameters, we used a two-stage 

process. First, we fit a classic BKT model with four parameters 

(L0, G, S, T). Then, we fit a combined model using fixed values 

for G and S from the classic model. These parameters were fixed 

because we believe the extended models described above will 

have the most impact on estimates of learning between practice 

opportunities and initial knowledge, not on guessing and slipping.  

7. RESULTS 
We determine if extending the classic BKT model to include 

scaffolding and changing of science topics will 1) improve 

predictions of future student performance in our learning 

environment, and 2) yield insights about the effectiveness of our 

scaffolding approach, and the transferability of the inquiry skills.  

To address predictive performance, we determined if the new 

models’ predictions of skill demonstration P(Show_Skilln), 

aggregated from evidence over times {1…n-1}, can predict actual 

student performance at time n better than the classic BKT model. 

We train and test our models’ performance by conducting six-fold 

student-level cross-validation, stratifying by both learning 

condition (having scaffolding available in Phase Change or not) 

and class section. Cross-validating in this way helps ensure that 

each fold equally represents learning conditions, and students 

from each class section/school. This increases assurance that 

models can be applied to new students. 

As in [13], model goodness was determined using A’ [19]. This is 

an appropriate metric to use when the predicted value is binary 

(either students demonstrated skill in Pracn or they did not), and 

the predictors for each model are real-valued, e.g. P(Show_skilln). 

As a reminder, a model with A’ of 0.5 predicts at chance level and 

a model with A’ of 1.0 predicts perfectly.  

Two variants on A’ for student performance data are computed as 

follows. First, we compute overall A’ values of each model 

collapsing over students as we did in [13]. Second, we compute 

the A’ values of each model per student [3], and report the 

average per-student A’. These approaches have different strengths 

and weaknesses [cf. 3, 13, 25]. Collapsing over students is 

straightforward and enables comparison of models’ broad 

consistency in predicting skill demonstration. In other words, this 

approach can show, in general, whether or not high likelihoods of 

demonstration of skill predicted by the model correspond with 

actual demonstration of skill. In addition, collapsing can be used 

when there is not enough within variance for each student to 

produce a meaningful per student A’ [cf. 13]. Collapsing over 

students, however, provides weaker estimates of predicting an 

individual student’s learning and performance than the A’ per 

student metric [3, 25]. Collapsing may also yield estimates that 

are biased towards students who practiced more with the system 

since they contribute more data [25].  

Only used students who had variation in their evaluations were 

used when computing A’ per student. In other words, a student 

was not considered if they were evaluated correct on all practice 

opportunities or incorrect on all practice opportunities. This was 

necessary because A’ is undefined unless there is at least one 

‘positive’, and at least one ‘negative’ evaluation for a student [19]. 

As a result, 175 students remained for designing controlled 

experiments and 132 students for testing stated hypotheses. 

We ascertain whether any BKT model variant outperforms the 

classic model by comparing A’ values computed under the cross-

validation scheme described. These results are described next.  

7.1 Models’ Overall Predictive Capability 
As shown in Table 1, all of the models show strong consistency, 

meaning that high estimates of skill demonstration are associated 

with actual demonstration of skill. This is evidenced by collapsed 

A’ values ranging from .817 to .837 for the designing controlled 

experiments skill, and collapsed A’ values ranging from .840 to 

.853 for the testing stated hypotheses skill. Recall that these high 

collapsed A’ values do not reflect the models’ ability to predict 

individual student trajectories [25], because they factor out the 

student term. The model with the highest A’ = .837 for predicting 

future performance of the designing controlled experiments skill 

1) conditioned the learning rate on whether the student received 

scaffolding (T_Scaffolded extension), and 2) incorporated skill 

degradation when switching between science topics 

(kLn_TopicSwitch extension). This represents a small increase in 
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performance over the classic BKT model (A’ = .817). The model 

with the highest A’ = .853 for predicting future performance of 

testing stated hypotheses was the full model that incorporated all 

three extensions. This again was a small improvement over the 

classic BKT model (A’ = .841).  

In terms of predicting individual student performance, some of the 

models performed reasonably well. As a baseline, the Classic 

BKT model for designing controlled experiments had a per-

student average A’ = .635. For testing stated hypotheses, the 

Classic BKT model had a per-student average A’ = .613. These 

values, though above chance A’ (.5), are somewhat low. 

When incorporating some of the BKT variants, the per-student 

average A’ increased. In particular, BKT variants that leveraged 

conditioning on scaffolding (T_Scaffolded model) performed 

better than the Classic BKT model (Table 1). For example, the 

best BKT model variant for both skills incorporated only 

scaffolding. The per-student average A’ of this model for 

designing controlled experiments was .685, a jump over the 

Classic BKT model. The per-student average A’ for testing stated 

hypotheses was .656, and again, outperformed the Classic BKT 

model. These A’ values are on par with the extended BKT models 

developed in [6] that incorporated scaffolding. 

7.2 Model Interpretation 
Like [6], we interpreted the models’ parameters to understand 

what they reveal about the impacts of scaffolding and the learning 

and transfer of scientific inquiry skills between Physical Science 

topics. Since the full models with 7 parameters had A’ 

performance on par with the other best performing models, we 

chose to interpret their parameters. The parameter averages and 

standard deviations for each skill model across all six folds are 

presented in Table 2. We focus on interpreting the new parameters 

we added to the model.  

In Phase Change, the learning rate when students were scaffolded 

is much higher than the learning rate without scaffolding, 

T_Scaff_PhCh = .638 vs. T_UnScaff_PhCh = .190 for designing 

controlled experiments, and T_Scaff_PhCh = .823 vs. 

T_UnScaff_PhCh = .158 for testing stated hypotheses. These 

values indicate that scaffolding students’ inquiry appears to have a 

positive effect on whether students learn the skills [6]. 

The learning rate for the Free Fall activities, which were 

unscaffolded and practiced after the Phase Change activities, was 

comparatively lower for each skill, T_UnScaff_FF = .094 for 

designing controlled experiments, and T_UnScaff_FF = .089 for 

testing stated hypotheses. The meaning of these values is more 

difficult to discern because all students had prior opportunity to 

practice in Phase Change before attempting the Free Fall tasks. It 

could be that the unscaffolded Free Fall activities, like the 

unscaffolded Phase Change activities, are less effective for 

helping students acquire these inquiry skills. However, it could 

also be that the lower learning rates reflect that many students 

already mastered the skills in Phase Change and thus these new 

activities afforded no additional learning opportunities. We 

believe the latter to be the case because 1) more than 85% of 

students demonstrated each skill in their first Free Fall practice 

opportunity (data not presented in this paper), and 2) the initial 

likelihood of knowing the skills (L0) was high. 

Finally, the skill degradation parameter k, which captures the 

degree of skill transfer between science topic (0 is no transfer, 1 is 

full transfer), was high for both skills.  For designing controlled 

experiments, k = .973 and for testing stated hypotheses, k = .961. 

These high values suggest that skill transfers from Phase Change 

to Free Fall within our learning environment [cf. 15]. We 

elaborate on this finding in more detail in the next section. 

8. DISCUSSION AND CONCLUSIONS 
In the classic Bayesian Knowledge Tracing framework [1], 

scaffolding and the tutor context, the nature of the activities in 

which skills are applied, are not taken into account when 

predicting students’ future performance. Similar to others’ prior 

work [6-8] we explored here whether extending the BKT 

framework to incorporate these factors improves prediction of 

students’ skill demonstration. This work was conducted to predict 

students’ acquisition of two data collection inquiry skills, 

designing controlled experiments and testing stated hypotheses 

[cf. 12, 13], in performance-based inquiry tasks across two 

Physical Science topics, Phase Change and Free Fall. Specifically, 

we added three extensions to the BKT model: 1) conditioning the 

learning rate on whether or not students were scaffolded; 2) 

conditioning the learning rate depending on the topic in which 

students practiced inquiry (Phase Change or Free Fall); and 3) 

adding a degradation parameter to potentially lower the likelihood 

Table 1. BKT model variant performance predicting whether students will demonstrate skill in their next practice attempt in the learning 

environment. The A’ values were computed under six-fold student-level cross-validation Overall, the best model for both skills is the one 

in which the learning rate is conditioned on whether or not the student received scaffolding during Phase Change (T_Scaffolded). 

 

a N = 287 students; b N = 175 students; c N = 132 students 

 

T_Scaffolded T_Topic kLn_TopicSwitch A' per student avg
a

A' collapsed
b

A' per student avg
a

A' collapsed
c

X .685 .827 .656 .846

X .633 .818 .610 .840

X .641 .825 .612 .844

X X .678 .829 .648 .848

X X .630 .826 .601 .845

X X .680 .837 .638 .852

X X X .676 .836 .645 .853

.635 .817 .613 .841

BKT Model Variant Designing Controlled Experiments Testing Stated Hypotheses

Classic BKT:
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of a student knowing a skill when the science topic changed. 

Overall, we found that BKT can track development of both skills, 

in accordance with our prior work [13], and that our extensions 

led to improvements in prediction and model interpretability. 

In comparing our BKT extension that incorporates scaffolding, 

our approach is closest to the one taken in [6]. Our model assumes 

that scaffolding will only impact learning, whereas [6] captures 

that scaffolding may differentially impact learning and immediate 

performance. Our modeling choice was motivated in part by 

parsimony given that BKT is already overparametrized [24], a 

possibility hypothesized in [6], and by the delay between 

performance attempts of the skills in our learning environment. 

Unlike [6], we found that taking scaffolding into account 

improved the ability to predict individual student learning and 

performance over the classic BKT model, possibly due to 

increased parsimony. We also teased apart the effects of 

scaffolding on our models’ predictive abilities overall (collapsing 

over students) and on predicting individual student performance.  

When interpreting the parameters of the extended model, we 

found that scaffolding appears to have a positive impact on 

learning, as in [6]. We do note, though, that we did not tease out 

the differential impacts of specific scaffolds in our multi-level 

scaffolding approach. It is possible that specific scaffolds trigger 

different degrees of learning. One possible way to incorporate this 

is to condition learning rate on the different kinds of scaffolds, not 

just whether or not students received scaffolding in general.  

We also incorporated parameters to account for the possible 

effects of demonstrating inquiry skill within different science 

topics (Phase Change and Free Fall). This modeling was inspired 

by the empirical question of whether inquiry skills are tied to the 

science topic in which they are learned [15], or if they transfer 

across topics [9, 10]. Though incorporating these parameters did 

not increase the predictive performance of our models, they do 

provide possible insights to inquiry learning. In particular, the 

model parameters suggest that the data collection skills of interest 

transfer across science topics, which supports earlier findings [e.g. 

20,  26, 14]. There are limits to how certain we can be about this 

interpretation, though. First, in our study design, we only 

randomized whether students received scaffolding in Phase 

Change, and then measured transfer to Free Fall. A stronger 

approach to increase parameter interpretability would be to also 

randomize the science topic order. Second, it is possible that the 

implied transfer of skill may be due to the structural similarities of 

the activities [9] across Physical Science tasks. In the future, it 

will be beneficial to conduct a similar study across different 

science topic areas, like Life and Earth Science [12], with 

different activity structures to tease apart these possible effects. 

This paper offers three contributions. First, to our knowledge, this 

work is the first application of BKT to track the development of 

inquiry process skills across science topics. This work strengthens 

our earlier findings in using BKT for a single group of students 

and single topic [13], because we cross-validated our models with 

students from multiple schools who engaged in two science 

topics. Second, we extended BKT by incorporating scaffolding. 

Though this extension is similar to others’ [e.g. 6, 8], it enabled a 

“discovery with models” analysis [cf. 27] that shed light on the 

potential relationships between performance in the environment, 

scaffolding, and transfer of inquiry skills [15]. Furthermore, 

conditioning the BKT learning rate on whether students received 

scaffolding improved prediction of individual students’ 

trajectories over the classic model. Finally, we incorporated a 

form of tutor context (the science topic in which skills were 

demonstrated) directly in the BKT model, unlike [8], which 

addressed context by selecting subsets of training and testing data. 

By adding these additional parameters, we discerned that the data 

collection skills transferred across the two science topics by 

interpreting the extended BKT model. 

In closing, we note that this work focuses primarily on validation 

and interpretation of skill within our learning environment. In our 

prior work [13], we also showed that BKT models not only had 

this internal reliability, but were also moderately predictive of 

other measures of inquiry. In the future, we will determine if our 

model extensions can also improve external validation, thus 

realizing the full potential of using our learning environment to 

estimate and track authentic inquiry skills.  
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ABSTRACT
Normally, when considering a model of learning, one com-
pares the model to some measure of learning that has been
aggregated over students. What happens if one is interested
in individual differences? For instance, different students
may have received different help, or may have behaved dif-
ferently. In that case, one is interested in comparing the
model to the individual learner. In this study, we investi-
gate three models of learning and compare them to student
log data with the goal of seeing which model best describes
individual student learning of a particular skill. The log
data is from students who used the Andes intelligent tutor
system for an entire semester of introductory physics. We
discover that, in this context, the ”best fitting model” is not
necessarily the ”correct model” in the usual sense.

Keywords
data mining, models of student learning

1. INTRODUCTION
Most Knowledge Component (KC) [15] based models of learn-
ing are constructed in a similar manner, following Corbett
and Anderson [8]. First, some measure of learning is selected
(e.g. correct/incorrect on first try) for the j-th opportu-
nity for that student to apply a given KC. This measure
of learning is then aggregated over students (e.g. fraction
of students correct) as a function of j. Finally, aggregated
measure is then compared to some model (e.g. Bayesian
Knowledge Tracing) with model parameters chosen to opti-
mize the model’s fit to the data. In principle, given sufficient
student log data, one could uniquely determine which of sev-
eral competing models best matches the data.

One drawback with this approach is that it does not take
into account individual learner differences or the actual be-
haviors of students or tutors as they are learning. Thus, a
number of authors have extended their models to include in-
dividual student proficiency and actual help received by the

student. For instance, in the Cordillera natural language
tutoring system for physics [16], the student may have been
asked what the next step was or were told what the next
stop was; this was used as input for an associated model.
An overview of these models can be found in [7].

If one is primarily interested in the effectiveness of help given
to an individual student or the effectiveness (for learning) of
a particular strategy or behavior of a student, then it may
make sense to fit a model of learning to the log data of each
student individually. Given sufficient student log data, can
we still talk about a particular model fitting the student log
data well? That is the central question of this paper. To
start our investigation, we will compare three different mod-
els of learning using data from students taking introductory
physics and examine whether there is empirical support for
using one model over the others. In fact, using Akaike In-
formation Criteria (AIC), we obtain results that seem to
favor two models over the third, but note that fitting the
models to individual students can make the determination
ambiguous.

1.1 Correct/Incorrect steps
Our stated goal is to determine student learning for an indi-
vidual student as they progress through a course. What ob-
servable quantities should be used to determine student mas-
tery? One possible observable is “correct/incorrect steps,”
whether the student correctly applies a given skill at a par-
ticular problem-solving step without any preceding errors or
hints. There are other observables that may give us clues
on mastery: for instance, how much time a student takes
to complete a step that involves a given skill. However,
other such observables typically need some additional theo-
retical interpretation. Exempli gratia, What is the relation
between time taken and mastery? Baker, Goldstein, and
Heffernan [3] develop a model of learning based on a Hidden
Markov model approach. They start with a set of 25 addi-
tional observables (including “time to complete a step”) and
construct their model and use correct/incorrect steps to cal-
ibrate the additional observables and determine which are
significant. Naturally, it is desirable to eventually include
various other observables in any determination of student
learning. However, in the present investigation, we will fo-
cus on correct/incorrect steps.

Next, we need to define precisely what we mean by a step. A
student attempts some number of steps when solving a prob-
lem using an intelligent tutor system (ITS). Usually, a step
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Figure 1: Functional form of the three models of
student learning.

is associated with creating/modifying a single user interface
object (writing an equation, drawing a vector, defining a
quantity, et cetera) and is a distinct part of the problem so-
lution (that is, help-giving dialogs are not considered to be
steps). A student may attempt a particular problem-solving
step, delete the object, and later attempt that solution step
again. A step is an opportunity to learn a given Knowledge
Component (KC) [15] if the student must apply that skill to
complete the step.

Andes is a model-tracing tutor [2], which means that the
ITS contains a number of “model solutions” to each problem
and each step of the model solution has one or more KCs
assigned to it. As a student solves a problem, Andes tries
to match each student attempt at a step to a corresponding
model solution step and, if that match is successful, assigns
the corresponding KCs to that step attempt. For some com-
mon errors, Andes has a number of error detectors that infer
what solution step the student was attempting to work on.
In that case, KCs can assigned to that attempt. However,
there are many errors where the associated KCs cannot be
determined. In the log analysis, if a step attempt does not
have any KCs assigned to it, we use the following heuris-
tic to determine the associated KCs: First, we look at any
subsequent attempts associated with the same user inter-
face element and see if they have any KCs associated with
them. If that fails, then we look for the next attempt having
the same type of user interface element (equation, vector, et
cetera) that has some KCs associated with it.

For each KC and student, we select all attempted steps that
involve application of that KC and mark each step as “cor-
rect”if the student completes that step correctly without any
preceding errors or requests for help; otherwise, we mark the
step as “incorrect.” If each incorrect/correct step is marked
with a 0/1, then a single student’s performance on a sin-
gle KC can be expressed as a bit sequence, exempli gratia
00101011. We will label steps with j ∈ {1, . . . , n}.

2. THREE MODELS OF LEARNING
Ultimately, we are interested in determining when a student
has mastered a particular KC and, by inference, the effec-

tiveness of any help given by the tutor. Thus, a useful model
of learning should have the the following properties:

1. Be compatible with actual student behavior. That is,
its functional form should fit well with student data.
We will explore this question in Section 3.

2. Give the probability that learning has occurred at a
given step.

3. Assuming learning has occurred at a given step, the
model should give a prediction for the associated in-
crease in performance and the rate of errors after learn-
ing.

We will consider three candidate models: the Bayesian Knowl-
edge Tracing (BKT) model, the logistic function, and the
“step model;” see Fig. 1.

The first model is the Bayesian Knowledge Tracing (BKT)
model [8]. The hidden Markov model form of BKT is often
fit to student performance data [4]. One can show that this
model, in functional form, is an exponential function with
three model parameters [13]:

PBKT(j) = 1− P (S)−Ae−βj . (1)

One central assumption of BKT is that, given that learning
has not already occurred, mastery is equally probable on each
step. This assumption of equal probability does not match
well with our goal of determining empirically the steps where
learning has actually occurred for an individual student, cri-
terion 2. On the other hand, this model does provide the
final error rate P (S) (the initial error rate is ambiguous), so
criterion 3 is partially satisfied.

A number of models of learning based on logistic regres-
sion have been studied [6, 10, 7]. These models involve fit-
ting data for multiple students and multiple KCs and may
involve other observables such as the number of prior suc-
cesses/failures a student has had for a given skill. However,
in this investigation, we are interested in fitting to the cor-
rect/incorrect bit sequence for a single student and a single
KC and a logistic regression model takes on a relatively sim-
ple form

log

(
Plogistic(j)

1− Plogistic(j)

)
= b(j − L) (2)

which can be written as:

Plogistic(j) =
1

1 + exp (−b(j − L))
. (3)

It is natural to associate L with the moment of learning.
However, the finite slope of Plogistic(j) means that learning
may occur in a range of roughly 1/b steps before and after
L. For Plogistic(j), the gain in performance is always 1 and
the final error rate is always 0. Thus, although this model
makes a prediction for when the skill is learned, criterion 2,
it does not predict a gain in performance, criterion 3.

The third model is the “step model” which assumes that
learning occurs all at once; this corresponds to the “eureka
learning” discussed by [3]. It is defined as:

Pstep(j) =

{
g, j < L

1− s, j ≥ L
(4)
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where L is the step where the student first shows mastery of
the KC, g is the“guess rate,” the probability that the student
gets a step correct by accident, and s is the “slip rate,” the
chance that the student makes an error after learning the
skill. These are analogous to the guess and slip parameters
of BKT [8]. The associated gain in performance is 1− g− s
and the error rate after learning is simply s in this model.
Thus, this model satisfies criteria 2 and 3.

3. MODEL SELECTION USING AIC
The BKT and logistic function models are widely used and
we have introduced the step model Pstep(j) as an alternative.
How well do these models match actual student behavior?
Since we will use the step model in subsequent work, it would
be reassuring to know whether it describes the student data
as well (or better than) the other two models. We will use
the Akaike Information Criterion (AIC) for this purpose [1,
5]. AIC is defined as

AIC = −2 log (L) + 2K (5)

where L is the maximized value of the likelihood function
and K is the number of parameters in the model. AIC is an
estimate of the expected relative “distance” between a given
model and the true model (assumed to be complicated) that
actually generated the observed data. It is valid in limit of
many data points, n→∞, with leading corrections of order
1/n.

A related method for choosing between models is the Bayesian
Information Criterion (BIC) introduced by Schwarz [11].
BIC is defined as

AIC = −2 log (L) + K log (n) (6)

where n is the number of data points. Burnham & An-
derson [5, Sections 6.3 & 6.4] explain that BIC is more
appropriate in cases where the “true” model that actually
created the data is relatively simple (few parameters). If
the true model is contained in the set of models being con-
sidered, then BIC will correctly identify the true model in
the n → ∞ limit. For BIC to have this property, the true
model must stay fixed as n increases. The authors argue
that, while BIC may be appropriate in some of the physical
sciences and engineering, in the biological and social sci-
ences, medicine, and other “noisy” sciences, the assumptions
that underlie BIC are generally not met. In particular, as
the sample size increases, it is typical that the underlying
“true” model also becomes more complicated. This is cer-
tainly true in educational datamining: datasets are gener-
ally increased by adding data from new schools, or different
years and one generally expects noticeable variation of stu-
dent behavior from school to school or from year to year.
In such cases, one safely can say that the “true” model is
complicated (because people are complicated) and becomes
more complicated as a dataset is increased in size. Although
most authors quote both AIC and BIC values, there is good
reason to believe that AIC is generally more appropriate for
educational datamining work.

3.1 Method
We examined log data from 12 students taking an inten-
sive introductory physics course at St. Anselm College dur-
ing summer 2011. The course covered the same content as
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Figure 2: Histogram of number of distinct student-
KC sequences in student dataset A having a given
number of steps n.

a normal two-semester introductory course. Log data was
recorded as students solved homework problems while us-
ing the Andes intelligent tutor homework system [17]. 231
hours of log data were recorded. Each student problem-
solving step is assigned one or more KCs using the heuristic
described in Section 1.1. The dataset contains a total of
2017 distinct student-KC sequences covering a total of 245
distinct KCs. We will refer to this dataset as student dataset
A. See Figure 2 for a histogram of the number of student-KC
sequences having a given number of steps.

Most KCs are associated with physics or relevant math skills
while others are associated with Andes conventions or user-
interface actions (such as, notation for defining a variable).
The student-KC sequences with the largest number of steps
are associated with user-interface related skills, since these
skills are exercised throughout the entire course.

One of the most remarkable properties of the distribution
in Fig. 2 is the large number of student-KC sequences con-
taining just a few steps. The presence of many student-KC
sequences with just one or two steps may indicate that the
default cognitive model associated with this tutor system
may be sub-optimal; to date, there has not been any at-
tempt to improve on the cognitive model of Andes with, say,
Learning Factors Analysis [6]. Another contributing factor
is the way that introductory physics is taught in most insti-
tutions, with relatively little repetition of similar problems.
This is quite different than, for instance, a typical middle
school math curriculum where there are a large number of
similar problems in a homework assignment.

3.2 Analysis
Since the goodness of fit criterion, AIC, is valid in the limit of
many steps, we include in this analysis only student-KC se-
quences that contain 10 or more steps, reducing the number
of student-KC sequences to 267, covering 38 distinct KCs.
We determine the correctness of each step (Section 1.1), con-
structing a bit sequence, exempli gratia 001001101, for each
student-KC sequence. This bit sequence is then fit to each
of the three models, Pstep, Plogistic, and PBKT by maximiz-
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Figure 3: Scatter plot of Akaike weights for the
three models, Pstep, Plogistic, and PBKT, when fit to
student-KC sequences from an introductory physics
course. The point where all models are equal,
wstep = wlogistic = wBKT = 1/3, is marked with the
lower cross. The average of the weights is marked
with the upper cross. The dashed line on the left
represents points where wstep = wBKT. Finally, the
dashed line on the right marks data with bit se-
quences of the form 00 · · · 011 · · · 1.

ing the associated log likelihood. For Plogistic, and PBKT,
the fits were calculated using the Differential Evolution al-
gorithm [12] provided by Mathematica. For Pstep, the best
fit, as a function of s and g, can be found analytically; one
can then find the best fit, as a function of L, by conducting
an exhaustive search. Next, we calculate the AIC score for
each fit. Finally, we calculate the Akaike weights, wlogistic,
wstep, and wBKT for each student-KC sequence [5]. The
weights are normalized so that

1 = wlogistic + wstep + wBKT . (7)

The Akaike weight represents the relative probability that
a particular model in a given set of models is closest to the
model that has actually generated the data.

A scatter plot of the weights is shown in Fig. 3. If all three
models described the data equally well, then we would ex-
pect points to be scattered evenly about the center point
wlogistic = wstep = wBKT = 1/3. Instead, we see the step
model (average weight 0.44) weakly favored over the logistic
model (average weight 0.37) and strongly favored over BKT
(average weight 0.18). Indeed, we find no data points where
wstep < wBKT, although there is a noticeable accumulation
of points along the line wstep = wBKT.

Note that data in the form of incorrect steps then correct
steps, exempli gratia 00 · · · 011 · · · 1, is fit perfectly by both

the Pstep and Plogistic models. In this case, since Plogistic has
one fewer parameter than Pstep, it is favored by AIC by a
constant factor and wstep = e−1wlogistic. This case is plotted
as the increasing dashed line in Fig. 3.

Since the student-KC sequences contain an average of about
n = 16 steps, it is surprising that we find that AIC so
strongly discriminates between the models. Perhaps, though,
this is due to some finite n correction: recall that AIC is only
strictly valid in the n→∞ limit.

3.3 Random data
To further investigate the observed strong discrimination be-
tween the three models, we constructed an artificial dataset
containing random bit sequences (each step has 50% prob-
ability of being “correct”) of length n ∈ {10, 20, 30, 40, 50},
with 10,000 sequences for each n. This dataset corresponds
to a model of the form

Prandom(j) = 1/2 . (8)

We then repeated our analysis of the three models using
this dataset and AIC as our selection criterion. Note that
all three models, with a suitable choice of parameters, can
be made equal to Prandom itself.

As mentioned earlier, for data that is generated by a sim-
ple model (and Prandom is about as simple as one can get)
and the “true” model is included among the set of models,
BIC is the more appropriate criterion for model selection [5,
Sections 6.3 & 6.4]. However, for our results, the only differ-
ence between AIC and BIC is that BIC favors Plogistic more
strongly over Pstep and PBKT. Thus, using BIC would shift
the weights so that wlogistic would increase somewhat over
the other two weights. However, in order to maintain con-
sistency with our experimental results, Fig. 3, we used AIC
for the random data as well; see Fig. 4. This use of AIC
versus BIC does not affect our conclusions.

For data generated by Prandom, one expects that all three
models should perform equally well since all three can equal
(with suitable choice of parameters) the known correct model
Prandom. Thus, we would expect a scatter plot of the Akaike
weights to center around wlogistic = wstep = wBKT = 1/3.
Instead, we find that Pstep is still highly favored over the
other two; see Fig. 4. This bias seems to persist as we in-
crease n.

Since we know that AIC (or BIC) is only strictly valid in
the asymptotic limit n → ∞, it is useful to see if the large
differences persist as n is increased. If we average over the
10,000 weights and plot the average weight as a function of
n, we find that the differences between the weights persist
in the n→∞ limit; see Fig. 5. If we fit the average weights
to a constant plus 1/n; the fits are:

〈wstep〉 = 0.58− 1.50

n
(9)

〈wlogistic〉 = 0.24 +
1.2

n
(10)

〈wBKT〉 = 0.17 +
0.30

n
. (11)

This shows that AIC, in the asymptotic limit n → ∞, still
favors Pstep over the other two models when used to evaluate
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Figure 4: Akaike weights for the three models, Pstep, Plogistic, and PBKT, when fit to randomly generated data.
The point where wstep = wlogistic = wBKT = 1/3 is marked with a cross. For these datasets, each model should
perform equally well, since, with an appropriate choice of parameters, they all can be made equal to the
model that was used to generate the data.

randomly generated data.

If we repeat this analysis with BIC, we would still find that
the weights converge to a constant value with 1/n leading
errors. The only difference is that the logistic model has a
larger weight than the other two. The differences between
the weights of the three models still persist in the n → ∞
limit.

3.4 Conclusions
In conclusion, we obtain some surprising results when we
compare the three models, Pstep, Plogistic, and PBKT, using
individual student data. We see that AIC weakly favors
the step model over the logistic model in a fashion that one
might expect. However, in an unexpected fashion, we see
that both are strongly favored over the BKT model. We see
that this effect persists for randomly generated data and is
not due to an insufficient number of opportunities (finite n
effect).

Moreover, for any bit sequence, PBKT never fits the data
better than Pstep. Since both models have three parameters,
this result holds for any maximum likelihood-based criterion,
including both AIC and BIC. We don’t have an analytic
proof for this result, but the numerical evidence (see Fig. 5)
is quite strong. In other words, even if one uses PBKT (for
some set of model parameters) to generate a bit sequence,
one can always adjust the parameters in Pstep so that it fits
the bit sequence as well as, or better than, PBKT.

What does this mean? Let us think more carefully about
maximum likelihood. If one uses a model to generate a sin-
gle bit sequence, we cannot determine the exact probability

function (the probability as a function of j) that generated
it. At best, one can only talk about the probability that
given a function may have generated that sequence. On the
other hand, if one uses a particular probability function to
generate a collection of infinitely many sequences, then we
know the exact probability for each step. Therefore, given
the collection of many sequences, one can uniquely deter-
mine the probability function that generated that collection.
If that function comes from a particular model A (for some
choice of model parameters), then we can safely conclude
that model A is the correct model.

In other words, when we fit individual student data to a
model (fitting model parameters separately for each stu-
dent), then we can make no statements about what model is
“correct” in the sense that it may have generated the data.
We can only talk about a model being a good fit in the sense
that it is “close” to the data. On the other hand, if we aggre-
gate data from many students and fit to a model (finding the
best fit model parameters), then we can talk about a model
being correct in the usual sense that it may have generated
the data.

If we are interested in determining the effectiveness of help
given or of a particular student behavior, we are more con-
cerned about being “close” to the student data than finding
the correct theory of learning, so the fact that the step model
fits the data better than the logistic function and the BKT
model is of practical value when analyzing student log data.
However, one should not then conclude that the step func-
tion is a better model of student learning, in the usual sense.
The better fit does not predict anything about the nature of
learning.

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 197



www.manaraa.com

10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

length n

m
ea

n
A

k
ai

k
e

w
ei

g
h
t

Ywlogit]

Ywstep]

XwBKT\

Figure 5: Mean Akaike weights for the three models,
Pstep, Plogistic, and PBKT, when fit to randomly gener-
ated data of length n. (Each mean is calculated by
averaging over 10,000 random bit sequences.) Also
shown is a fit to a function of the form a + b/n and
a dashed line marking the asymptotic value a. Note
that the large differences between the weights per-
sist in the n→∞ limit.

Our results suggest that the step model may be useful for
modeling the learning of an individual student. However,
the step model assumes that learning a skill occurs in a
single step. Is this how people actually learn? Certainly,
everyone has experienced “eureka learning” at some point in
their lives. However, it is unclear how well this describes
the acquisition of other skills, especially since many KCs
are implicit and people are not consciously aware that they
even know them [9]. Certainly, if the student performance
bit sequence is of the form 00 . . . 011 . . . 1, it seems safe to
assume that learning occurred all in one step, corresponding
to the first 1 in the sequence. However, it is possible that
the transition from unmastered to mastery occurs over some
number of opportunities and the bit sequence of steps takes
on a more complicated form. In a companion paper [14], we
introduce a method (based on AIC) that can describe grad-
ual mastery, even though the step model itself assumes all-
at-once learning. In that approach, for a given bit sequence,
one speaks about the probability that learning occurred at a
particular step.

Finally, we see that the scatter plot of Akaike weights for
student data is remarkably similar to the scatter plots for
the random model. This suggests that the student data has a
high degree of randomness, and, in general, that study of the
random model may be quite useful for better understanding
the student data.
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knowledge tracing. In Proceedings of the 2009
conference on Artificial Intelligence in Education:
Building Learning Systems that Care: From
Knowledge Representation to Affective Modelling, page
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ABSTRACT
Topic modeling is widely used for content analysis of textual
documents. While the mined topic terms are considered as
a semantic abstraction of the original text, few people eval-
uate the accuracy of humans’ interpretation of them in the
context of an application based on the topic terms. Previ-
ously, we proposed RevExplore, an interactive peer-review
analytic tool that supports teachers in making sense of large
volumes of student peer reviews. To better evaluate the
functionality of RevExplore, in this paper we take a closer
look at its Natural Language Processing component which
automatically compares two groups of reviews at the topic-
word level. We employ a user study to evaluate our topic
extraction method, as well as the topic-word analysis ap-
proach in the context of educational peer-review analysis.
Our results show that the proposed method is better than
a baseline in terms of capturing student reviewing/writing
performance. While users generally identify student writ-
ing/reviewing performance correctly, participants who have
prior teaching or peer-review experience tend to have bet-
ter performance on our review exploration tasks, as well as
higher satisfaction towards the proposed review analysis ap-
proach.

Keywords
Educational peer reviews, text analysis, topic modeling, user
study

1. INTRODUCTION
Peer review is a popular educational approach for helping
students improve their writing performance. It provides dif-
ferent perspectives and valuable feedback on what is com-
pelling and what is problematic. Ideally, from analyzing
student peer reviews, instructors may not only learn about
student writing issues by reading student feedback, but may
also evaluate student reviewing performance by checking if
comments are given for important issues in a good man-
ner. However, due to the large amount of reviews, teachers

seldom read the comments carefully if at all. Instructors
whom we have interviewed have complained that peer re-
views are time consuming to read and difficult to interpret.
Interpreting them requires synthesizing opinions from mul-
tiple parties while making comparisons and contrasts across
multiple students at the same time.

Nowadays, some existing web-based peer-review systems can
help teachers set up peer review assignments and even grade
student papers based on peer ratings, though no software yet
has the intelligence to support teachers’ comprehension of
the textual review comments. Previously [14], we took our
first step to address this issue and designed an interactive
analytic interface (RevExplore) on top of SWoRD [4], a web-
based peer-review reciprocal system that has been used by
over 12,000 students over the last 8 years. Before deploying
RevExplore as a SWoRD plugin to the public, we would like
to evaluate its functionality carefully, especially its natural
language processing (NLP) component that automatically
abstracts and compares review content at the topic-word
level.

For this purpose, we carry out a user study to examine the
idea of analyzing peer reviews by comparing them in groups
based on their topic words. In particular, we investigate
the analytic power of topic words in the context of assessing
student writing/review performance by mining peer reviews.
In this study, we not only show that our proposed topic-
word extraction method can better enable users to identify
student writing/reviewing issues than a baseline, but also
demonstrate that the utility of our topic-word approach de-
pends on various factors.

2. RELATED WORK
There is increasing interest in research on computer-supported
peer reviews both from the students’ perspective for improv-
ing learning and from the teachers’ perspective for inform-
ing decision making. From the students’ perspective, prior
studies of automatically assessing student peer-review per-
formance either focus on detecting important feedback fea-
tures [3, 15], or aim to assess the overall peer-review helpful-
ness [13]. From the teachers’ perspective, Goldin and Ash-
ley [6] use Bayesian networks to model computer-supported
peer review which yields pedagogically useful information
about student learning and about grading schema. In con-
trast with their work, we are interested in the educational
contents (textual peer reviews) rather than the interaction
between students during the peer review activities. Further-
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more, our RevExplore involves humans in the loop: it allows
teachers to interactively explore peer-review data at the stu-
dent level first, and then drill down to particular groups of
students for automated analysis of their peer reviews after-
wards.

With respect to data mining of educational textual contents,
the general goal is to summarize or analyze the textual con-
tents to provide feedback to teachers, either about student
learning activities, or about the utility of teaching mate-
rials. For understanding student learning activities, word-
based content analysis, where the words are either learned
through topic modeling or crafted manually, has been widely
used for categorizing educational data such as online discus-
sion threads [10, 9] and student-tutor interactions [7]. As
peer review provides students learning opportunities during
both paper writing and reviewing, the textual reviews are
valuable in reflecting both student writing and reviewing
performance. Therefore we hypothesize that extending data
mining techniques to textual peer reviews can provide useful
feedback to instructors regarding both student writing and
reviewing performance.

Several NLP techniques can be used for word-based content
analysis. One is the frequency-based method, which con-
siders the content of a target corpus in terms of its most
frequent words. A famous application of this method is to
generate word-clouds, which is a popular web2.0 tool for
supporting impression formation over textural data. For ex-
ample, it has been used to compare political speeches from
different people1 In our study, we consider this method as a
baseline (denoted as Freq) for evaluating our proposed topic-
word extraction method, which is to automatically learn the
salient words of a target corpus through a topic-signature
approach to topic modeling (denoted as TopicS). Topic sig-
nature modeling assumes a single topic of the target corpus
when comparing it against a background corpus. And this
topic can be represented as a set of words based on statis-
tical analysis of the word distribution in both corpora [8].
Another kind of topic modeling is based on graphical mod-
els, such as LDA [1]. LDA considers each document as a
mixture over an underlying set of topic probabilities. While
it has been widely studied for many NLP tasks from senti-
ment analysis to text summarization, we did not employ it
in RevExplore for several reasons. First, the learned topic
model changes with parameter settings (the number of top-
ics and the hyperparameters) which are quite task depen-
dent. Furthermore, the learned topics are generally difficult
to interpret [16], and hard to evaluate. Although various
automatic metrics were proposed, they do not always agree
with human judgements in end-applications [2].

3. TOPIC WORDS IN REVEXPLORE
RevExplore [14] utilizes data visualization in combination
with NLP techniques to help instructors interactively make
sense of peer review data, which was almost impractical be-
fore. It has a student performance overview and a review
comparison detail-view. In the overview, RevExplore vi-
sualizes the overall peer-review information at the student
level, which allows instructors to effectively identify points of

1http://www.tagcrowd.com/blog/2011/03/05/state-of-the-
union-2002-vs-2011/

interest during their initial data exploration. In the detail-
view, RevExplore automatically abstracts the semantic in-
formation of peer reviews at the topic-word level with the
original texts visible on demand. To create the detail-view,
we adapt existing natural language processing techniques to
the peer-review domain for supporting automated analytics.

3.1 Preprocessing – domain word masking
Because peer reviews frequently refer to the content of the
papers that they comment on, it is necessary to reduce the
influence of such“paper topic”words on the extraction of“re-
view topic” words from the peer reviews, otherwise the “pa-
per topic” will dominate the computation of “review topic”
words. Therefore, as a preprocessing step, we first com-
pute the “paper topic” words of the writing assignment us-
ing TopicS2, a java implementation of the topic signature
acquisition algorithm [8]. TopicS computes the topic words
from a topic relevant (target) corpus against a topic irrele-
vant (background) corpus based on word distribution using
chi-square statistics (which will be explained later in this
section). For computing the “paper topic” words, we use all
student papers as the target corpus and use 5000 documents
from the English Gigaword Corpus as the background cor-
pus (the default setting of TopicS). Based on our intuition,
we set the chi-square cutoff to be 10 (p = .0016), yielding
about 500 topic words. As these words depend on the do-
main of the writing assignment, we denote them as domain
words for the rest of the paper.

To prevent analysts from being distracted too much by do-
main words when analyzing peer reviews, before computing
the “review topic” words using any extraction method, we
apply domain word masking to each peer review by replacing
all occurrences of each domain word (e.g. “war”, “african”,
“americans”, “women”, “democracy”, “rights”, “states” ) with
a dummy term “domainwords”.

3.2 Comparison-oriented topic signatures
The topic signature algorithm [8] assumes that a target cor-
pus has a single topic, and it computes the topic words for
the target corpus with respect to a general background cor-
pus. For each word, the algorithm computes a likelihood ra-
tio [5] which tests the hypothesis of the word being a topic
word of the target corpus versus the hypothesis that the
word is not a topic word. The −2 log likelihood ratio has
a chi-square distribution, which allows us to test the signif-
icance of each word to the topic of the target corpus when
compared against the background corpus. In our work, we
use the existing software TopicS (as mentioned before) for
extracting topic signatures.

In RevExplore overview, when two groups of students are
chosen for further review comparison in the detail-view, there
is an implicit assumption of a topic difference between their
corresponding review groups. Furthermore, the topic to be
mined changes dynamically in accordance with the change
of the analytic goals, which are specified through different
grouping of reviews. To capture these assumptions when us-
ing TopicS to extract the topic words for a particular review
group, we take its reviews as the target corpus and use all of

2TopicS was developed by Anni Louis for evaluating auto-
mated text summarization [12].
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the reviews as the background corpus. In this way, we tailor
the computation of the topic words to the desired analytic
property of the target review group. We denote this adapted
method as TopicS. For TopicS, we set the significance cutoff
as 6.635, corresponding to a p value of .01. For a typical re-
view group of our study, the number of the extracted topic
words is about 20.

In our user study, we compare TopicS with the frequency-
based method (Freq), and we expect that our TopicS can
outperform Freq in helping users achieve better task per-
formance. Note that both methods are performed after the
domain-word masking.

4. DATA
Our peer-review corpus consists of 1405 free-text review
comments and 24 student papers, which were collected in
a college level history class [11]. The peer review was done
through SWoRD [4], a web-based peer-review reciprocal sys-
tem, as follows:

Assignment creation: The teacher first created the writ-
ing assignment in SWoRD and provided a peer-review rubric
which required students to assess a paper’s quality on three
separate dimensions (Logic, Flow and Insight), by giving
a numeric rating on a scale of 1-7 in addition to textual
comments.3 For instance, the teacher created the following
guidance for commenting on the“Logic”dimension: “Provide
specific comments about the logic of the author’s argument.
If points were just made without support, describe which ones
they were. If the support provided doesn’t make logical sense,
explain what that is. If some obvious counter-argument was
not considered, ...” Teacher guidance for numerically rat-
ing the logical arguments of the paper was also given. For
this history assignment, a rating of 7 (“Excellent”) was de-
scribed as “All arguments strongly supported and no logical
flaws in the arguments.”. A rating of 1 (“Disastrous”) was
described as “No support presented for any arguments, or
obvious flaws in all arguments.”. Textual review examples
for the Flow dimension are provided in Figure 1 of Section 6.

Paper writing & peer review: In the next phase, 24
students submitted their papers online through SWoRD and
then reviewed 6 peers’ papers. The peer review was done
in a “double blind” manner and each paper was reviewed by
about 6 peers. As students were required to submit reviews
on each dimension separately, SWoRD automatically asso-
ciates the reviewing dimension with every numerical rating
and textual comment. In addition, students also received re-
views from one content expert and another writing expert,
who reviewed in the same way as the peers did, yielding
a final 1405 review comments4 that we use in this study.
In our user study, we will group students based on their
writing performance as determined by the numerical peer
review ratings. In particular, the average of peers’ paper
ratings received by each student (ratingW) measures the
overall quality of a student’s writing performance.

Backward evaluation: Finally, peer feedback was rated

3While reviewing dimensions and associated rubrics are typ-
ically created by the teacher, teachers can also use a library
provided by SWoRD.
4A single peer review can have multiple comments.

backwards regarding review helpfulness on a scale of 1-7, by
the students who received the reviews. For our analysis, we
will aggregate the helpfulness ratings for each reviewer, and
use the average rating (ratingR) as a measure of a student’s
reviewing performance. As this step was not mandatory,
the ratingR is only available for 12 students regarding their
reviewing performance. (Experts’ reviews were excluded in
this backward evaluation.)

5. PRE-DEFINED REVIEW GROUPINGS
Different groupings of the peer reviews allow users to specify
different goals in their review analysis tasks. In our user
study, we look at two groupings of reviews based on existing
review ratings to investigate student writing and reviewing
performance. We use them as examples to examine how
topic words extracted from a group of reviews can reflect
the group’s properties. As the instructor specified a different
reviewing focus for each dimension, we consider the analysis
of reviews on different dimensions as different tasks.

5.1 By paper author’s average rating
To investigate student writing performance, we split stu-
dents into high and low performance groups, based on a
median split of students’ ratingW. Then we create “high”
and “low” groups of reviews accordingly, based on the group
membership of the student who received the reviews. The
hypothesis is that students who are highly rated have dif-
ferent writing issues compared with those who have lower
ratings, and that such differences are reflected in the peer
reviews that students receive.

5.2 By reviewer’s average helpfulness rating
Similarly, we investigate student reviewing performance by
splitting students into “high” and “low” groups based on a
median split of their ratingR. Then we create the “high”
and “low” review groups accordingly, based on the group
membership of the student who wrote the reviews. We hy-
pothesize that review topic words can reveal reviewing issues
distinguishing helpful and less-helpful reviews.

6. EXPERIMENT SETUP
We examine whether RevExplore is a useful analytic tool by
evaluating the topic-word analytic approach in the context
of educational peer-review analysis. In particular, we com-
pare the effectiveness of two topic-word extraction methods
(TopicS and Freq) quantitatively using six real peer-review
analysis tasks – two review groupings (ratingW and rat-
ingR) across three reviewing dimensions (Flow, Logic, and
Insight). We denote the three factors as Method, Split and
Dim respectively. We conduct a formative user study using
a 2 × 2 × 3 within-subject design, in which every subject
goes through all experimental conditions in random order.
In this paper, we analyze users’ task performance and user
satisfaction both qualitatively and quantitatively.

For task performance analysis, we are interested in three re-
search questions: 1) whether humans can identify the review
groups based on their topic words; 2) whether it is feasible
to identify any pattern of student peer review performance
by comparing peer reviews in groups based on their topic
words; 3) whether topic words learned by TopicS are more
informative than those by Freq. Thus we accordingly asked
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Figure 1: Interface annotation for peer review analysis user study.

three questions in the user study, e.g. for analyzing student
writing performance:

• Q1: Considering students who received the reviews,
which group do you think might be labeled as “high”
in terms of their writing performance?

• Q2: Within one minute or two, can you figure out how
one group of reviews focus on different issues/aspects/
scope compared to the other?

• Q3: Comparing the two topic extraction methods, given
the correct labels, which method is more helpful in dis-
covering the group difference of reviewing focus and
content?

For user satisfaction analysis, we would like to know how the
utility of the proposed idea is affected by user background
information, especially participant prior experience of peer
review and teaching. We examine these factors in terms of
both users’ task performance and their reported satisfaction
(subjective ratings) in an exit survey.

Participants: All 46 participants are students recruited
from a university campus, who are from various academic
backgrounds including English, Linguistics, Psychology, Ed-
ucation, Computer Science, etc. Although the tool is de-
signed for instructors, it is quite difficult to recruit a sig-
nificant number and thus we recruit students instead. Note
that some students do have teaching experience and are ex-
perienced SWoRD users. To understand whether such back-
ground plays a significant role in the use of RevExplore, we

Table 1: User distribution over demographic factors
that are related to peer-review and teaching.

Factor Frequency no Frequency yes

expPR 23 23
expSWoRD 29 17
expTA 23 23
expGW 29 17

record user background information especially regarding de-
mographic factors that depict participants’ prior experience
in peer review and teaching: whether they have peer-review
experience before (expPR), whether they used SWoRD be-
fore (expSWoRD), whether they were a TA before (expTA),
and whether they have graded any writing assignment be-
fore (expGW ). Participant distribution over these factors is
presented in Table 1. Although we also look at other demo-
graphic factors such as age, gender, major, etc., due to the
space limit, we do not report them in this paper.

Procedure: Before being exposed to the analysis tasks,
participants were first given instructions about the peer-
review assignment, including both the paper topics and the
reviewing rubrics. We also provided a warm up example to
demonstrate how to analyze peer reviews through our user
study interface. Figure 1 is a screenshot of the interface,
which consists of three parts: the left pane displays the origi-
nal reviews in lowercase after removing non-ascii characters;
the middle pane shows the topic words extracted from the
two groups of reviews; the right pane shows the analysis
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Table 2: Descriptive statistics of user satisfaction. Higher rating means more positive opinion except for
Q textRef and Q textImp. One sample t-test test value = 3 (neutral). Significant items are highlighted in
bold (p < 0.05).

Question Content Mean Std.Error Sig.(2-tailed)

Q easyness Is it easy to make sense of reviews by comparing 2.85 .140 .291
topic words?

Q listDiff Do the two lists of topic words from the two review 3.52 .123 .000
groups look semantically different to you?

Q layout What do you think of the list-layout of topic 3.57 .154 .001
words for comparison purpose?

Q reviewDiff What do you think of topic comparison in helping 3.54 .145 .000
you identify the differences in the peer reviews?

Q largeData What do you think of topic comparison in helping 3.93 .177 .000
you make sense of large amount of peer reviews?

Q approach How do you like the idea of exploring peer reviews 3.46 .180 .015
by comparing them in groups using their topic words?
(comparing to reading the textual reviews?)

Q textRef How often did you refer to the original reviews to 1.96 .189 .000
make sense of the topic words?

Q textImp How important is the original reviews for you to 2.93 .171 .705
analyze the group differences?

questions. During the study, if participants feel that some
topic word is hard to interpret, they can double click the
word on the list to bring out its related reviews in the orig-
inal review pane. The overall length of the user study was
about an hour.

During the user study, the participants completed all tasks
in random order. For each task, we computed the same
number of topic words for the high and low review groups
using Freq and TopicS, and randomly picked one extrac-
tion method for a participant to examine first. For a given
method, we presented the corresponding topic words in two
lists, one for each group. And we asked participants the
same questions Q1 and Q2 regarding the group differences
without revealing the group labels. In order to exclude the
impact of revealing the group labels for examining the first
method, when switching to the second extraction method,
we randomly layout the two list of topic words computed
by the second method and then asked Q1 and Q2 again.
After participants visited both methods, we allowed them
to revisit the topic words computed by both methods with
correct group labels attached, asking them to vote on which
method generated more informative words in terms of iden-
tifying the different review focus between the two groups
(Q3). In Q1, participants needed to provide their prediction
or check “I have no idea”; in Q2, participants needed to an-
swer either yes or “no”, and they could also articulate what
patterns they found in free text; in Q3, participants needed
to vote for the better method or check “no preference”.

After the user study, the participants took an exit survey
to rate the utility of the two methods as well as the topic-
word analytics in general for analyzing students’ peer re-
views. There are eight subjective questions in the survey.
Participants gave their opinions in a scale of 5 points, with
3 being neutral. Survey questions and the descriptive statis-
tics of user satisfaction are presented in Table 2.

7. EXPERIMENT RESULTS
The statistics of the task performance are summarized in Ta-
ble 3. For measuring task performance, we use the following
scheme to code participants’ answers to the three questions:

Answer1 =


1 if the answer is correct,

−1 if the answer is incorrect,

0 if “I have no idea”.

(1)

Answer2 =

{
1 if yes,

0 if “no”.
(2)

Answer3 =


1 if vote for TopicS,

−1 if vote for Freq,

0 if “no preference”.

(3)

For each question, we compare participants’ answers to ran-
dom guess using a one sample t-test to check if using the
topic words (extracted by either method) is generally mean-
ingful for our peer-review analysis tasks. As the table shows,
in general, the proposed approach is better than random
guess (the corresponding test mean is: 0, 0.5, 0), and the
proposed topic extraction method (TopicS) yields better
task performance than the baseline (Freq). However, we
also notice that the task performance varies with the anal-
ysis tasks. This motivates us to further examine the effects
of Split and Dim, as well as their interaction with Method,
which is discussed later.

To analyze user satisfaction, we compare participants’ rating
of each survey item to the neutral state (3-point) using a one
sample t-test. As Table 2 shows, despite that participants
generally think the analysis task is neither easy or difficult,
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Table 3: Summary of estimates of the variables across all different conditions, with higher mean bolded
between the two extraction methods. It shows that TopicS generally yields higher mean compared with Freq,
except for predicting the label of topic words when reviews were grouped by ratingR for Logic.

Q1 Q2 Q3
Answer1 Answer2 Answer3

Dim Split Method Mean Std.Error Mean Std.Error Mean Std.Error

Flow ratingR Freq -.217 .135 .457 .074 .217 .109
TopicS .413 .127 .565 .074

ratingW Freq -.043 .139 .217 .074 .652 .109
TopicS .022 .144 .783 .061

Insight ratingR Freq .043 .132 .522 .074 .370 .130
TopicS .326 .128 .543 .074

ratingW Freq .109 .133 .283 .067 .565 .115
TopicS .391 .134 .717 .067

Logic ratingR Freq .391 .118 .304 .069 .283 .138
TopicS -.174 .133 .587 .073

ratingW Freq .109 .140 .391 .073 .261 .137
TopicS .152 .135 .522 .074

Together Freq .07 .190 .36 .482 .96 2.068
TopicS .19 .923 .62 .486

Table 4: Summary of Type III F-tests significance of fixed effects of Method, Split, Dim and their interactions
on all variables of all three questions. Results are presented in p-value, with significant ones highlighted with
“*” (p < .05).

Q1 Q2 Q3

Source Answer1 Correct Answer2 Answer3

Dim .907 .000* .387 .289
Split .000* .297 .789 .055
Method .196 .039* .000* na
Dim*Split .015* .533 .912 .226
Dim*Method .008* .001* .364 na
Split*Method .333 .863 .003* na
Dim*Split*Method .001* .040* .004* na

they did express positive opinions towards the effectiveness
of the topic word extraction methods (Q listDiff), the list-
layout of the topic words (Q layout), and the usefulness of
the topic-word based comparison approach for peer review
analysis (Q reviewDiff, Q largeData and Q approach). In
addition, though participants rarely refer to the full review
text (Q textRef), they have neutral opinion towards the im-
portance of having access to the full review text during the
tasks (Q textImp).

7.1 Task performance analysis
To further understand the impact of grouping and dimension
on the utility of the topic word extraction methods, we use
a mixed linear model to analyze the main effects of Split,
Dim, Method as well as their interactions. Here we refer to
the results of Type III F-tests5 as recommended in SPSS,
for Type III F-tests measure the effect of the target factor in
question while controlling all else in the model. A summary

5Type III F-tests compute sum of square as the partial sum
of squares for each effect in the linear mixed model.

of the observed significant effects in our analysis is outlined
in Table 4.

Can we identify the review groups by their topic
words? To answer our first research question, we took a
further look at the correct cases using an indicator variable
“Correct” which codes correct cases as 1 and codes both
incorrect and “I have no idea” as 0. When using the lin-
ear mixed model to analyze the fixed effects on Correct (as
summarized in Table 4), we found that Method and Dim
are significant (p < .05), while Split is not. This indicates
that TopicS can generate more informative topic words than
Freq, regardless of how we group the reviews, though some
reviewing dimensions are naturally more difficult for captur-
ing group properties using the topic words. We also observed
significant interaction effects between Method and Dim, and
among all three factors. This implies that how much better
TopicS is compared to Freq is affected by how we set up
the review groups for comparison (related to both Split and
Dim), which corresponds to the specific investigation goals
of the analysis tasks.
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Do topic words reveal patterns in writing and re-
viewing performance? When tested on Answer2 using
the linear mixed model, only Method is found to be signif-
icant (F (1, 530.831) = 40.015, p < .001). An interaction
exists between Method and Split (F (1, 530.831) = 8.644,
p = .003), and among all factors (F (1, 349.122) = 5.677,
p = .004). This tells that using the proposed TopicS is
more likely to identify review patterns that are different be-
tween groups, regardless of which dimension the reviews are
on. However, the utility of topic words is also influenced
by the grouping, where TopicS typically outperformed Freq
when used for analyzing writing performance, especially on
Flow and Insight (as shown in Table 3).

Does the proposed approach extract more informa-
tive topic words? The analysis on the fixed effects of
Method above already showed that TopicS can better sup-
port users in peer review analysis. Table 3 also shows that
TopicS is preferred to Freq across all tasks. And further
analysis with a mixed model (Table 4) shows that such pref-
erence is not influenced by either Split orDim.

7.2 User background analysis
With respect to user background differences, we focus on de-
mographic factors that are related to peer-review and teach-
ing. We investigate expPR, expSWoRD, expTA and expGW
by analyzing both user satisfaction and user-study task per-
formance.

7.2.1 Measured on user satisfaction
For each survey question, we use oneway ANOVA to exam-
ine the ratings against each background factor as a binary
independent variable. Results are summarized in Table 5.

Table 5: Oneway ANOVA analysis of user-
background factors (binary) on user satisfaction.
Factors that are significant (p < 0.05, highlighted
with “*”) or in trend are denoted by the mean value
of the “yes” group.

Question expPR expSWoRD expTA expGW
Q easyness 3.78* 3.24*
Q listDiff
Q layout
Q reviewDiff 4.0*
Q largeData 4.35
Q approach 3.83* 3.88
Q textRef 1.29* 1.47*
Q textImp 2.41* 2.47*

With respect to participants’ peer-review experience, stu-
dents who did peer review before (expPR = yes) gener-
ally think the review analysis tasks much easier than stu-
dents who never did it before (p = .033). In particular,
SWoRD users feel the proposed approach more useful than
non-SWoRD users (expSWoRD = yes) in helping them
identify the peer review differences (p = .014). With re-
spect to teaching experience, it is important to note that
students who have teaching experience (expTA = yes) like
our idea of exploring peer reviews by comparing them in
groups using their topic words (p = .039). Their feed-
back can somehow approximate instructors opinions towards

RevExplore, which suggests the usefulness of the proposed
idea for instructors to examine their peer review data in real
life. While participants generally have a neutral attitude to
the importance of their access to the original review in full
text, students who have used SWoRD (expSWoRD = yes)
or graded writing assignments (expGW = yes) before rely
on this information much less than the others (p = .006,
p = .048, respectively), and they think it less important
than the others as well (p = .018, p = .037, respectively).
This indirectly reflects the effectiveness of our topic-word
approach for peer review analysis.

7.2.2 Measured on task performance
To investigate how user background factors influence the
task performance, we look at all participants’ task perfor-
mance across all conditions, considering expPR, expSWoRD,
expTA and expGW as between-subjects effects and Method,
Split and Dim as within-subjects effects. In this setting, we
use the repeated-measures linear model provided by SPSS
to run a Mixed Model ANOVA. First, we look for any main
effect caused by the between-subjects factors; second, we ex-
amine the interactions between within- and between-subjects
factors which show up in the within-subjects section of the
repeated-measures analysis.

First of all, there is no significant interaction or main effect
of the between-subjects factors observed on participants’ an-
swers to any of the review analysis questions. This means
that users’ prior experience in teaching and peer-review does
not directly influence their task performance, which indi-
rectly validates our using college students as the user study
subjects.

However, user background factors do exert impact on the
utility of topic-word analytics, as these factors qualify the
effects of the within-subjects factors, especially Method, as
summarized in Table 6. It is interesting to see that none of
expPR, expSWoRD, expTA or expGW interacts with Method
by itself alone, but in pairs. For identifying review groups
(Q1), expTA occurs in both interactions (Method*expSWoRD
*expTA and Mehtod*expPR*expTA), while the other between-
subjects factor is about peer review. When peering into
the group differences, participants who have both teach-
ing and peer-review experience tend to have better perfor-
mance (based on modified population marginal mean). For
Method*expSWoRD*expTA, SWoRD users who have TA ex-
perience exhibit better performance when using TopicS than
using Freq, though such difference was not observed when
we examined Mehtod*expPR*expTA. With respect to Dim
(examining Dim*expPR on Q1), peer-review novels achieved
their best performance on Logic, while participants who have
peer-review experience did best on Insight. For both groups
Flow is the most difficult dimension. Furthermore, to which
extend TopicS is better than Freq is influenced by the in-
teraction between Dim and user’s peer-review experience
(expPR/expSWoRD).

In addition, we also observed that the main effects of the
within-subjects factors given the presence of the between-
subjects effects generally follow the pattern of Table 4 (which
does not consider between-subjects effects), thus we do not
discuss them here again.
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Table 6: Summary of Mixed Model ANOVA of within-subjects effects, including interactions between user-
background factors (between-subjects effects) and Method, Split, Dim (within-subjects effects). Significant
results are presented in p-value (p ≤ .05).

Q1 Q2 Q3
Source Answer1 Correct Answer2 Answer3
Dim*expPR F (2, 66) = 3.1, p = .050 F (2, 66) = 3.6, p = .032
Method*expSWoRD*expTA F (1, 33) = 7.4, p = .001 F (1, 33) = 6.1, p = .019 na
Mehtod*expPR*expTA F (1, 33) = 9.6, p = .004 F (1, 33) = 4.2, p = .049 na
Mehtod*expTA*expGW F (1, 33) = 6.1, p = .019 na
Dim*Method*expPR F (1, 66) = 3.4, p = .040 na
Dim*Method*SWoRD F (2, 66) = 4.0, P = .022 F (2, 66) = 5.5, p = .006 na

8. CONCLUSIONS
In this paper we evaluate the topic-word analytics for ana-
lyzing educational peer reviews with a user study. The user
study shows that student peer reviews can be used to ex-
amine student writing and reviewing performance based on
peer review topic words, and that the proposed comparison-
oriented topic-word extraction method (TopicS) suits our
analytic tasks best compared with the frequency based meth-
od (Freq). However, the utility of the learned topic words
is influenced by the analytic goals (specified through review
grouping) and dimensions, as well as users’ prior experi-
ence in teaching and peer-review. Analysis of user satis-
faction shows that participants who have teaching experi-
ence significantly favor our approach more than the others,
which suggests the usefulness of the proposed approach in
supporting instructors for analyzing student peer reviews in
the real-world. Even though we did not include manual di-
gestion of original peer reviews as a baseline, we indirectly
compare it with our topic-word approach in the exit survey
(Q approach).

In the future, we would like to evaluate the proposed ap-
proach in the context of RevExplore, which allows users to
specify analytic goals at runtime. Finally we hope to inte-
grate RevExplore into SWoRD as part of the teacher dash-
board to support interactive review content analytics.
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ABSTRACT
Social deliberative skills are collaborative life-skills. These
skills are crucial for communicating in any collaborative
processes where participants have heterogeneous opinions
and perspectives driven by different assumptions, beliefs,
and goals. In this paper, we describe models using lexi-
cal, discourse, and gender demographic features to identify
whether or not participants demonstrate social deliberative
skills from various online dialogues. We evaluate our mod-
els using three different corpora with participants of different
educational and motivational levels. We propose a protocol
about how to use these features to build models that achieve
the best in-domain performance and identify the most useful
features for building robust models in cross-domain applica-
tions. We also reveal lexical and discourse characteristics of
social deliberative skills.

Keywords
Social deliberative skills, collaborative problem solving, col-
laborative learning, collaborative knowledge-building, dis-
course analysis, applied machine learning, feature engineer-
ing

1. INTRODUCTION
Learning is often depicted as a social process that includes
collaborative knowledge-building and problem solving. In
this “situated” perspective on learning, learners often must
negotiate differing perspectives or goals to build knowledge
or solve problems collaboratively. Previous research [25] has
shown that certain communication skills, such as listening
with empathy and perceiving and responding to other’s emo-
tions, part of the collective intelligence of groups, can im-
prove group performance on a wide variety of tasks, such
as brainstorming, making collective moral judgments, and
negotiating over limited resources. In this research, we fo-
cus explicitly on identifying similar skills that are called for
to handle diverse opinions and perspectives. For example,
do participants attentively listen to each other’s opinions?

Do they make a good faith effort to understand perspec-
tives other than their own? These skills, including cognitive
empathy, affective empathy, and reciprocal role-taking, are
part of what we call social deliberative skills [14].

Social deliberative skills are at the overlap of cognitive skills
and social/emotional skills. Specifically, a participant should
present rational arguments with supporting evidence in or-
der that his view be taken seriously and valued. Similarly,
one has to turn down the volume of his own thoughts to at-
tentively listen to other’s opinions and has to intentionally
switch the channel from “me” to “you” to be able to un-
derstand or even appreciate another’s perspectives. Indeed,
this “cognitive empathy” of “if you were me and I were you”,
the soul of social deliberative skills, is needed in any sphere
of human interaction, from collaborative learning, to mar-
riage, to workplace relationship, and to world affairs. The
ultimate goal of our research is to support social deliberative
skills in online communication. In this research, we explore
the possibility of automatically assessing and predicting the
occurrence of social deliberative skills.

Creating computational models for assessing social deliber-
ative skills has profound implication on several fronts: it (1)
supports more efficient analysis for research purposes into
online communication and collaboration in social processes;
(2) provides assessment measures for evaluating the quality
and properties of group dialogues; and (3) provides tools for
informing facilitators to adjust skill support and interven-
tion efforts [13]. Previous research in learning science has
extensively focused on creating educational software that
supports cognitive skills in collaborative environments, such
as inquiry skills, metacognition and self-regulated learning
skills, and reflective reasoning skills [24, 3, 5, 19, 11]. Re-
search in these areas has provided a deep theoretical con-
text for studying the cognitive aspect of social deliberative
skills. A burgeoning body of research has begun to study
the social relational aspect of collaborative processes, such
as influence [20] and up-taking [21]. This line of research
has mainly used structural features of social interactions,
such as reply structure, linking notes in a conceptual frame-
work, as well as spatial and temporal proximity to address
the questions of who are the central actors in discussions
and whose ideas receive the most development. But, col-
laboration interactions generally take place in the form of
natural language. It is reasonable to suppose that language-
level features, including lexical features (i.e., what is said)
and discourse features (i.e., how it is said) could provide
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crucial insights into the characteristics of social deliberative
skills that are called for in collaborative problem solving and
communication in general.

In this paper, we create computational models for assess-
ing social deliberative skills in online communication. The
online dialogues that we study are from participants rang-
ing from undergraduate students of multiple disciplines, to
highly-educated academic professionals, to members of the
general public. We first analyze these online dialogues through
a variety of lexical, discourse, and gender demographic fea-
tures and then create machine learning classifiers to recog-
nize social deliberative skills. To the best of our knowledge,
this research is the first work that implements the state-
of-the-art conceptual framework of social deliberation. This
paper makes four contributions: (1) development of an auto-
matic system for predicting social deliberation, (2) discovery
of which type of features or feature combinations are the best
for building social deliberative classifiers and under which
conditions, (3) discovery of which type of features are the
best for building a robust social deliberative classifier across
domain changes, and (4) identification of language charac-
teristics of social deliberation. These contributions lie at the
intersection of machine learning, education, computational
social science, and communication studies.

The rest of the paper is organized as follows. In Section
2, we introduce the concept of social deliberative skills. In
Section 3, we describe three experimental domains. Section
4 introduces experimental design and methodology. We dis-
cuss experimental results in Section 5 and conclude with
future work in Section 6.

2. SOCIAL DELIBERATIVE SKILLS
Social deliberative skills involve the application of cognitively-
oriented higher-order skills to thinking about the perspec-
tives of others and, consequently, of the self as well. In
other words, social deliberative skills require that a speaker
reflect not only upon a purely objective idea (e.g., a topic)
but also upon my ideas, your ideas, our ideas, and their
ideas. Tracing the origins of this phrase also describes its
meaning: to live with others (social) and to balance (deliber-
ative) differences (skills). Our prior research [14] has defined
a theoretical framework for social deliberative skills, which
includes a group of high-order communication skills that are
essential for different tasks and stages of communication that
involves a disequilibrium of diverse perspectives. These com-
ponent skills include social perspective seeking (i.e., social
inquiry), social perspective monitoring (i.e., self-reflection,
weighting opinions, meta-dialogue, meta-topic, and refer-
encing sources for supporting claims), as well as cognitive
empathy and reciprocal role-taking (i.e., appreciation, apol-
ogy, inter-subjectivity, and perspective taking). Here is an
example of “perspective taking” from authentic dialogue in
our corpora: I can’t help but imagine what that is like, for
her and for her family. As an another example, the following
statement is about “self reflection”: I am probably extremely
bias because I am under 21 years old and in college. I wonder
if as a 45 year old I will feel differently.

Social deliberative skills can also be seen as a composite
skill [15], which, though less precise can serve as a general
marker of social deliberation, for use in evaluation and real-

time feedback in intervention. In this study, we focus on cre-
ating computational models to assess whether participants
of online dialogues demonstrate the use of composite social
deliberative skill (or social deliberative behavior, SBD).

3. CORPORA
Problem solving and negotiating with others at some level
are a regular part of our lives. These actions represent
typical everyday communication situations where social de-
liberative behavior is needed. In this study, we examined
three online corpora, two of which involve participants in
discussions addressing separate ill-defined problems and one
of which involves participants in a negotiation.

In the first domain, civic deliberation, posts were col-
lected from a civic engagement online discussion forum at
e-democracy.org. Thirty two participants discussed ethnic
issues and suggesting ways to alleviate tensions about their
multi-racial community. These participants were self-selected
with an implicit goal to improve community relations. Par-
ticipants were mostly level-headed and demonstrate social
deliberative behavior (SDB) repeatedly. In this domain,
SDB occupied 57% of the total 396 annotated segments 1,
see Table 1.

In the second domain, college dialogues, posts were col-
lected from college students participating in computer-mediated
discussions. Ninety undergraduate students from a variety
of disciplines discussed about controversial topics. The top-
ics included “should the legal drinking age be lowered in
Massachusetts?” and “what are the pros and cons of using
FaceBook or other social networking software as part of high
school curriculum?” These discussions were part of experi-
mental trials with the goal of assessing online educational
software tools that support SDB. In contrast to participants
from the other two domains that were self-motivated to be
deliberative, participants in this group received class credit
and were encouraged to participate. In this domain, SDB
occupied only 32% of the total 1783 annotated segments.

In the third domain, professional community negotia-
tion, email exchanges were collected from sixteen geograph-
ically dispersed faculty participants who did not know each
other and who were from two academic communities. These
faculty members negotiated about a proper solution to a
conference scheduling conflict. An emerging theme in this
dialogue was the tension between democratic decision-making
versus top down fiat decision-making by those in authority.
Participants were highly educated academic professionals,
most of whom encouraged democratic decision making about
relocating the conference, which partly led to a more delib-
erative dialogue. In this domain, SDB occupied 53% of the
total 438 annotated segments.

In order to provide training data for machine learning mod-
els to automatically assess whether or not participants per-
form social deliberation, two independent trained human
judges had annotated the three corpora based on the social
deliberative skill scheme 2. We achieved good inter-rater re-

1Posts were segmented manually at speech act boundaries,
and there are typically 3-5 segments per post.
2We developed a hand coding scheme containing over 50
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Table 1: Data statistics with various domains

Domain
Social deliberative

behavior

Other
speech

acts

Total
segment

count

Participant
count

Civic deliberation 225 (57%) 171 (43%) 396 32
Professional community negotiation 231 (53%) 207 (47%) 438 16

College dialogues 565(32%) 1218(68%) 1783 90
All 1021(39%) 1596(61%) 2617 138

liability scores for both composite and component social de-
liberative skills as measured using Cohen’s Kappa statistics
across domains. Note that the social deliberative behavior
(or the composite social deliberative skill) is an aggregate
over component social deliberative skills. The inter-rater
reliability scores of social deliberative behavior for the civic
deliberation domain, college dialogues domain, and profes-
sional community negotiation domain were 73.5%, 64.3%,
and 68.4%, respectively.

4. EXPERIMENTAL DESIGN AND METHOD-
OLOGY

The goal of experiments in this section is to address the fol-
lowing two research questions. First, which type of features
(i.e., lexical, discourse, and gender demographic features) or
feature combinations are the best for building social delib-
erative classifiers for each domain? Second, which type of
features are the best for building a robust social deliberative
classifier across domain changes? To this end, we designed
two experimental scenarios.

• Scenario 1: In-domain analysis for each domain
• Scenario 2: Cross-domain analysis for each pair

of domains

In both scenarios, we study feature effects on prediction
performance of machine learning models. Specifically, we
build machine learning models using different feature sets
and their possible combinations to see which leads to the
best prediction performance. We have three types of fea-
tures (i.e., lexical, discourse, and gender demographic), so
we evaluate a group of 6 possible feature configurations.

These two scenarios differ in the following way. The first
scenario allows features comparison for each domain and
provides the basis for evaluating cross-domain performance.
The second scenario offers a systematic view of how ma-
chine learning models built with different feature sets per-
form across domains. We have three domains, so we will
evaluate all 6 possible combinations of domain pairs.

With respect to performance measures, we use accuracy
(% of correct identification of social deliberative behavior
(SDB)), precision (% correct of identified as SDB), recall
(% labeled as “SDB” that were predicted to be “SDB”), and
F2 measure (the harmonic mean of precision and recall that
weights recall twice as high as precision). Recall is more
valued than precision in this study for two reasons. First,
the social deliberative skill scheme is expanding, so the SDB

annotations on social deliberative skills and other speech
acts.

considered in this research is by no means complete. The
second reason is relevant to our planned applications. Our
first planned application to real-time deliberation is through
a Facilitators Dashboard. The Dashboard will alert facili-
tators to potentially important patterns and metrics in the
dialogues they are monitoring, in order to help them decide
when and how to perform interventions. Because facilitators
can intelligently filter out dubious analysis, our algorithms
should err on the side of identifying all important patterns,
at the risk of including some false positives.

4.1 Features
Computational understanding of social deliberation is an
unexplored research territory. In choosing features for this
study, we recognize that we lack sufficient knowledge of what
features might be predictive of social deliberative behavior.
Therefore, to explore possible features, we turned to the lit-
erature of social, psychology, and psycholinguistic studies.
This research is the first to use lexical, discourse, and gen-
der demographic features to characterize linguistic patterns
of social deliberative behavior.

4.1.1 Lexical features – LIWC
LIWC, Linguistic Inquiry Word Count [18], is a lexicon
based linguistic system. It was created by analyzing the
utterances of over 24,000 participants totaling over 168 mil-
lion words. LIWC produces groups of words from 82 lan-
guage dimensions through a word counting approach. These
82 groups fall into 10 general categories: linguistic pro-
cesses, social processes, affective processes, cognitive pro-
cesses, perceptual processes, biological processes, relativity,
personal concerns, spoken categories, and punctuation.

LIWC has gained a trusted reputation for tracking linguis-
tic features that are indicative of social and psychological
phenomena. For example, when investigating gender differ-
ences in linguistic styles using LIWC features, researchers
in [1] found significant differences between genders for the
use of self references, but not for the use of social words
and positive and negative emotion words. In [23], LIWC
features helped find the roles that emotional and informa-
tional supports play in participants’ commitment in online
health support groups. In another study [8], LIWC helped
identify the communication characteristics of terrorists and
authoritarian regimes. Given a wealth of evidence of the
effectiveness of LIWC features in decoding people’s commu-
nication and interaction styles from the language they use,
we expect that LIWC features can contribute to demystify-
ing the link between language and social deliberation.

4.1.2 Discourse features – Coh-Metrix
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Figure 1: Gender distributions in various domains

Coh-Metrix [7] is a discourse model aimed at better under-
standing of discourse comprehension, communication break-
downs and misalignments. It was initially developed to ex-
plore cognitive constructs of cohesion in written text. Cohe-
sion here refers to the linguistic features that explicitly link
words, propositions, and events in a text, which in turn facil-
itate a reader’s coherent mental representation of a text [7].
Coh-Metrix tracks word-level features that are similar to
LIWC, but also incorporates modules and algorithms that
assess collocations of words. Specifically, Coh-Metrix pro-
duces approximately 100 measurements that fall under 8
categories: narrativity, referential cohesion, syntactic sim-
plicity, word concreteness, causal cohesion, logical cohesion,
verb cohesion, and temporal cohesion.

Much like LIWC, Coh-Metrix has been widely used as a
computational psycholinguistic tool for predicting complex
phenomena, such as affect states, personality, deception,
and even physical and mental health outcomes [9, 12, 2, 4].
Given that Coh-Metirx provides a platform for a systematic
and deeper analysis of discourse contents, we believe that
it can uncover subtle linguistic characteristics relevant to
social deliberative behavior.

4.1.3 Demographic feature – gender
Previous research [25] has revealed a formula for successful
teams in group environments (e.g., business, classroom, or at
home). The formula indicates: People willing to listen and
empathize + people with social sensitivity (i.e., perceive and
respond to other’s emotions) = smart effective teams able
to achieve in any environment. That research concludes by
noting that adding women to a team helps improve group
performance. This is because women were found to score
higher on average on social sensitivity. Motivated by the-
ses research findings, we decided to incorporate gender as
a factor in our analysis. In Figure 1, we show gender dis-
tributions in different domains. In future research we will
collect other demographic data, such as education level, age,
and political orientation, and test their predictive power of
social deliberative behavior.

4.2 Machine Learning Models
In this study, we face the problems of small training data and
high dimension feature space. In choosing machine learn-
ing models to identify social delineative behavior, we prefer

a model that meets the following requirements. First, the
model is able to select important features automatically dur-
ing learning. Second, the model performs well with a low
ratio of training data size to the number of feature variables.
Third, the learnt model is transparent and easy to interpret
(i.e., “glass box” model).

As we show below, L1 Regularized Logistic Regression (L1RLR)
is a model that satisfies our needs. L1RLR performs fea-
ture selection and learning simultaneously. It formulates
the learning problem as a trade-off between minimizing loss
(i.e., achieving good accuracy on training data) and choosing
a sparse model (i.e., improving generalization in prediction
on unseen data, higher interpretability, and computational
savings).

Before we describe L1RLR, let us recall that the logistic loss
function is defined as:

p(y|x; W) =
1

1 + exp(−WTx)

where x is the training data, y is the response variable, and
W is the model we learn.

In L1 Regularized Logistic Regression, we solve the following
optimization problem:

arg max
W

∑
i

log(p(yi|xi; W)− λ ∗ Ω(W)

where Ω(W) is a regularization term used to penalize large
weights. In L1RLR, Ω(W) is the L1 norm [22], which is
also called least absolute shrinkage and selection operator
(Lasso), described below:

Ω(W) = ||W||1 = Σi|Wi|

Lasso produces a laplace (i.e., double exponential) prior that
is “pointy” at zero, which allows feature shrinkage and se-
lection. It is different from the classical L2 norm [10], also
referred to as ridge norm, because L2 norm produces a Gaus-
sian prior that is near zero and therefore imposes no spar-
sity. Previous research [16] has shown that L1 regularization
requires the number of training examples that grows loga-
rithmically with the number of features to learn well.

In this study, we used the l1 regularized dual averaging
algorithm [26] for solving L1 Regularized Logistic Regres-
sion. For results reported in Figure 2, we trained l1RLR
(i.e., λ=1, γ=2) 3 with various feature sets. For all in-
domain experiments, we report average performance over
10-fold stratified cross-validation within the same domain.
For cross-domain experiments, we report results following
the training-validating-testing protocol. We trained and val-
idated on the training corpus and tested on the testing cor-
pus.

5. RESULTS AND DISCUSSIONS
Experimental results (Figure 2) reveal a number of interest-
ing patterns. One of the most salient patterns is that imbal-
anced class/label distribution hurts predictive performance

3We also experimented with other values (0.01, 0.1, 10) of
λ and found slightly worse performance than the results re-
ported here.
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(more on recall than precision), regardless of feature con-
figurations. This can be seen in the third sub-column (i.e.,
the college dialogues domain) of in-domain results. This
observation suggests that before creating a model, it is im-
portant to strategically solve the imbalanced data problem,
either from the algorithm level (e.g., adjusting class weights
or priors) or from the data level (e.g., up-sampling or down-
sampling).

Other important yet subtle patterns are explained below.
Note that, we use “performance” and “recall” interchange-
ably in this discussion because recall is the most valued
among all the performance measures in this application, as
explained earlier.

Gender’s effect on predicting social deliberative be-
havior. The first row in Figure 2 shows that gender alone
has no predictive power of social deliberative behavior. Specif-
ically, the classification results in each domain reflect the
bias of class distribution on training machine learning mod-
els toward predicting all data as coming from the majority
class. For example, in the college dialogue domain, as shown
in Table 1, the majority class is “other speech acts.” Classi-
fiers built with various feature configurations unanimously
used this bias without any corrections from the gender fea-
ture to predict every instance as “other speech acts.” This
means that every cell in the confusion matrix 4 is zero ex-
cept the false negative, and therefore recall and precision are
zero. This pattern also applies to other domains. We specu-
late that because social deliberative behavior (as a compos-
ite skill) contains skills that greatly overlap cognitive and so-
cial/emotional skills, features correlated with only emotional
related skills, such as social sensitivity, are not effective in
predicting social deliberative behavior.

Different capacities of lexical and discourse features
in different domains. First, we examine the performance
of each feature alone, ignoring feature combinations. As can
be seen from in-domain results, compared to LIWC features
(70.7% at recall), Coh-Metrix features (83.6% at recall) have
the best predictive power on the civic deliberative domain.
The performance of the model built with LIWC features
added on top of Coh-Metrix features has a slight (< 1%)
increase in this domain. In the professional community ne-
gotiation domain, compared to Coh-Metrix features (74.0 %
at recall), LIWC features (90.0% at recall) have the upper
hand. The performance of the model built with Coh-Metrix
features added on top of LIWC features has a drastic ( >
15%) decrease in this domain. The college dialogues domain
has similar patterns as the professional community negoti-
ation domain. In other words, LIWC features are the most
predictive for the college dialogues domain. These patterns
suggest that lexical and discourse features have different ca-
pacities in different domains for the task of predicting social
deliberative behavior.

Next, we look at feature combinations. For the civic delib-
eration domain, Coh-Metrix and LIWC features combined,
among all 6 feature configurations, led to the best model
in that domain. For the professional community negotiation

4In a confusion matrix, each column represents the instances
in a predicted class, while each row represents the instances
in an actual class.

domain, LIWC features alone, among all 6 feature configura-
tions, led to the best model in that domain. For the college
dialogues domain, LIWC and gender feature combined, led
to the best model in that domain. This implies that deter-
mining which features or feature combinations to use and
in which order has an impact on whether and when we will
attain the best model. We will explore this point in the text
below.

Features for building robust models. Now, we look
at the feature effects on predictive performance for cross-
domain analysis. The model built with LIWC features us-
ing the data from the professional community negotiation
domain achieved the best cross-domain performance 5. For
example, this model, when applied to the civic delibera-
tion domain, achieves 89.3% on cross-domain recall, which is
even better than the best in-domain recall (83.6%) achieved
by using Coh-Metrix features in this domain. In addition,
this model, when applied to the college dialogues domain,
achieves 86.9% on cross-domain recall, which is much bet-
ter than the best in-domain recall (9.9%) achieved by using
LIWC features in this domain. This observation concludes
that LIWC features seem to be the most useful features for
building robust models in cross-domain applications. More-
over, when averaging in-domain and cross-domain perfor-
mance for each feature and feature combinations for each
domain, we observe that LIWC features achieved the high-
est recall (88.8%), followed by Coh-Metrix features (84.5%).

Protocols for using linguistic features to predict so-
cial deliberative behavior. The results in Figure 2 imply
a protocol about how to use lexical and discourse features
to build a model (i.e., l1RLR) in order to achieve the best
in-domain performance. This protocol can be described as
follows:

1. Use LIWC features to build a model, whose perfor-
mance (i.e., recall) is denoted by p(l).

2. Use Coh-Metrix features to build a model, whose per-
formance is denoted by p(c).

3. If p(l) > p(c), the best performance is p(l); other-
wise combine LIWC and Coh-Metrix to build a model,
whose performance, denoted as p(lc), is the best per-
formance.

This protocol is the most efficient way to find the right fea-
ture sets for building a model with the best predictive per-
formance. This protocol also suggests that for certain do-
mains LIWC features – features related to “what is said” –
are sufficient to predict social deliberative behavior. In these
domains, Coh-Metrix features – features related to“how it is
said” – might be too overwhelming for the model to achieve
good performance. For other domains, the LIWC features
are not close enough for identifying the sophistication of so-
cial deliberative behavior, and combining with Coh-Metrix
features can greatly help increase model performance. In a

5We witnessed an unstable performance of combining gender
with other features. For example, the cross-domain perfor-
mance of the model built with LIWC and gender combined,
compared to that of the model built with LIWC alone, de-
creases in the civic deliberation domain but increases in the
college dialogues domain. Due to the unstable performance
of the gender feature, we ignore it for the rest of this study.
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broader sense, this protocol evaluated on different corpora
provides evidence that determining the right feature set with
the best model performance can be streamlined to improve
work efficiency. The streamlined processes need to be de-
signed by taking advantage of feature capacities.

Now, we examine the linguistic characteristics of social de-
liberative behavior. We learnt earlier that, when considering
each feature alone, LIWC and Coh-Metrix features have dif-
ferent capacities in different domains for the task of predict-
ing social deliberative behavior. Specifically, Coh-Metrix
features are the most predictive in identifying social de-
liberative behavior in the civic deliberation domain; LIWC
features are the most predictive in identifying social delib-
erative behavior in the professional community negotiation
domain and produce the best model for cross-domain predic-
tion tasks. In Table 2, we show the top 10 Coh-Metrix fea-
tures learnt by L1 regularized logistic regression built from
the civic deliberation domain. Similarly, in Table 3, we show
the top 10 LIWC features learnt by L1 regularized logistic
regression built from the professional negotiation domain.
Below, we summarize the lexical characteristics of social de-
liberative behavior and the discourse characteristics of social
deliberative behavior.

Lexical characteristics of social deliberative behav-
ior. The lexical characteristics of social deliberative behav-
ior, compared to that of “other speech acts,” are as follows:
shorter message, more dictionary words, fewer big words,
fewer words per sentence, more adverbs, fewer pronouns,
fewer punctuations, fewer cognitive processes words, fewer
space words, fewer auxiliary verbs.

Discourse characteristics of social deliberative be-
havior. The discourse characteristics of social deliberative
behavior, compared to that of “other speech acts,” include
more negative additive connectives, higher negation density,
less lexical diversity, less narrativity, shorter message, more
pronouns (especially more second person pronouns), fewer
spatial motion words, lower word concreteness, fewer con-
nectives.

Examining the linguistic patterns of social deliberative be-
havior, we found that the LIWC system and the Coh-Metrix
system agreed on some features (e.g., a few spatial motion
words) and produced incongruent results for others. For
example, a few pronouns found by LIWC, whereas many
pronouns found by Coh-Metrix. This incompatible finding
suggests that social deliberative behavior may have different
appearances in different domains. Therefore, in this study
we found no conclusive linguistic characteristics of social de-
liberative behavior.

6. CONCLUSION AND FUTURE WORK
In this paper, we built machine learning models to identify
social deliberative behavior from various online dialogues us-
ing lexical, discourse, and gender demographic features. We
recognized the different capacities of lexical and discourse
features in different domains and proposed a protocol about
how to use them to build models that achieve the best in-
domain performance. We also found that lexical features
(i.e., LIWC) were the most useful features for building ro-
bust models in cross-domain applications.

Table 2: Top 10 Coh-Metrix features learnt by L1

regularized logistic regression built from the civic
deliberation domain

Coh-Metrix feature Interpretation Weight
CONLOGi negative additive connectives 9.044
DENNEGi negation density 8.582
LEXDIVVD lexical diversity - 8.122
PNar narrativity -7.774
READNW total number of words -7.317
PRO2i second person pronouns 6.03
DENPRPi pronouns 5.503
SPATlpi spatial motion words -4.889
WRDCacwm word concreteness -4.69
CONi all connectives -4.24

Table 3: Top 10 LIWC features learnt by L1 regu-
larized logistic regression built from the professional
community negotiation domain

LIWC feature Interpretation Weight
WC word counts -0.043
Dic dictionary words 0.037
Six|tr big words -0.011
WPS words/sentence -0.01
adverb adverbs 0.009
pronoun pronouns -0.009
AllPct total punctuations -0.009
cogmech cognitive processes -0.007
space space -0.004
auxverb auxiliary verbs -0.004

In future work, we will include semantic features (e.g., name
entity relations) in our models to predict social deliberative
behavior. In addition, we will build models using interaction
features and structure features to study whether mutual in-
fluences, such as linguistic style matching [17], and group
dynamics are predictive of social deliberative behavior. We
will also investigate whether combining language features
and structure features for building models can lead to per-
formance gains. Moreover, we will evaluate the proposed
protocol on more data sets to test its external validity and
to identify the characteristics of domains with which each
feature type (i.e., lexical vs. discourse) works the best. Fur-
thermore, we will create multi-task machine learning models
with advanced regularizers (e.g., sparse group Lasso [6]) to
simultaneously identify each component social deliberative
skills from online dialogues. We hope these endeavors can in-
crease our understanding of the nature of social deliberative
behavior and thereby inform the design and development of
educational tools to support social deliberative behavior in
collaborative processes, from knowledge building, to prob-
lem solving, and to communication in general.
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ABSTRACT 
In this paper, we describe an n-gram approach to automatically 
assess essay quality in student writing. Underlying this approach 
is the development of n-gram indices that examine rhetorical, 
syntactic, grammatical, and cohesion features of paragraph types 
(introduction, body, and conclusion paragraphs) and entire essays. 
For this study, we developed over 300 n-gram indices and 
assessed their potential to predict human ratings of essay quality. 
A combination of these n-gram indices explained over 30% of the 
variance in human ratings for essays in a training and testing 
corpus. The findings from this study indicate the strength of using 
n-gram indices to automatically assess writing quality. Such 
indices not only explain text-based factors that influence human 
judgments of essay quality, but also provide new methods for 
automatically assessing writing quality. 

Keywords 

Essay quality, computational linguistics, corpus linguistics, 
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1. INTRODUCTION 
Academic success often depends on a student’s writing 
proficiency [1]. Unfortunately, for many students, such 
proficiency is often difficult to attain and frequently remains 
elusive throughout schooling [5]. One major problem in the 
teaching of writing skills is that students have limited 
opportunities to write and receive feedback from teachers and 
peers. Such a problem is related to time constraints inside and 
outside of the classroom [5], which minimize opportunities for 
students and teachers to interact one on one. A potentially 
profitable approach to providing students with greater access to 
writing opportunities and ensuring that students receive feedback 
on their writing is through the use of automatic writing evaluation 
(AWE) systems that provide students with the opportunities to 
write essays and automatically receive feedback on the quality of 
their writing.  

However, AWE systems often lack the sensitivity to respond to a 
number of features in student writing and, more specifically, to 
those features that relate to instructional efficacy [8]. Our goal in 

this study is to investigate the potential for n-gram indices related 
to paragraph types (i.e., introduction, body, and conclusion 
paragraphs) to predict human judgments of essay quality. We are 
interested in paragraph specific indices because developing 
writers need to focus on and learn strategies for building quality 
introduction, body, and conclusion paragraphs. If we can identify 
n-grams in quality essays that relate to paragraph building 
strategies and to human judgments of writing quality, then we can 
use these n-gram indices to assign automatic scores to essays. In 
addition, such indices may prove beneficial in providing 
automated formative feedback to users that directly link to 
instructional strategies (i.e., strategies for building stronger 
paragraphs). 

1.1 The Writing Pal 
The Writing Pal (W-Pal) is an intelligent tutoring system (ITS) 
that contains an AWE system in order to provide summative and 
formative feedback to users [4]. However, unlike strict AWE 
systems, W-Pal adopts a pedagogical focus by providing writing 
strategy instruction to users. Thus, unlike AWE systems, which 
focus on essay practice with some support instruction, W-Pal 
emphasizes strategy instruction and targeted strategy practice 
prior to whole-essay practice. The writing strategies cover the 
three phases of the writing process: prewriting, drafting, and 
revising. Each of the writing phases is further subdivided into 
instructional modules. These modules include Freewriting and 
Planning (prewriting); Introduction Building, Body Building, and 
Conclusion Building (drafting); and Paraphrasing, Cohesion 
Building, and Revising (revising). In W-Pal, students view lessons 
on each strategy, play practice games, and then write practice 
essays for each of the modules.  

Essay writing is an essential component of W-Pal. As a result, the 
system includes an essay-writing interface, which allows students 
to compose essays. These essays are then analyzed by the W-Pal 
AWE system, which is used to provide automated formative and 
summative feedback to the participants based upon natural 
language input and hierarchical classification as compared to 
regression analyses. Such hierarchical classification affords the 
opportunity to provide feedback at different conceptual levels on a 
variety of linguistic and rhetorical features [2].  
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In general, the feedback in W-Pal focuses on the strategies taught 
in W-Pal lessons (e.g., Conclusion Building, Paraphrasing, and 
Cohesion Building) and practice games and is primarily based on 
linguistic features reported by the AWE scoring model. For 
instance, if a student produces an essay that is too short, the 
system will provide feedback to the student suggesting the use of 
idea generation techniques such as those found in the freewriting 
module. If a student essay does not meet the paragraph threshold, 
the W-Pal feedback system will suggest techniques to plan and 
organize the essay more effectively including outlining and 
focusing on structural elements such as positions, arguments, and 
evidence (all elements taught in the instructional modules). Such 
feedback can be general (e.g., asking students to condense similar 
sentences, restructure sentences, and improve cohesion), but it can 
also be more specific and remind students to preview their thesis 
statements and arguments in the introduction paragraph, write 
concise topic sentences and present evidence in body paragraphs, 
and provide conclusion statements and restate the thesis in the 
concluding paragraph. The feedback system in W-Pal has proven 
effective in prior writing studies [6] demonstrating that essays 
revised using W-Pal feedback are scored significantly higher than 
their original drafts (as assessed by an automatic scoring 
algorithm).  

However, in practice, the feedback provided by the W-Pal AWE 
system to W-Pal users can be repetitive and overly broad [6]. For 
instance, students often receive the same feedback from the AWE 
as they continue to submit drafts and revisions of papers over 
time. The repetition in the AWE systems is a product of the 
general nature of much of the feedback provided by the system 
and is a direct reflection of the specificity of many of the 
linguistic indices found in the NLP scoring algorithms used by W-
Pal. These algorithms are often informed by linguistic features 
that, while predictive of essay quality, are not highly useful in 
providing feedback to users. For instance, the current algorithm 
includes many indices related to lexical sophistication and 
syntactic complexity, both of which are important indicators of 
essay quality [3]. However, feedback at such a fine-grain level of 
linguistic analysis (e.g., use more infrequent words or produce 
more sentences that include infinitive forms) is not very practical, 
helpful, or formative. As a result, much of the feedback given to 
W-Pal users is necessarily general in nature and could potentially 
hinder students’ ability to utilize the feedback effectively.  

2. METHODS 
Our goal in this study is to develop paragraph specific n-gram 
indices to automatically assess the essay quality of student writers 
in the ITS W-Pal. The purpose of these indices is to provide 
potentially stronger links between the instructional modules in W-
Pal and the automatic scores assigned to essays by the AWE 
system. If practical and specific elements of texts related to essay 
quality can be developed, then these elements, in turn, could also 
inform feedback mechanisms and potentially provide better 
connections between the instructional modules in W-Pal (i.e., 
Introduction Building, Body Building, and Conclusion Building) 
and formative feedback concerning these modules.  

2.1 Corpus 
The corpus we used to develop the n-gram indices comprised 
1123 argumentative (persuasive) essays. Because our interest is in 
developing automated indices that are predictive across a broad 
range of prompts, grade levels, and temporal conditions, we 
selected a general corpus that contained 16 different prompts, 

three different grade levels (10th grade, 11th grade, and college 
freshman), and two different temporal conditions (essay that were 
untimed and essays that were written in 25-minute increments).  

Not all the essays from this corpus were used to develop the n-
gram indices. Only those essays that contained at least three 
paragraphs were selected to develop the n-gram indices. Such 
essays provide some evidence that the writer had produced an 
introduction, body, and conclusion paragraph affording the 
opportunity to examine paragraph specific n-grams. After 
removing all essays that contained fewer than 3 paragraphs, we 
were left with 971 essays. We used these essays to develop the n-
gram indices. We used the essays in the entire corpus (N =1123) 
to train a regression model. 

We tested the training regression model on a test set of 
argumentative essays that were not used in the developmental 
process. The essays were written by participant in a W-Pal study. 
They ranged in grade level from 9th to 12th (M = 10.2, SD = 1.0). 
Each participant wrote a pretest and a posttest essay (N = 128). 
The essays were written within the W-Pal essay-writing interface.  

2.2 Human judgments 
Each essay in the developmental corpus and the test set was 
scored independently by two expert raters using a 6-point rating 
scale developed for the Scholastic Aptitude Test. The rating scale 
was used to holistically assess the quality of the essays and had a 
minimum score of 1 and a maximum score of 6.  

2.3 N-gram indices 
To develop the n-gram indices, we first separated the paragraphs 
in all the essays that contained three or more paragraphs based on 
sequential positioning. All initial paragraphs were classified as 
introductory paragraphs; all middle paragraphs were classified as 
body paragraphs; and all final paragraphs were classified as 
conclusion paragraphs. Each paragraph was further classified as 
low quality (i.e., average essay score of 3 or less) or high quality 
(i.e., average essay score of 3.5 or greater). 

The paragraphs for each position and quality rating were then 
analyzed using WordSmith [7] to identify key n-grams (unigrams, 
bigrams, and trigrams). Two expert raters then identified linguistic 
patterns among the key n-grams and used these linguistic patterns 
to classify the n-grams into linguistic groupings related to 
rhetorical, grammatical, syntactic, and cohesion features. N-grams 
were organized in the groupings based on strength of keyness. 
However, if a unigram was a keyword and that unigram was also 
included within a key bi-gram or tri-gram, the bi-gram or tri-gram 
was removed if it had a lower keyness value. The selected n-gram 
groupings are briefly discussed below. 

2.3.1 Introductory Paragraphs 
Twenty groupings of n-grams were identified for the introductory 
paragraphs. These groupings were based mostly on rhetorical 
features, but also include cohesion, syntactic, and grammatical 
features. 

2.3.2 Body Paragraphs 
Twenty-seven groupings of n-grams were identified for the body 
paragraphs. These groupings were based mostly on rhetorical 
features, but also include cohesion, syntactic, and grammatical 
features.  
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2.3.3 Conclusion Paragraphs 
Twenty-five groupings of n-grams were identified for the 
conclusion paragraphs. These groupings were based mostly on 
rhetorical features, but also include cohesion and syntactic 
features.  

2.4 Analyses 
For each n-gram grouping, we calculated an incidence score and a 
proportion score for the n-grams in the grouping for each 
paragraph type (i.e., introduction, body, and conclusion 
paragraphs) and for the essay as a whole. We also combined all of 
the positive and all of the negative n-grams into separate indices 
and computed their incidence in the paragraph types and for the 
essays as a whole. These incidence and proportion scores became 
our automated indices for the subsequent regression analysis. 
Within each essay, all body paragraphs were pooled and treated as 
a single entity.  

We used the essays in the entire corpus to create regression 
models to predict the human ratings for the essays. We first 
conducted correlations between the index scores and the human 
ratings of essay quality. We selected all those variables that 
demonstrated at least a small effect size (r > .10) and did not 
demonstrate strong multicollinearity with one another or with text 
length (r < .899). The model from this regression analysis was 
then extended to the essays in the testing corpus to examine how 
well the model predicted essay quality in an independent corpus. 

3. Results 
3.1 Multiple Regression All Essays 
Of the 316 n-gram grouping indices calculated for this study, 163 
of the indices demonstrated at least a small effect size with the 
human ratings of essay quality (p < .001) for all the essays in the 
corpus. Of these, four demonstrated strong correlations with text 
length and were removed. Lastly, six indices demonstrated strong 

multicollinearity with other indices and were removed, leaving 
153 indices. 

The linear regression using the selected variables yielded a 
significant model, F(20, 1102) = 32.925, p < .001, r = .612, r2 = 
.374. Twenty variables were significant predictors in the 
regression. The remaining variables were not significant 
predictors and were either not included in the model or were 
removed in the steps of the model (in the case the index Body all 
positive grouping index). The regression model is presented in 
Table 1. We used the B weights and the constant from the 
regression analysis to assess the model on an independent data set 
(the 128 essays from the W-Pal efficacy study). The model for the 
test set yielded r = .576, r2 = .332.  

4. Discussion 
This study demonstrates that n-gram indices related to rhetorical, 
grammatical, and cohesion feature of a text can be strongly 
predictive of human judgments of essay quality. These n-grams 
were calculated at the paragraph level and at the text level. The 
indices were tested on essays that contained as few as 1 to 2 
paragraphs and on essays that contained only 3 or more 
paragraphs. The results of this study provide models of essay 
quality that could be implemented in an AWE system to provide 
increased accuracy of summative feedback (i.e., holistic scores). 
Because many of the n-gram indices are paragraph specific and 
many of them are related to rhetorical or cohesion patterns (as 
compared to syntactic and grammatical patterns), the indices are 
expected to provide more specific feedback to users within the W-
Pal system that will be both more practical and more useful. The 
feedback that is based on these indices can be linked to 
instructional modules within the W-Pal system. 

The regression model demonstrated that the combination of the 20 
variables accounts for 37% of the variance in the human 
evaluations of overall writing quality. The most predictive indices 
were generally the combined n-gram indices that integrated all the 

Table 4: Linear regression results for all essays         
Entry Variable Added/Removed Correlation R-Squared B SE B 
Entry 1 Body all positive 0.474 0.225 Removed Removed Removed 
Entry 2 Body all positive proportion 0.510 0.260 0.766 0.174 0.199 
Entry 3 Conclusion all positive 0.527 0.278 0.067 0.010 0.223 
Entry 4 Conclusion all negative 0.548 0.300 -0.013 0.005 -0.087 
Entry 5 Body adverbs positive proportion 0.562 0.316 0.397 0.074 0.132 
Entry 6 Body connectives positive essay 0.568 0.322 0.017 0.004 0.130 
Entry 7 Remove body all positive 0.566 0.321 - - - 
Entry 8 Introduction stance negative 0.573 0.328 -0.089 0.028 -0.088 
Entry 9 Conclusion all negative proportion 0.578 0.334 -0.823 0.210 -0.149 
Entry 10 Introduction choice negative 0.583 0.339 -0.250 0.084 -0.079 
Entry 11 Body general references positive essay 0.588 0.345 0.041 0.012 0.090 
Entry 12 Body 3rd person negative 0.590 0.348 -0.019 0.007 -0.079 
Entry 13 Introduction all negative proportion 0.593 0.351 -0.406 0.172 -0.112 
Entry 14 Body casual positive 0.595 0.354 0.232 0.095 0.059 
Entry 15 Body quantity positive essay 0.597 0.356 0.016 0.006 0.070 
Entry 16 Introduction totality positive essay 0.599 0.359 -0.033 0.013 -0.075 
Entry 17 Conclusion set membership positive essay 0.602 0.362 0.054 0.023 0.060 
Entry 18 Body tense positive 0.604 0.364 0.041 0.017 0.063 
Entry 19 Introduction 2nd person negative 0.606 0.367 0.038 0.015 0.071 
Entry 20 Conclusion 1st person positive essay 0.608 0.369 -0.020 0.010 -0.052 
Entry 21 Introduction conditionals negative 0.610 0.372 -0.067 0.032 -0.059 
Entry 22 Introduction comparison positive essay 0.612 0.374 0.158 0.076 0.055 
Notes: Estimated Constant Term is 2.563; B is unstandardized Beta; SE is standard error; B is standardized Beta 
Note: Essay is n-gram count across the entire essay. All other n-gram counts across the paragraph types. 
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positive or negative n-grams for the paragraph type. For 
instance, positive body n-grams and positive and negative 
conclusion n-grams were the strongest predictors of essay 
quality (predicting almost 30% of the variance in the human 
ratings alone) followed by negative introduction n-grams. The 
remaining indices were more specific in nature and included six 
introduction n-gram indices (related to stance, choice, totality, 
2nd person, conditionals, and comparison), seven body n-gram 
indices (related to adverbs, connectives, general reference, 3rd 
person, causality, quantity, and tense), and two conclusion n-
gram indices (related to set membership and first person). The 
majority of these indices were measured at the paragraph level 
with 7 of the 20 indices measured across the text. Because this 
analysis included essays with only 1 or 2 paragraphs, we 
presume that conclusion n-gram indices were less predictive 
insomuch as many essays would not contain a second or third 
paragraph that would act as a conclusion.  

From a linguistic perspective, this study has demonstrated that 
rhetorical features of paragraphs are important indicators of 
essay quality. The majority of the n-gram indices that loaded 
into our regression models were rhetorical in nature. For 
instance, the use of adverbs such as yet, unfortunately, and 
completely are important indicators of writing proficiency 
demonstrating that better writers use a greater number of such 
adverbs. High quality essays also contain fewer negative stance 
n-grams in the introduction (e.g., I think, know, feel that). Good 
writers also use more general reference terms such as these and 
those, indicating that referencing previous noun phrases is an 
important indicator of writing quality. Such an index may also 
relate to the cohesive properties of the text and, in support, this 
study also reports that other cohesive features loaded into our 
regression models. For instance, positive n-gram connectives 
(i.e., however, and) found in the body are significant predictors. 
Unlike rhetorical and cohesive n-gram indices, no syntactic 
indices loaded into our regression model and only one 
grammatical n-gram index loaded (positive body tense n-grams). 
Such a finding does not diminish the importance of syntactic and 
grammatical features in essay writing, but rather demonstrates 
that an n-gram approach likely does not capture the complexity 
needed to assess such features. 

We envision that these n-gram indices could be used to provide 
formative feedback to users in an ITS. For instance, these n-
gram indices directly overlap with instruction modules in W-Pal 
(i.e., introduction building, body building, and paragraph 
building) and would thus link with the writing strategies with 
which users become familiar during training. The indices are 
also much more paragraph specific than current feedback 
algorithms in W-Pal, which focus on general feedback 
concerning relevance to topic, essay structure, paragraph 
structure, and revising strategies. For example, the current 
feedback reminds users to attend to structural elements in 
paragraphs such as positions, arguments, and evidence. 
However, the feedback algorithms do not provide specific 
linguistic features to which to attend. We envision that the n-
gram indices discussed in this study could provide useful and 
specific formative feedback to assist in student essay revision. 
For instance, users could be given specific feedback about their 
use of adverb, general reference, connective, quantity, and tense 
n-grams in their body paragraphs. Users could also receive 
direct and specific feedback on their use of set membership 
words and 1st persons in their conclusion. This feedback would 
be based on concrete linguistic features in the text and would 

provide rhetorical, cohesion, and grammatical information to the 
user that could be exploited during the revision process.  

5. Conclusion 
While strongly predictive, the n-gram indices investigated here 
should be examined in conjunction with more traditional 
linguistic indices that have demonstrated predictive power in 
explaining essay quality (i.e., lexical, syntactic, and cohesive 
features of text; [3]). Such an analysis would assess how 
predictive the n-gram indices are when combined with other 
variables. More importantly, the indices should be tested to 
examine the degree to which they are able to provide more 
direct and specific formative feedback and the effects of such 
feedback on essay revision and quality.  
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Degeneracy in Student Modeling with Dynamic Bayesian 
Networks in Intelligent Edu-Games 

   

ABSTRACT 

This paper investigates the issue of degeneracy in student 
modeling with Dynamic Bayesian Network in Prime Climb, an 
intelligent educational game for practicing number factorization. 
We discuss that maximizing the common measure of predictive 
accuracy (i.e. end accuracy) of the student model may not 
necessarily ensure trusted assessment of learning in the student 
and that, it could result in implausible inferences about the 
student. An approach which bounds the parameters of the model 
has been applied to avoid the issue of degeneracy in the student 
model to a high extent without significantly diminishing the 
predictive accuracy of the student model. 

 

Keywords 

Educational Games, Student Model, Dynamic Bayesian 
Networks, Predictive Accuracy, Model Degeneracy 

1. INTRODUCTION 
Assisting individuals to acquire desired knowledge and skills 
while engaging in a game, distinguishes digital educational games 
(henceforth edu-games) from traditional video games [1, 2]. Edu-
games integrate game design methods with pedagogical 
techniques in order to more appropriately address the learning 
needs of the new generation, which highly regards “doing rather 
than knowing”. Adaptive edu-games as a sub-category of edu-
games leverage a user model to track the evolution of knowledge 
in the students and support tailored interactions with the player 
and have been proposed as an alternative solution for the one-size-
fits-all approach used in designing non-adaptive edu-games [2]. 

Prime Climb (PC) is an adaptive edu-game for students in grades 
5 and 6 to practice number factorization concepts. It provides a 
test-bed for conducting research on adaptation in edu-games. 
Prime Climb uses Dynamic Bayesian Network (DBN) to construct 
a student model which maintains and provides an assessment of 
student’s knowledge on target skills (number factorization skills) 
during and at the end of the interaction. The model’s assessment 
of the student’s knowledge on the desired skills during the game 

play is leveraged by an intelligent pedagogical agent which 
applies a heuristic strategy to provide the student with 
personalized supports in the form of varying types of hints [3]. In 
addition, the model’s evaluation of the student’s knowledge on 
target skills at the end of the game, provides predictions of the 
student’s performance on related problems outside the game 

environment (for instance on a post test). Therefore, an accurate 
student model is the main component of a system which adapts to 
users and any issue which could decay the efficiency of the model 
should be appropriately avoided and resolved. 

While most of the work on user modeling in educational systems 
has been on optimizing the predictive accuracy (predicting 
student’s performance on opportunities to practice skills) of the 
student models [5], there is limited work on educational 
implications and conceptual meaning imposed by the student 
model resulted from the predictive accuracy optimization process. 
This paper investigates the issue of degeneracy in the student 
model in PC and how it impacts the modeling. The issue of 
degeneracy is defined as a situation in which the parameters of a 
parametric student model are estimated such that the model has 
the highest performance (is at its global maximum given the 
performance and limitations of the optimization method) with 
respect to some standard measures of accuracy, yet it violates the 
conceptual assumptions (explained later in more details) 
underlying the process being modeled [6].  

2.  RELATED WORK 
Difficulties in inferring student knowledge have been recently 
studied [4, 6, 8, 9, 10, 11] in an approach to educational user 
modeling called Knowledge Tracing (KT) [7]. Knowledge 
Tracing assumes a two-state learning model in which a skill is 
either in the learned or unlearned state. An unlearned skill might 
change to the state of learned at each opportunity the student 
practices the skill. In KT, it is also assumed that the student’s 
correct/incorrect performance in applying a skill is the direct 
consequence of the skill being in the learned/unlearned state; yet 
there is always the possibility of a student correctly applying a 
rule without knowing the corresponding skill. This is referred to 
as probability of guessing. Similarly, the likelihood of a student 
showing an incorrect performance on applying a rule while 
knowing the underlying skill is called the probability of slipping. 
One issue with KT, called Identifiability was addressed by Beck 
[4]. The issue of Identifiability refers to the existence of multiple 
equally good mappings from observable student’s performance to 
her corresponding latent level of knowledge while each mapping 
claims differently about the student performance and knowledge. 

To address this issues, Beck introduced the Dirichlet prior 
approach [4] in which a Dirichlet probability distribution is 
defined over the model’s parameters in a KT to bias the 
estimation of the model parameters toward the mean of the 
distribution. The Dirichlet prior approach was then extended and 
the Multiple Dirichlet Prior approach [8] and Weighted Dirichlet 
Prior [9] were proposed to further address the Identifiability issue 
in KT. Backer et al. [6] discussed that the Knowledge Tracing 
models may also suffer from the problem of degeneracy. A KT 
model is degenerate if it updates the probability of a student 
knowing some skills in such a way that it violates the conceptual 
assumptions (such as a student being more likely to make a 
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correct answer if she does not have the corresponding knowledge 
than she does) underlying the process being modeled. Generally 
when the probability of slipping and guessing in KT are greater 
than 0.5 the model is said to be theoretically degenerate. It was 
also shown that the Dirichlet prior KT model (which was 
proposed to address the Identifiability problem in KT) also suffers 
from the degeneracy problem [4]. One straightforward approach 
to avoiding theoretical degeneration is bounding the Knowledge 
Tracing model parameters (probability of guessing and slipping) 
to take a value less than 0.5. This approach is called Bounded KT 
[4]. A KT model could be also empirically degenerate even if not 
theoretically degenerate. Two tests were also introduced to 
investigate empirical degeneracy in KT [4]. Baker et al. [7, 11, 
12] also proposed an approach called Contextual Guess and Slip 
in Knowledge Tracing for contextually estimating the 
probabilities of guessing and slipping and showed that such model 
is less degenerated than standard KT which allows any value 
between 0 and 1 for guessing and slipping. 

This paper builds on the previous works on issues with 
Knowledge Tracing, to investigate the issue of degeneracy in a 
student model which uses a Dynamic Bayesian Network and a 
causal structure to infer about the student’s knowledge on skills in 
an adaptive edu-game called Prime Climb. The issues of 
degeneracy has been studied in Knowledge Tracing models which 
assume that learning different skills is independent from each 
other while in PC, based on guidance from a math expert, it is 
assumed that the factorization skills are not independent from 
each other. Moreover, In KT, at each time, the student has an 
opportunity to practice a single skill, while in Prime Climb, at 
least three skills are practiced simultaneously and consequently 
there are other model’s parameters than probability of guessing 
and slipping in the student model in PC.  

3. PRELIMINARIES/BACKGROUND  

3.1 Prime Climb Edu-game:  
In Prime Climb (Figure 1), the player and her partner climb a 
series of mountains (11 mountains) of numbers by pairing up the 

numbers which do not share a common factor. The main 
interaction of a player with Prime Climb consists of making a 
movement from a location on a mountain of numbers to another 
location on the mountain until she reaches the top of the 
mountain. Therefore at each movement, the student practices at 
least 3 skills: 1) Factorization of the number the player moves to. 
2) Factorization of the number the partner is on and 3) The 
concept of common factor between the 2 numbers. 

3.2 Student Model in Prime Climb:  
Prime Climb is equipped with 11 probabilistic student models 
(one for each mountain) which use Dynamic Bayesian Network to 
model the evolution of student’s factorization knowledge during 

the period of time that she interacts with Prime Climb. To this end 
the student model consists of time slices representing relevant 
temporal states in the process being modeled. Each time slice is 
created once a student makes a movement (climbs a mountain). 
The smallest student model in PC consists of 23 binary nodes 
(random variables) and the largest one contains 131 nodes.  

PC’s Student Model Nodes: In PC, each student model contains 
several binary nodes [5] such as:  

Factorization Nodes (FX): Each factorization node, FX, is a 
binary random variable which represents the probability that the 
student has mastered the factorization skill of number X. 
Common Factor Node (CF): There is only one CF node. It is a 
binary random variable representing the probability that student 
has mastered the concept of common factor between numbers. 
PriorX Node: There is one Prior node for each none-root 
factorization node in the model. It shows the prior probability that 
the student knows the factorization of the number X to its factors.  
Click Nodes (ClickXY): Once the player makes a move (i.e. 

moves to number X while the partner is on Y) a Click node is 
temporarily added as a child of the three random nodes FX, FY and 
CF to make a causal structure. Therefore, these three nodes are 
conditionally dependent to each other given evidence on the Click 
node. Such causal structure allows apportion of blame for wrong 
movements [5]. Table 1 and Table 2 show the Conditional 
Probability Table (CPT) of the FX and Click nodes respectively. 

Table 1: Model Structure and CPT of FX Factorization Node 

 

FA PriorX P(FX = Known) 

Known Known 1 

Known Unknown     
  

 
 

Unknown Known 1 

Unknown Unknown 0 
 

 

Table 2: CPT of Click (K: Known, U: Unknown, C: Correct) 

 
FX = K FX = U  

FY=K FY=U FY=K FY=U 

P(ClickXY=C) 1-Slip Edu-Guess Edu-Guess Guess CF=K 

Guess Guess Guess Guess CF=U 

 
Model’s Parameters in Prime Climb: The parameters (guess, 
edu-guess, slip and max) are called “model’s parameters” in the 
student model in Prime Climb: 
Slip: The probability of making a wrong action on a problem step 
when the student has the corresponding knowledge. 
Guess: The probability of making a correct action on a problem 
step when the student does not have the corresponding skill. 
Edu-Guess: The probability of a student making a correct answer 
while the student does not completely master the required 
knowledge for making such correct action. 

Max: A coefficient in the formula (    
  

 
) used to calculate 

the probability of a student making a correct move proportional to 
number of its known parents. (P is number of parents of FX and PK 
is number of those parents which are known. 
End Accuracy of Student Model: The student model in PC is 
evaluated based on the end accuracy (=predictive accuracy) of the 
model. The end accuracy is defined as the model’s performance in 
accurate assessment of the student’s factorization knowledge 
about some sample numbers appearing on a post-test at the end of 
the game and calculated using the following formula [13]:  

Figure 1: Prime Climb Edu-game 
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Before starting the game, the factorization and common factor 
nodes in the student model are initialized with prior probabilities 
that the student knows the number factorization and common 
factor concept. In Prime Climb, three types of prior probability are 
used which are defined as following: 

Generic: The prior probability that a student knows number 
factorization and common factor skills is set to 0.5. 
Population: The prior probability is calculated based on scores of 
a group of students on a pre-test which examines the knowledge 
of students on specific factorization skills. 
User-specific: The prior probability is specific to each student 
based on her performance on the pre-test. If a student has 
correctly responded a number factorization question in the pre-
test, the probability that the student knows the corresponding 
factorization skill is set to 0.9 otherwise it is set to 0.1. 
Plausibility of Parameters in PC’s Student Model: While the 
end accuracy is used to evaluate PC’s student model, the model’s 
parameters can also be directly evaluated based of “plausibility” 
criteria. One criterion is the impact of model’s parameters (guess, 
edu-guess, slip and max) on performance of the adaptive 
interventions (hints) mechanism in PC. The performance of 
hinting mechanism in PC is calculated based on average of two F-
Measures [12]: 1) Positive F-Measure: calculated using precision 
and recall of the hinting mechanism in identifying correct time 
points for providing hints and 2) Negative F-Measure: calculated 
using precision and recall of the hinting mechanism in identifying 
the time points in which hints should not be given to the users. 
According to such criteria, a set of model’s parameters improving 
performance of the hinting mechanism while providing reasonable 
number of hints during game play is more plausible. For instance 
if a student makes 200 movements in total during the game, it is 
not plausible to receive over 100 hints (One hint for every two 
movement on average). Notice that the value of the model’s 
parameters directly affects the hinting mechanism in PC. 

4. DEGENERACY IN STUDENT MODEL 
Student Model Optimization: The Prime Climb’s original 
student model allows any value between 0 and 1 for the model’s 
parameters (slip, guess, edu-guess and max). The values for the 
parameters are estimated such that the model’s end accuracy is 
maximized. To this end, an exhaustive search procedure is applied 
which examines values between 0 and 1 in interval of 0.1 for each 
parameters and eventually selects the parameters combination 
maximizing the end accuracy. To this end, a Leave-One-Out 
Cross Validation approach was applied across 43 students who 
played Prime Climb. The optimal set of parameters and the mean 
end accuracy across the test folds for each prior probability type 
were computed and summarized in Table 3. 

Table 3: Estimated Parameters and End Accuracy 

Prior 

Probability 
Guess 

Edu-

Guess 
Max Slip 

End Accuracy      

(M/SD)  

Population 0.5 0.3 0.2 0.4 0.77/0.14 

Generic 0.2 0.6 0.8 0.6 0.70/0.15 

User-specific 0.6 0.1 0.6 0.6 0.72/0.20 

Degeneracy in Student Model: The degeneracy in student 
modeling in Prime Climb is defined as violation of the conceptual 
assumptions behind modeling of a student’s knowledge on 
factorization skills during interaction with the game. The 
conceptual assumptions in PC student model are as following: 

1) Correct evidence (action) on a skill must not decrease the 
probability of the student knowing the skill. 

2) An incorrect action on a skill must not increase the probability 
of the student knowing the skill. 

Any pattern in the student model violating the aforementioned 
assumptions is marked as model degeneration. We defined two 
tests to investigate model degeneracy in Prime Climb’s student 
model. If the student model fails either of these two tests, the 
model is said to be degenerated: 

Test 1 of degeneration in Prime Climb: If a student makes a 
correct/incorrect action on an opportunity to practice a skill, the 
probability of the student knowing the skill should not be 
less/greater than the probability of knowing the skill before 
making the action on the skill. Mathematically the following cases 
show failures in Test 1: 

                                       

                                       
                                     

                                     
                                       
                                     

Test 2 of degeneration in Prime Climb: Assume a dependency 
relationship between two skills S1 and S2 such that knowledge on 
S1 implies knowledge on S2 with a certain probability. If a student 
performs correctly/incorrectly on an opportunity to practice skill 
S1, the probability that the student knows skill S2 should not be 
less/greater than its values before making the action. 

The original student model was checked for degeneracy using the 
Tests 1 and 2 of degeneration. Table 4 summarizes the mean 
number of failures across the 43 students who played PC. 

Table 4: Failures in Test 1 and Test 2 in PC’s Original Model 

Prior 

Probabilities 

 Failures in Test 1       

(M/SD) 

Failures in Test 2         

(M/SD) 

Population 268.91/64.26 1.71/2.85 

Generic 101.84/28.73 258.35/80.48 

User-specific 339.17/75.11 138.86/62.04 

As shown in Table 4, the original student model in Prime Climb 
suffers from degeneracy issue. Theoretically, based on the CPT of 
the Click node (See Table 2), it can be concluded that the 
following conditions (in Table 5) might cause specific patterns of 
degeneracy in the Prime Climb’s student model. 

Table 5: Conditions and Patterns of Degeneracy in PC  

Conditions Related Patterns of Degeneracy 

Eduguess< 

Guess                                        

                                     1-Slip < 

Guess 

1-Slip < 

Eduguess 

                                       

                                     

                                       

                                     

Given the estimated parameters for the original presented in Table 
3 and the degeneracy conditions in Table 4, different patterns of 
degeneracy can be observed in the Prime Climb’s original model. 

5. BOUNDED STUDENT MODEL 
To alleviate the issue of degeneracy, the model’s parameters are 
bounded to take values from outside the subspaces (conditions in 
Table 5) that cause specific patterns of degeneracy in PC. Such 
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model is called Prime Climb’s Bounded student model. Similar to 
the PC’s original model, an exhaustive search approach is used to 
find a set of bounded model’s parameters which maximizes the 
model’s end accuracy. In this study we allow values greater than 
0.5 for the model’s parameters. The estimated parameters and the 
end accuracy of the bounded student model are shown in Table 6. 

Table 6: The Estimated Parameters and End Accuracy 

Prior 

Probability 
Guess 

Edu-

Guess 
Max Slip 

End Accuracy      

(M/SD) 

Population 0.7 0.7 0.2 0.4 0.76/0.15 

Generic 0.5 0.6 0.4 0.8 0.68/0.15 

User-specific 0.3 0.3 0.6 0.8 0.70/0.18 

Comparison of the Models’ Accuracy: The results of a paired t-
test showed no statistically significant difference between the end 
accuracy and AUC (Area under the ROC curve) of the original 
and bounded models in none of the prior probability type. 

Table 7: AUC of the student models 

AUC 
Prior probability Types 

Population Generic User-specific 

Original 0.7345 0.6762 0.7860 

Bounded 0.7375 0.6643 0.7449 

Comparison of Models’ Degeneracy: A paired t-test is used to 
compare the two models based on the average number of failures 
in the two tests of degeneracy. Table 8 shows the results. In all 
cases, the bounded model resulted in significantly lower number 
of failures in the both tests of degeneration and the p-value is less 
than 0.01 (except where indicated by *). 

Table 8: Comparison of Failures in Degeneration Tests 

Tests Models 
Population     

(Mean/SD) 

Generic 

(Mean/SD) 

User-specific 

(Mean/SD) 

T
e
st

1
 

Bounded 9.17 / 7.45 8.8/7.29 10.24/10.96 

Original 268.91 / 64.26 101.84/28.73 339.17/75.11 

T
e
st

2
 

Bounded 1.44 / 2.0 0.24/0.48 0.53/1.2 

Original 1.71 / 2.86* 258.35/80.48 138.86/62.04 

Comparison of the Models’ Parameters Plausibility: The 
plausibility of the estimated parameters in original and bounded 
models was compared based on performance (measured by F-
Measure as described before) of the hinting method in PC. To this 
end, the performance of the hinting mechanism as well as average 
number of given hints are calculated. A paired t-test is used to 
compare the hinting procedure performance and number of hints 
across 43 students. The following tables show the comparison 
results. In all comparisons, the p-value is less than 0.01. 

Table 9: Comparison of F-Measures of Hinting Mechanism 

F-Measure 
Population     

(Mean/SD) 

Generic 

(Mean/SD) 

User-specific 

(Mean/SD) 

Original 0.24 / 0.2 0.3 / 0.24 1 / 0 

Bounded 0.29 / 0.22 0.55 / 0.32 0.95 / 0.08 

Table 10: Comparison of number of adaptive hints 

#Hints 
Population     

(Mean/SD) 

Generic 

(Mean/SD) 

User-specific 

(Mean/SD) 

Original 112.5 / 56.62 82.95 / 27.37 139 / 39.36 

Bounded 55.2 / 19.84 48.53 / 19.1 42 / 18.24 

As shown in Table 10, the results of a paired t-test show that the 
bounded models resulted in a significantly lower number of hints 
(p<0.01 in all cases) while significantly higher performance for 
the hinting mechanism (except for the student model with user-
specific prior probability type). Note that on average each student 
makes 164.5 movements while playing PC. Based on the results, 
the hinting mechanism provides 2, 1.7 and 3.3 times more hints in 
the original model than the bounded with population, generic and 
user-specific prior probability types respectively. This shows that 
in general, the bounded model provides more plausible model’s 
parameters than the original student model. 

6. CONCLUSIONS/FUTURE WORK 
This paper discussed that optimizing the student model in Prime 
Climb does not ensure a trusted student modeling because the 
model might be degenerated. The issue of degeneracy and sources 
and patterns of degeneracy were described and one approach to 
addressing this issue called, bounded model was also introduced 
and compared with the original student model. It was shown that 
the bounded model has a comparable accuracy with the original 
model while it contains significantly fewer cases of degeneracy. 
The estimated parameters in the bounded model were also more 
plausible than the parameters in the original model. In the current 
bounded model, the model’s parameters are estimated the same 
across all students. As for future work, we will consider more 
personalized model’s parameters in bounded model to account for 
individual differences between users. 

7. REFERENCES 
[1] de Castell, S. & Jenson, J., 2007, Digital Games for Education: 

When Meanings Play. Intermedialities, 9, 45-54. 
[2] Conati, C. and M. Klawe, 2002, Socially Intelligent Agents in 

Educational Games. In Socially Intelligent Agents - Creating 

Relationships with Computers and Robots. K. Dautenhahn, et al., 

Editors, Kluwer Academic Publishers. 
[3] Conati C and Manske M.: Evaluating Adaptive Feedback in an 

Educational Computer Game, IVA 2009, 146-158 
[4] Beck, J.E., 2007, Difficulties in inferring student knowledge from 

observations (and why you should care). Educational Data Mining 
[5] Manske, M., Conati, C., Modelling Learning in an Educational 

Game. AIED 2005: 411-418 

[6] Baker, R. S.J.d., Corbett, A.T., Aleven, V., 2008, More Accurate 

Student Modeling Through Contextual Estimation of Slip and Guess 

Probabilities in Bayesian Knowledge Tracing. Human-Computer 

Interaction Institute. Paper 6. http://repository.cmu.edu/hcii/6 
[7] Corbett, A.T. and Anderson, J. R., 1995, Knowledge tracing: 

Modeling the acquisition of procedural knowledge, User Modeling 

and User Adapted Interaction, Volume 4, Number 4, 253-278 
[8] Gong, Y., Beck. J. E.,  Ruiz, C., 2012, Modeling Multiple 

Distributions of Student Performances to Improve Predictive 

Accuracy. UMAP 2012: 102-113 
[9] Rai, D., Gong, Y., Beck, J., 2009, Using Dirichlet priors to improve 

model parameter plausibility. EDM 2009: 141-150 
[10] Baker, R. S.J.d., Corbett, A.T., Aleven, V., 2008, Improving 

Contextual Models of Guessing and Slipping with a Trucated 

Training Set. EDM 2008: 67-76 
[11] Baker, R. S.J.d., Corbett, A.T., Gowda, S. M., Wagner, A.Z., 

MacLaren, B. A., Kauffman, L. R., Mitchell, A. P., Giguere, S., 

2010, Contextual Slip and Prediction of Student Performance after 

Use of an Intelligent Tutor. UMAP 2010: 52-63 
[12] Powers, David M W, 2011. "Evaluation: From Precision, Recall and 

F-Factor to ROC, Informedness, Markedness & Correlation". Journal 

of Machine Learning Technologies 2 (1): 37–63. 

[13] Altman DG, Bland JM (1994). "Diagnostic tests. 1: Sensitivity and 

specificity". BMJ 308 (6943): 1552 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 223



www.manaraa.com

Clustering and Visualizing Study State Sequences

Michel C. Desmarais
Polytechnique Montréal
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ABSTRACT
This paper investigates means to visualize and classify pat-
terns of study of a college math learning environment. We
gathered logs of learner interactions with a drill and prac-
tice learning environment in college mathematics. Detailed
logs of student usage was gathered for four months. Student
activity sessions are extracted from the logs and clustered in
three categories. Visualization of clusters allows a clear and
intuitive interpretation of the activities within the clustered
sessions. The three clusters are further used to visualize
the global activity of the 69 participating students, which
would otherwise be difficult to grasp without such means to
extract patterns of use. The results reveal highly distinct
patterns. In particular, they reveal an unexpected and sub-
stantial amount of navigation through exercises and notes
without students actually trying the exercises themselves.
This combination of clustering and visualization can prove
useful to learning environments designers who need to bet-
ter understand how their application software are used in
practice by learners.

1. INTRODUCTION
The human eye is a powerful means to extract patterns from
data, given the proper visualization tools. We borrow visu-
alization techniques from social sciences to display state se-
quence diagrams and demonstrate their use in Educational
Data Mining (EDM).

We combine the visualization tools with clustering tech-
niques to better understand the patterns of use of a learning
environment. Detailed user sessions of interaction with a
drill and practice environment for college math are encoded
as sequences of activities.

2. VISUALIZATION OF TEMPORAL SE-
QUENCES

Visualization of student interactions is one of the core top-
ics of educational data mining and a few studies have intro-
duced innovative visualization tools in the last decade [11;
10; 9].

This paper focuses on the visualization of temporal sequences
of student activity. This type of data can be represented in
two different forms:

(1) Event sequences. A given event occurs at a specific time.
Events can be considered as having no duration, and

the focus is more on the transition from one event to
another. A majority of studies in EDM have studied
such transition data as we see below.

(2) State sequences. Each student is engaged in a given ac-
tivity, or state, for a specific time duration. For example,
a student can be consulting notes, involved in problem
solving, reading a scaffolded hint, etc.

Student state changes are triggered by events, as a transition
from one state to another occurs after some event. There-
fore, the two concepts are tightly related. But the type of
analysis differ whether we focus on state sequences or the
event sequences. Event sequences will often be represented
as graphs, emphasizing the path between events and tran-
sition frequencies, whereas state sequences are often repre-
sented as a flow of states (activities) on a time line. The
emphasis for state sequences is on the types and the dura-
tion of activities over a given period, instead of transition
between states.

2.1 Event Sequences
Event sequences have been studied by a few researchers who
were aiming to find patterns of student learning. Beal and
Cohen have surveyed a number of these techniques [2]. In
one of their study, they used Hidden Markov Models (HMM)
to predict sequences of answer types of a math tutor. They
showed that modeling the level of student engagement as a
hidden factor of the HMM helped improve predictions [3].
Jeong et al. also showed the use of HMM to characterize
student behavior in a “learning by teaching” paradigm [7].

Hadwin et al. [6] have also investigated activity event se-
quences to find patterns of study behavior. They used tran-
sition graph and graph theoretic statistics to characterize
the student study patterns.

Köck and Paramythis [8] did an extensive study of event se-
quence analysis over the ANDES Tutor data [12]. They com-
bined k-means clustering techniques with Discrete Markov
Models to successfully extract and identify student problem-
solving styles.

2.2 State Sequences
Instead of emphasizing the transition between states, tem-
poral state sequences of student activity emphasize the time
line perspective and the duration of activities. This type of
representation has been used in sociology [1], but has not
received much attention in Educational Data Mining.

The time line perspective representation is well suited for
visualization of activities as a function of time. Each se-
quence of activity is represented as a single horizontal bar,
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and each activity is displayed by a segment on the bar with
a given color. We will refer to this as state sequences. This
type of visualization is shown in figure 1. Both types of dia-
grams will be explained in more details later. In the current
study, we use the TraMineR package [5] available on the R
statistical analysis platform.

3. LEARNER ACTIVITY SEQUENCES AND
THEIR CLUSTERING

A prerequisite to effective visualization is that the data must
be arranged in a meaningful and organized manner such that
the patterns emerge naturally to the human eye.

Our solution to effective visualization of usage patterns by
a large number of student is two staged: (1) we use a clus-
tering technique to extract the main patterns and use state
sequence visualization to characterize them intuitively (sec-
tion 3.5), and (2) we display student usage as a function of
these patterns (section 3.6). Let us first explain sequence
data, the clustering algorithm and the results obtained, and
finally show the global student picture.

3.1 The Drill and Practice Learning Environ-
ment

The web base drill and practice learning environment records
detailed logs of user interactions with the application in the
form of events that are processed to visualize activities.

The application was made available for four months in the
summer of 2012 to newly enrolled university students who
wanted to refresh, or enhance their knowledge of prerequi-
site mathematical concepts for all engineering programs at
Polytechnique Montreal. The decision to do the exercises
were entirely left at the discretion of the students and no
marks or bonus were given for those who used the applica-
tion. Furthermore, the exercises are presented with a button
next to each of them, that, once clicked, immediately shows
the right answer and lets the student assess for himself or
herself if his/her answer is right. If deemed right, the ex-
ercise is marked as completed in the Results section of the
application. The student can thereby assess his progress in
terms of the proportion of exercises completed.

A total of 1030 exercises are available and they span over
10 mathematics topics such as basic algebra, logarithms
and exponentials, trigonometry, calculus, and linear alge-
bra. The notes section represents the equivalent of about
150 pages of a textbook.

3.2 Event and Activity Data
Detailed log data, such as answers to exercises, clicking on
a hyperlink, and even scrolling with the mouse is logged as
events with a time stamp. This allows to record almost as
much as can be recorded on a web browser to assess the level
of activity of a user.

These events can be considered as having no time duration,
and need to be transformed into sequences of student states,
which involves some pre-processing. This process involves
the creation of pause events if no event occurs for more than
5 minutes, such as scrolling or navigation. An exception to
this rule is if the following event is an answer to an exercise,
since problem solving during exercises can last longer than
5 minutes. It also involves pre-processing to ensure that
answers to exercises will not go unseen and allow for the
distinction between active answer periods, and time spent

on problem solving.

Once these adjustments are made to the event sequence, the
next step consists in projecting the sequence of events over a
time line. A time line represents a series of equal segments of
time for which a state is given. If the granularity of the time
line is 15 sec., for example, then the state at each segment
of the time line is set to the most recent event in this 15 sec.
interval. This may result in events that never get displayed
if the time segment is longer then the time between events.

3.3 From Events to Activity States Sequences
As explained above, the projection of the events sequence
to a state sequence is based on labelling a time segment
based on the last event of the current sequence, or the last
event of previous sequences if none occurred during the time
segment.

A student sequence of activities is broken down per session.
A session is defined as all activities contiguous in time that
are no more than 1.5 hour apart. A time difference between
events of over 1.5 hour creates a new sequence (session).

Seven types of activities are derived from the log of user
events:

1. Answer Ex.: A click over the answer button (“Answer
ex.” event) occurred during the time step and is repre-
sented as the activity of that time step.

2. Nav. Exerc.: Student is browsing through the exer-
cises but has not answered an exercise during the time
segment.

3. Nav. Notes: Student is browsing through sections of
the notes module.

4. Pause: No event occurred in the last 5 minutes. Pauses
can last up to 1.5 hour (the maximum time after which
a new session is created).

5. Prblm. solv.: Last event was an answer to an exer-
cise, but no event was recorded during the time step and
therefore we assume the student is in problem solving
mode over the exercises shown on the page.

6. Result: Browsing a page that summarizes statistics on
the exercises completed and the number of remaining
exercises per main section.

7. Start: Activity on the login page.

For the purpose of this study, we ignore sessions that are
shorter than 5 minutes. This leaves a total of 454 sessions of
activity sequences by 69 students. Mean and median session
duration are respectively 42 and 20 minutes with a minimum
duration of 5 minutes and a maximum duration of 6.3 hours.
Mean and median number of sessions per student are respec-
tively 2 and 6.5, with a minimum of 1 and a maximum of
93 sessions. 24 students completed no exercise whereas one
student completed all 1030 of them. Median number of at-
tempts to exercises is 12 and mean is 174. An exercise can
be attempted more than once if the student answers that
he did not get the answer right. In this case, the exercise is
shown with a “validate my answer” button. If the student
answers his response is correct, the solution is displayed in
place of the button.

3.4 Clustering Algorithm
As mentioned, there are 454 sessions by 69 students. To
build an synthetic view of their usage patterns, we first ex-
tract types of state sequences from the data with a clustering
algorithm.

Based on the well known Levenshtein distance, an agglomer-
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ative (bottom up) hierarchical method is used to aggregate
the most similar sequences (Ward method of the R cluster

package [4]). In short, the algorithm consists in pairing the
most similar individual sequences, and in further pairing
groups of sequences, ensuring that the mean distance be-
tween two clusters is minimal at every level.

We chose to create 3 clusters based on exploratory visual-
ization of the different results.

3.5 Clusters of Activity Sequences
The 3 clusters of state sequences are shown in figure 1. Each
horizontal line in a graph shows an activity state sequence
(session). The time segments are 15 sec. each. The figures
show 240 segments, which corresponds to a total of one hour.
Longer sessions are truncated. There are 7 types of activities
as described in section 3.2. For the sake of visibility, we have
randomly sampled only 30 of the sequences of each type.
The actual numbers of sessions per type are shown below.

The clustered sequences obtained can be characterized as
follow:

• Type 1 (N=135): Exploratory behavior. The students
engage in a mixture of browsing through exercises and
notes.

• Type 2 (N=196): Short sessions comprising a variety
of behaviors. Shorter sessions are aggregated due to the
fact that the Levenshtein distance penalizes deletion and
addition of sequence elements.

• Type 3 (N=123): Exercise intensive sessions.

3.6 Activities per Student
Figure 2’s top diagram shows the proportion of session types
for each of the 69 students. The students are ordered ac-
cording to the time they spent with the application. The
y axis corresponds to the three session types. Darker cells
indicate the dominant session(s) for that student.

The bottom diagram is a frequency plot of the number of
sessions per student.

We can see that the more engaged students, defined as those
who spend the most time with the applications, have ses-
sions of all types (students 60 to 69). However, we notice
that students 40 to 55, who have a usage time over the me-
dian, are not engaged in the same manner as the ones who
had a predominance of type 3 sessions. They do not engage
much in doing exercises, if at all, but do spend a substantial
amount of time browsing through the application content.

Also noteworthy is that the student with very short sessions
(type 2) have diverse patterns of activities. Most combine
browsing and answer exercises, and browsing through notes,
in a relatively short period of time compared to the others.
They are essentially exploring the application. Unsurpris-
ingly, almost all of the students who have only a single ses-
sion of interaction with the learning environment have this
type of behavior.

4. DISCUSSION
This paper introduces a technique to visualize student learn-
ing activities with a self-regulated drill and practice envi-
ronment, and reports on an experiment that combines the
visualization method with clustering and classification tech-
niques to obtain a global view of student activities.

The clustering clearly reveals that very distinct study pat-
terns emerge per session. Without the visualization of clus-

ters as state diagrams, cluster interpretation would remain
a difficult task. This is particularly the case because a sin-
gle student often adopts different patterns of study sessions.
Therefore, session study patterns do not necessarily discrim-
inate between student themselves. However, we do notice a
predominance of certain session types on a per student ba-
sis, in good part due to the correlation of session length with
session patterns.

How can such visualization and clustering method be of use
to the design of learning environments, or to the teachers?
It might help them to better understand how students use
the learning environment and, in return, make adjustments
to the features of the learning environment to better suit
the actual patterns of usage.

At least in our case, this study revealed that, although the
most engaged students did use the application as intended,
with a predominance of Type 3 sessions, many students did
not use it as intended, or even as expected. Both authors
were involved in the design, and we had expected much more
back and forth between the study notes and exercises. Ex-
cept for a few students, this did not happen very much.
Instead, many sessions consisted of relatively long pauses
with browsing periods through the notes and exercises, last-
ing sometimes over an hour without actually doing practice
exercise. We intend to conduct interviews in later studies
to better understand this behavior, but this current study
helps us reveal the patterns to investigate further.
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ABSTRACT 
In this paper, we describe a data mining study of the mental health 
of undergraduate Engineering students in a large Canadian 
university.  We created a survey based on guidelines from the 
Canadian Mental Health Association, and applied classification 
and regression algorithms to the collected data.  Our results reveal 
interesting relationships between various aspects of mental health 
and year of study (first and final year students have lower mental 
health scores than second-year students), academic program 
(students in competitive programs have lower overall mental 
health but higher self-actualization, whereas students in a program 
with a flexible curriculum had higher overall scores), and gender 
(female Engineering students tend to have lower scores).  

Keywords 
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1. INTRODUCTION 
Mental health affects all facets of daily life and therefore 
awareness is critical.  In particular, the well-being of 
undergraduate students is imperative as it greatly affects their 
academic success.  In this paper, we advocate the use of data 
mining to understand the factors affecting mental health.  We 
describe a case study in which we applied regression and 
classification algorithms to mental health survey data collected in 
a large Canadian university.  We focus on Engineering, a 
competitive and demanding discipline with a heavy gender bias 
towards male students. 

We conducted an anonymous survey - both online and in person - 
in which we asked students to rate five aspects of their mental 
health, as defined by the Canadian Mental Health Association [4].  
These five aspects are: Ability to Enjoy Life, Resilience, Balance, 
Emotional Flexibility and Self-Actualization.  Our survey also 
included questions about potential academic influences on mental 
health such as year of study, academic program, gender, academic 
workload, and relationship status.  We received over 300 
responses in total. 

We then applied linear regression and classification algorithms to 
identify which of the above external influences have the greatest 
effect on each aspect of mental health.  Examining the regression 
coefficients and classification rules revealed interesting insights 
into the mental health of Engineering students.  We found that the 
number of hours of homework was the best predictor of overall 
mental health, followed by year of study.  In particular, first-year 
and final-year students tend to have lower mental health scores 
while second-year students have the highest scores.  We also 

found that female students in all academic programs and years 
have lower overall mental health but higher Emotional Flexibility.  
Another interesting result was that students in highly competitive 
and challenging programs have lower overall mental health scores 
but higher Self-Actualization, whereas students in inter-
disciplinary programs with a flexible curriculum tend to have 
higher scores. 

The aim of this paper is to illustrate how data mining algorithms 
can be used to analyze mental health data and to encourage further 
work on applying machine learning to better understand mental 
well-being.  We discuss related work in Section 2, our 
methodology in Section 3, and our results in Section 4.  We 
conclude in Section 5 with recommendations arising from this 
study and suggestions for future work. 

2. RELATED WORK 
The importance of mental health and well-being in students is 
exemplified by the large number of studies on this topic.  Past 
research has focused on using surveys to identify factors that 
affect mental health, but applying machine learning tools to such 
data has not received much attention.  One recent example is Li et 
al. [3], which examined variables such as ethnicity, gender and 
age to classify the mental health of Chinese college students into 
three groups using regression. They found that the strongest 
predictor of adjustment and severe mental health problems was 
the level of satisfaction with one’s major.  In this paper, we 
consider a wider variety of education-related features, including 
gender, year of study, academic workload and academic program, 
and we examine five different aspects of mental health.  

Another interesting example of mining mental health data is 
described in Diederich et al. [1], which used machine learning 
techniques to identfy mental health issues such as schizophrenia, 
and mania.  Their thesis was that through analyzing data or 
language and conversations between psychiatrists and patients, 
they could develop more accurate diagnostic classification 
systems.  The study used various methods including emotional 
classification and clustering algorithms. 

In general, previous work on understanding the mental health of 
students has investigated factors such as gender and academic 
year.  The Center for Addiction and Mental Health [6] found 
through surveys that females were more prone to report mental 
health issues than males, and final-year students were least likely 
to report these symptoms as compared to students in other years.  
The National Union of Students [5] conducted a survey of 
colleges and universities across Scotland found that examinations, 
concerns about future career prospects and finances were the 
major sources of stress.  Zacaj [9] studied gender differences in 
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Engineering education, focusing on women’s integration in the 
classroom, outlook for future careers, decision-making power and 
responsibility.  Soet and Sevig [7] investigated the effect of 
ethnicity and sexual orientation on various mental health problems 
(depression, eating disorders, substance use, etc.).  One insight 
from this study was that African American students were found to 
be less distressed than their counterparts.  Finally, Trockel et al. 
[8] studied the academic performance of first-year college 
students and their health behaviour. Their results demonstrate that 
feelings of anxiety, depression, and time pressure negatively 
affected the performance of these students. However, participating 
in extracurricular activities alongside having a good support 
system positively affected the academic performance.  In this 
paper, we use regression and classification to reach similar 
conclusions to those reported in previous work (including finding 
that women and first-year students in Engineering tend to have 
lower mental health and that the number of hours of homework is 
strongly correlated with mental health), and we present new 
insights into the mental health of Engineering students enabled by 
the use of regression and classification algorithms.  

3. METHODOLOGY 
The first part of our survey included questions about potential 
academic influences on mental health, summarized in Table 1.  
Previous work has focused on factors such as financial situation 
and career prospects; in this study, we focus mainly on academic 
factors.  In particular, we hypothesize that students enrolled in 
competitive programs with a high workload and an imbalance of 
extra-curricular activities will have lower mental health scores. 

Table 1: Attributes used in the first part of the survey 

Attribute Possible Values 

Gender Male, Female 

Year of study 1,2,3,4 

Engineering program Environmental, Electrical, 
Computer, Systems Design, 
Mechanical, Chemical, 
Geological, Civil 

Hours of class per week 0-40 

Hours of homework per week 0-80 

In a committed relationship of 
more than 6 months?  

Yes, No 

Recent relationship break-up?  Yes, No 

Hours of extracurricular 
activities per week (sports, 
student politics, student clubs, 
etc.) 

0-40 

The second part asked the participants to rate, on a scale from 
zero to six, the following five aspects of their mental health. 

1. Ability to Enjoy Life: characterized by enjoying the present 
and worrying less about the future or the past. 
2. Resilience: ability to recover from adversity; a characteristic 
shared by those who cope well with stress and change. 
3. Balance in various aspects of life, such as time spent alone or 
with others, work and play, sleep and wakefulness, and rest and 
exercise.  

4. Emotional Flexibility: ability to reduce stress that is obtained 
from rigid emotional expectations.  

5. Self-Actualization: ability to recognize one’s abilities and the 
process of this recognition. 

These five aspects were defined by the Canadian Mental Health 
Association [4].  In addition to considering each aspect separately, 
we also summed up the five scores to compute an overall mental 
health score for each respondent (on a scale from zero to 30). 

We conducted the survey online and on campus during a seven-
day period in the Fall semester, targeting undergraduate 
Engineering students from all programs.  We received 312 
responses, which corresponds to 5.6 percent of the Engineering 
student population, and discarded six due to missing responses 
and/or values out of bounds.  70 percent of the respondents were 
male.  71 percent were single. 
We used the WEKA data mining toolkit [2] to analyze the survey 
results.  First, we applied least-squares linear regression to predict 
the overall mental health score as well as the individual five 
component scores.  We then computed separate linear regression 
models for selected Engineering programs (we ignored programs 
from which we received very few responses), and separate models 
for each year of study (across all programs), to see if certain 
programs or years face unique mental health challenges.  

Next, we discretized the numeric attributes.  Mental health scores 
for each category were converted into: Very Low (0), Low (1), 
Medium (2-3), High (4), Very High (5) and Excellent (6).  Overall 
mental health scores were converted into: Very Low (0-5), Low 
(6-10), Medium (11-15), High (16-20), Very High (21-25) and 
Excellent (26-30).  Hours of class and extracurricular activities 
per week were converted as follows: Low (0-15), Medium (15-
30), High (30-40); hours of homework per week were converted 
similarly. Using the transformed data, we computed prediction 
rules for overall mental health and for the five components of 
mental health using the PRISM algorithm. Then, as before, we 
separately computed rules for each program of study (across all 
years) and each academic year (across all programs).  
Having computed the above regression and classification models, 
we examined the regression coefficients and classification rules to 
understand which attributes have the greatest effect on the mental 
health of students. 

Finally, we conducted exit interviews with a sample of the 
respondents to help explain the results of our analysis. 

4. RESULTS 
According to our regression and classification results, the 
strongest signals in the data were as follows: 

• In terms of overall mental health, the year of study and 
number of hours of homework had the greatest effect. 

• Second-year students had the highest overall scores and 
first-year students had the lowest scores.  Fourth-year 
students also had relatively low scores. 

• In terms of academic programs, Electrical Engineering 
students had lower mental health scores due to the 
competitive nature of the program, while Systems 
Design students had higher scores due to strong 
classmate relationships and a flexible curriculum. 

• Women in all Engineering programs have lower overall 
mental health (especially in Mechanical Engineering), 
but higher Emotional Flexibility. 
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• Self-Actualization was negatively affected by a high 
number of hours of class per week, but positively 
affected by a high number of homework hours per week. 

• Being in a relationship reduces the Balance and 
Emotional Flexibility mental health components. 

Table 2 summarizes the Root Mean Squared Error (RMSE) of the 
regression models and the prediction accuracy (the number of 
correctly classified instances divided by the total number of 
instances) of the PRISM classification rules for each mental 
health component.  We used 10-fold cross-validation in each case.  
It does not appear that any one component is significantly easier 
or harder to predict using the features collected in our survey.  

Table 2: RMSE and prediction accuracy for each mental 
health component 

Component RMSE Prediction 
Accuracy 

Ability to Enjoy life 1.29 80% 

Resilience 1.32 84% 

Balance 1.31 80% 

Self-Actualization 1.53 83% 

Flexibility 1.12 75% 

In the remainder of this section, we discuss the above findings in 
more detail, paying particular attention to the impact of the 
academic program, year of study and gender on the overall mental 
health and its five components. 

4.1 Impact of Year of Study 
For each academic program within the Faculty of Engineering, we 
computed a regression model that predicts the overall mental 
health score based on four indicator variables corresponding to the 
four academic years.  Table 3 shows the regression coefficients.  
Based on their magnitudes and signs, it appears that being in first 
year or in fourth year has a negative effect on the overall mental 
health score, with first year having the most negative impact. Exit 
interviews were conducted to determine the lead indicators of 
these results. 

Table 3: Regression coefficients for predicting overall mental 
health for each academic program based on academic year 

  First 
Year 

Second 
Year 

Third 
Year 

Fourth 
Year 

Electrical -1.1848 0.9269 -0.0288 -0.1853 

Environmental  -1.2735 0.922 -0.0748 -0.1589 

Mechanical -1.2312 0.9174 -0.0021 -0.1374 

Civil -1.235 0.9194 -0.0175 -0.1042 

Systems 
Design -1.159 0.8555 0.0714 -0.2464 

Computer -1.2241 0.9146 0.0085 -0.152 

Geological -1.1696 0.9022 -0.0725 -0.0732 

Chemical -1.2026 0.915 -0.0248 -0.13 

Based on the exit interviews, first-year students found it difficult 
to be separated from family and friends from home.  They also 
found that moving to a new city required lifestyle and workload 

adjustments.  Furthermore, first-year Engineering students have a 
high classroom workload (35 to 40 hours of class per week), with 
many courses requiring weekly homework assignments, which 
adds to the high workload. 

Second-year students were more relaxed due to the decreased 
focus on weekly evaluations.  In particular, second-year students 
reported the lowest number of hours of homework.  These 
students also found that the reduced focus on the fear of failure 
was a large stress reducer.  As they had been successful passing 
first year, their confidence levels were increased. 
However, by the time students reach the last year of study, many 
students find themselves overwhelmed with complex and lengthy 
course projects.  Student debts are typically increasing and this 
compounds their worries.  Late in the third year and early in the 
final year, some students feel that they are ready to finish their 
undergraduate career. 

4.2 Impact of Academic Program 
Both regression and classification results revealed that students 
from Systems Design Engineering tend to have higher scores.  For 
example, the following rule was discovered by PRISM: 

If Systems Design Engineering = Yes and Year = Third then 
Overall Mental Health = Very High 

Exit interviews suggested that Systems Design Engineering 
students expressed a high cohesion among classmates across all 
years. From the first day, these students are encouraged to make 
strong relationships.  Students in this program found that their 
ability to be hired in any industry for internships proves their 
program to be fulfilling and accomplishing in real-world 
applications.  Finally, Systems Design students have the freedom 
to focus on areas of interest through a more lenient course elective 
program. 

On the other hand, being in Electrical Engineering was negatively 
correlated with mental health according to our regression and 
classification results.  As per the exit interviews, the ultra-
competitive nature of this program and the large number of 
compulsory courses (leaving little time for elective courses) 
appeared to be the main culprits.  

4.3 Impact of Gender 
In four of the five categories (Ability to Enjoy Life, Resilience, 
Balance, and Self-Actualization), being female negatively 
impacted the regression model for mental health across all 
programs and years. Being female was a positive factor only for 
Emotional Flexibility. Running PRISM to determine the rules 
associated with the mental health of women in engineering 
provided some specific insight into the Mechanical Engineering 
program as well as females in engineering as a whole: 

If Mechanical Engineering = Yes, and Gender = Female then 
Overall Mental Health = Low 
If Gender = Female then Flexibility = Very High 

To gather some insight into these findings, exit interviews were 
conducted with female students.  Being the minority in most 
classes, especially in Mechanical Engineering where the gender 
bias is severe, makes most women feel like they need to prove 
themselves to their professors, their male counterparts and in 
male-dominated industries on work terms.  Most of the professors 
are male and the delivery of material is tailored towards men 
(humour during class is often directed towards male students).  
Lastly, there is a lack of female companionship and there are high 
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levels of competitiveness within the women in classes, which 
contributes to feelings of isolation and loneliness. 

4.4 Factors Affecting the Five Components of 
Mental Health 
Overall, Engineering students rated their ability to enjoy life more 
highly than other mental health aspects.  According to our exit 
interviews, students recognized that “some things can’t be 
changed”, and when asked why, the responses ranged from 
technical to organizational and even philosophical barriers. 

According to the linear regression results, being in the Electrical 
Engineering program had negative coefficients for every mental 
health category except Self-Actualization.  Also, for students in 
Environmental Engineering, Self-Actualization was lower in the 
first and second year and higher in later years. 
The number of hours of class per week had a negative effect on 
Self-Actualization across all programs, and a negative effect on 
the Ability to Enjoy Life for most programs.  However, the 
number of hours of class per week had a positive coefficient for 
the other three categories (Emotional Flexibility, Balance and 
Resilience). On the other hand, the number of hours of homework 
had a positive effect on Self-Actualization, but a negative effect 
on every other category. Time in the classroom is mandated and 
there is no emphasis on discovery, but the time spent applying this 
knowledge on homework is self-motivated, which could aid in 
realizing one’s full potential.  
According to our regression results across all programs, the 
number of hours spent on extracurricular activities had a very 
small negative effect on the Flexibility category of mental health, 
and a small positive effect on all other categories. 

We found that being in a committed relationship had a negative 
effect on Balance and Emotional Flexibility, most likely due to 
the difficulty of managing a demanding academic program and 
personal relationships.  In particular, we obtained the following 
rule: 

If In a Committed Relationship of More than 6 Months = Yes 
and Year = First and Gender = Male then Balance = Low 

Finally, according to linear regression results, having gone 
through a recent breakup yields a negative effect on the Ability to 
Enjoy Life and Emotional Flexibility. 

5. CONCLUSIONS, RECOMMENDATIONS 
AND FUTURE WORK 
In this paper, we presented a case study of how data mining may 
be used to understand factors affecting the mental health of 
students.  We applied linear regression and classification 
algorithms to mental health surveys completed by Engineering 
undergraduate students, which revealed interesting relationships 
between various aspects of mental health and the academic 
program, year of study, gender, workload and relationship status. 
The results of this study suggest a number of recommendations to 
help improve the mental health of Engineering undergraduate 
students.  Given that the number of hours of homework was an 
important factor, it may be beneficial to offer first-year students 
additional time-management training.  Furthermore, more support 
should be provided to female Engineering students, e.g., 
counseling services or forums to invite women to talk about their 
experiences. 

Our analysis of the impact of the year of study on mental health 
(recall Table 2) suggests that first-year Engineering students are 
under pressure to succeed and more support should be provided to 
them.  Furthermore, it appears that fourth-year students 
experience the pressure of multiple course projects.  One solution 
may be to spread out project-heavy courses through the second 
and third year rather than leaving all of them till the last year. 

Another interesting finding was that students in a highly 
competitive and challenging program (Electrical Engineering) 
tend to have low overall mental health scores but high Self-
Actualization scores, whereas System Design Engineering 
students have high overall scores, which are possibly due to the 
flexible curriculum.  Further research should be done on balancing 
the number of required and elective courses while maintaining a 
challenging and practical curriculum. 

In this paper, we focused mainly on academic factors that may 
affect mental health, such as year of study, program and 
workload.  An interesting direction for future work is how to 
reliably collect and analyze (in a manner that ensures data 
privacy) data describing other factors that may affect the mental 
health of students, such as instructor-class relationships, grades, 
and satisfaction with work placements in co-operative education. 
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ABSTRACT 

A student using an interactive learning environment (ILE) may 

take multiple attempts to solve a problem step, at times using 

hints. But how effective are hints? Because data mining 

occasionally finds implausible negative effects of hints, a method 

is needed to remove selection effects related to hint use. 

We distinguish multiple attempts in which a student repeatedly 

seeks hints from multiple attempts to answer the problem. 

Exploratory analysis of log data from a tutoring system shows that 

making a hint request rather on the first attempt on a problem step 

correlates with hint requests on subsequent attempts, and 

proficiency on a first attempt correlates with proficiency on 

subsequent attempts. Based on this, we devise a multinomial 

logistic regression that distinguishes hint-request tendency from 

proficiency. We find that seeking just one hint is associated with 

repeated hint-seeking, but when students do make attempts to 

solve a problem after viewing a hint, they succeed about half of 

the time. Thus, the model removes seemingly negative “effects” 

of hints. We also find that individual differences among students 

are more prominent in hint-seeking tendency than in proficiency 

with hints. We conclude with some ideas to improve our model. 

Keywords 

Effect of help on performance, individual differences, learning 

skills, multilevel Bayesian models, Item Response Theory 

1. INTRODUCTION 
Work on help-seeking in Interactive Learning Environments 

(ILEs) shows that effects of help are not always straightforward. 

For instance, different types of hints may differ in effectiveness, 

and students may differ in proficiency with hints [5, 6]. Further, 

students may have a variety of help-seeking behaviors, such as 

help-avoidance (a failure to seek help when the student would 

likely benefit from it), and help-abuse (seeking help when the 

student can likely answer the problem). [1] Occasionally, use of 

help may be linked with negative effects [2, 4, 5], but the negative 

estimate is unsatisfactory. It is doubtful that hints cause incorrect 

performance: although a hint may at times confuse a student and 

thus contribute to an error, it does not reduce student knowledge. 

More plausibly, a hint request evidences that the student has not 

understand the material. In a sense, negative estimates of hint 

effects imply that the statistical method behind these estimates is a 

poor representation of human performance (or learning). A better 

model would reflect a positive or neutral hint effect. 

We consider whether the negative hint effects estimated in prior 

work are due to student tendency to request multiple hints without 

intervening attempts that could solve the problem. For example, 

one perspective is that attempt outcomes are effectively binary 

indicators of skill mastery, either successful (if correct) or not (if 

incorrect or a hint request). An incorrect attempt suggests that 

skill mastery is somehow deficient (although it may also be a 

slip), and a hint request suggests that the student does not know 

enough to answer the problem. Nonetheless, students may request 

hints to learn. Because hint requests and incorrect attempts can 

differ, we may need to distinguish tendency to answer correctly or 

incorrectly (proficiency) from tendency to request hints. 

While we can only hypothesize about the myriad reasons that 

students may have to avoid or overuse hints, something we can 

quantify is a tendency to request a hint rather than answer 

incorrectly, i.e., when a hint may help [8]. This Tendency to Ask 

for Help-Not Risking an Incorrect (TAH-NRI) may differ across 

categories of attempts; for instance, on average, students may like 

to try to solve a problem a second time rather than to use hints. 

Further, students may differ in their tendency to request hints. 

Counts of student actions may underestimate TAH-NRI, e.g., if 

the student answers incorrectly because a hint was unavailable, 

and overestimate it, e.g., if the student only seeks the bottom-out 

hint and must skip other hints to get to the last hint in a sequence. 

Proficiency may be viewed as the correctness rate when the 

student actually gives an answer. An operational definition of that 

is declining to request a hint, but students decline for a variety of 

reasons, including when they actually desire help. For instance, a 

student may be aware of own lack of prerequisite knowledge, yet 

may have poor experience with hints. In this light, distinguishing 

TAH-NRI from proficiency is a crude but potentially useful 

representation of metacognition. 

We examine these two notions empirically. First, we explore 

frequencies and correlations of student proficiency and TAH-NRI 

on different types of problem-solving attempts. Second, this 

exploratory analysis informs a statistical model of proficiency and 

TAH-NRI. The model improves on exploratory estimates of 

proficiency and TAH-NRI by taking other predictors into account. 

2. EXPLORATORY DATA ANALYSIS 
We perform exploratory and model-based (Sec 0) analyses on a 

dataset of 51 9th grade students using the Geometry Cognitive 

Tutor. The students worked through 170 geometry problems, 

consisting of 1666 problem steps (about twice a week for five 

weeks). Each student only saw a subset of the 170 problems. In 

the Geometry Cognitive Tutor, a student may make multiple 

attempts to complete a problem step. Completing a step requires a 

correct response. On each attempt, a student may supply a correct 

answer, an incorrect answer, or may ask for a hint. We omit 

second hint displays; a hint’s effectiveness in a specific problem 

step for a specific student is only evaluated once. 

In our analysis, we first consider that how students behave on a 

first attempt on a problem step yields contextual information for 

understanding subsequent attempts. This leads us to explore the 

relation of first-attempt hint-request behavior to behavior on 

subsequent attempts. Second, we ask whether there are individual 

differences among students in hint requests and proficiency that 

may characterize the behavior of a student across time. 

We group hint messages that differ in terms of surface features, 

i.e., in terms of the names and measures of the angles in a 

geometry problem. [6] We manually categorize each group of hint 

messages as feature-pointing, principle-stating or providing the 
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bottom-out hint. Feature-pointing hints make salient important 

problem features, e.g., by pointing out that two particular angles 

are vertical angles. Principle-stating hints give a domain-specific 

principle that is necessary to solve the problem, e.g., that vertical 

angles are equal in measure. Bottom-out hints show how to find 

the answer to the problem, such as by summing known quantities. 

Table 1: Rates of hint request and incorrect outcomes 

First-Attempt Rate 

Hint Requests Incorrects 

5% 16% 

Second-Attempt Rate Second-Attempt Rate 

Hint Requests Incorrects Hint Requests Incorrects 

70% 5% 22% 35% 

How does first-attempt hint behavior relate to behavior on a 

subsequent attempt? On a first attempt to solve a problem, 

students request hints only 5% of the time (Table 1), and enter 

incorrect responses more often (16%). On a second attempt, the 

conditional probability of a hint request given that the first attempt 

was also a hint request increases from 5% to 70%. In other words, 

students are unlikely to request a hint in the first place, but there is 

an extremely high rate of second hint requests after a first hint, 

70% of all second attempts and 93% [70/(70+5)] of the non-

correct second attempts after a hint. Statistical models of help-

seeking behavior should take first-attempt behavior into account. 

Second, we consider individual differences. In exploratory 

analysis, we define proficiency as the percent correct out of all 

attempts where a student p actually tries to solve the problem, i.e., 

attempts may be correct or incorrect, but not hint requests: 
     

          
. Similarly, we define a student’s TAH-NRI as the 

percent of hint requests out of all attempts when the student likely 

does not know enough to solve a problem, i.e., attempts that end 

in a hint request or incorrect, not in a correct outcome: 
     

          
. 

Figure 1 presents a distribution of proficiencies (X axis) and hint-

request tendencies (Y axis) on each attempt type. Individual 

differences in proficiency and in TAH-NRI characterize a student 

across opportunities on each attempt type. Proficiency on attempts 

after hints is moderately or strongly related to TAH-NRI on those 

types of attempts. Proficiency on attempts after a first incorrect is 

weakly or even negatively related to TAH-NRI, but proficiency 

after a second incorrect is moderately related to TAH-NRI. 

A student who is proficient on one attempt type should also be 

proficient on others. We find (Table 2) that proficiency on first 

attempts is moderately (      ) related to proficiency on 

attempts after a feature-pointing hint and after a second incorrect 

outcome (      ), and strongly related to proficiency on 

attempts after the first incorrect (      ). Nonetheless, 

proficiency on first attempts is not related to proficiency after 

other hints, nor to TAH-NRI. In general, we should take first-

attempt proficiency into account when predicting performance on 

other attempts, but not necessarily when predicting hint requests. 

Table 2: Correlations of first-attempt proficiency with 

proficiency and TAH-NRI on other types of attempts 

Attempt Type Corr. vs. Proficiency 

on Other Attempts 

Corr. vs. TAH-

NRI 

First attempts 1.00 0.01 

After FP Hint 0.39 0.12 

After PS Hint 0.18 -0.08 

After BOH 0.20 0.47 

After 1st  Incorrect 0.74 0.14 

After 2nd  Incorrect 0.46 0.30 

In sum, models should account for student differences, and 

student effects are different when predicting a hint request rather 

than a correct outcome.  

3. MODELING 
We present a baseline-category multinomial logistic regression to 

predict which outcome is most likely on an attempt 

(INCORRECT, HINT-REQUEST, CORRECT). INCORRECT is 

the baseline outcome against which other outcomes are compared. 

With   outcomes, there are     comparisons: comparison 

    of INCORRECT vs. HINT-REQUEST yields parameters 

related to TAH-NRI; comparison     of INCORRECT vs. 

CORRECT yields parameters related to proficiency. 

As a basis for this multinomial model, we take the ProfHelp-ID 

logistic regression. [5] ProfHelp-ID classifies CORRECT versus 

other outcomes, combining INCORRECT and HINT_REQUEST 

because both indicate that the student lacks the knowledge to 

answer correctly. ProfHelp-ID predicts whether an attempt will 

have a CORRECT outcome based on general student proficiency, 

individual differences in proficiency with different attempt types, 

knowledge component easiness, and a history of prior practice 

with the knowledge component. Compared to a logistic regression 

with   parameters, a baseline-category model estimates up to 
(   )  parameters, i.e., twice the number in ProfHelp-ID. 

     (  (      ))        ∑ (                 )

    

 

Equation 1: ProfHelp-Multinomial 

Figure 1: Average student proficiency vs. average TAH-NRI 

on each attempt type (in percentage-based  measures). From 

top left: first attempts, attempts after feature-pointing hints, 

after principle-stating hints, after bottom-out hints, after the 

first incorrect outcome, after the second incorrect outcome. 
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  is a matrix, with one parameter for each pupil  , attempt type   

and logit comparison  . The 6 possible attempt types are first 

attempts, attempts directly after each of three types of hints, and 

attempts directly after a first or second incorrect outcome on the 

given step. The subscript   implies that the parameter varies 

across the     comparisons. Thus, for pupil   and attempt type 

 ,      represents TAH-NRI, and      represents the proficiency, 

e.g.,        is TAH-NRI of student 2 on attempts directly following 

level-2 (principle-stating) hints. As the exploratory data analysis 

suggests, first-attempt performance may relate to both TAH-NRI 

and proficiency. Accordingly,   is a fixed     matrix such that 

the vector product of    and     makes the estimate over first-

attempts      a reference level for estimates for the same   and   

on other attempt types (i.e., where    ). 

Pupil parameters are partially pooled,         (    ). Thus, 

each student’s vector     is based on the averages    across all 

students, and each student’s contribution to    is weighted by the 

number of observations for the student. The hyperprior for    is 

  (      ), i.e., uninformative. We estimate the variance of the 

per-pupil parameters (diagonal of matrix  ), and impose a 

structure of zero covariance (off-diagonal cells in  ). 

Other parameters pertain to knowledge component j. By analogy 

with per-pupil TAH-NRI and proficiency,     represents the 

attractiveness to hints of KC j, and     represents the KC’s 

easiness. The slopes   and   are the effects of student p’s prior 

first-attempt successes     and failures     on the increased 

likelihood of a hint (for    ) and correct response (   ). 

In sum, the model estimates the main effects and individual 

differences in proficiency on each attempt type, and the main 

effects and individual differences in TAH-NRI on each attempt 

type. Unlike the percentages used in exploratory analysis, these 

estimates account for other predictors, e.g., prior practice, and the 

model fitting yields credible intervals (CI) about these parameters. 

4. RESULTS AND DISCUSSION 
The model-fitting indicates substantial individual differences in 

first-attempt TAH-NRI (Figure 2, top right) and in first-attempt 

proficiency (bottom right). Estimates of first-attempt TAH-NRI 

are negative for almost all pupils, with posterior 95% CI for      

ranging -1.71 to -1.14, implying that first attempt hint-requests 

were unlikely. First-attempt proficiencies are about 1.0, i.e., 

students in this dataset tend to answer correctly on a first attempt. 

Taking first-attempt TAH-NRI for each student as a reference 

level, attempts after hints are very positively associated with hint-

requests rather than incorrects: feature-pointing and principle-

stating hints (top left two blocks) are strongly positive for all 

students, and even bottom-out hints (top row, third block) trend 

positive for many students. 

With first-attempt proficiency as a reference level, proficiencies 

on attempts after feature-pointing and principle-stating hints 

(bottom left two blocks) tend to neutral, with (-0.40, 0.08) and (-

0.27, 0.25) posterior 95% CIs for      and     , respectively. In 

other words, by decoupling incorrect outcomes from hint requests, 

a multinomial model removed the strongly negative “effect” of 

these hints estimated by a binary model. [5] Moreover, individual 

differences in proficiency with hints [5] may be due to differences 

 

Figure 2: Logit estimates of     . TAH-NRI (top row) and proficiency (bottom). Left to right, the blocks are attempts after 

feature-pointing hints, principle-stating hints, bottom-out hints, one incorrect, two incorrects, and on first attempts. Each bar 

shows a 95% Credible Interval for      for one student, and the dot shows the median estimate. The X axes differ across blocks. 
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in TAH-NRI (top left three plots) rather than differences in 

proficiency (bottom left three plots). It is plausible that correct 

responses are more likely after bottom-out hints than other hints, 

since bottom-out hints often reveal the correct response. 

TAH-NRI is unlike other forms of help-seeking, including 

gaming-the-system behavior that involves “attempting to succeed 

in an educational environment by exploiting properties of the 

system rather than by learning the material and trying to use that 

knowledge to answer correctly” [3]. Neutral-to-positive 

proficiency with hints implies that students try to learn from hints, 

suggesting that TAH-NRI signifies learning, not gaming. Further, 

harmful gaming behavior was observed in only 8% to 27% of 

students; we find positive TAH-NRI for almost all students. 

TAH-NRI is positive directly after a first incorrect and second 

incorrect outcomes, with (0.65, 1.05) and (1.15, 1.66) posterior 

95% CIs for      and     , respectively. By contrast, proficiency 

after a first incorrect or a second incorrect is negative, with 95% 

CI for      =(-0.89, -0.64) and for      = (-1.08, -0.71). 

In sum, once we adjust for first-attempt tendency to request hints, 

we find that students use the hint system extensively, although 

there are ample individual differences. Students request hints 

more often after a previous hint request than after an incorrect.  

By contrast, once we adjust for first-attempt proficiency, students 

differ less in proficiency than in TAH-NRI. The “main effect” of 

hints is neutral (feature-pointing and principle-stating hints) or 

positive (bottom-out hints). We caution that a better evaluation of 

these hint types would consider a variety of hint sequences. 

4.1 Model Adequacy 
As often happens in classification, the model is biased (Table 3) in 

favor of predicting the majority class (CORRECT). 

Table 3: Confusion matrix 

 
Predicted 

INCORRECT 

Predicted 

HINT_ 

REQUEST 

Predicted 

CORRECT 

INCORRECT 607 951 3123 

HINT_ REQUEST 1017 2078 1195 

CORRECT 235 953 15778 

Attempts after a first or a second incorrect are more likely to be 

misclassified than indicated by their prevalence in the full dataset 

(Table 4). This is puzzling. At the heart of ProfHelp-Multinomial 

is the PFA model of first-attempt performance [7]. Performance 

after one incorrect or two incorrect outcomes is highly correlated 

with first-attempt performance (Table 1), so PFA should be 

reasonably accurate for these attempts, and the      parameters in 

ProfHelp-Multinomial should further improve accuracy. 

For future work, first, in combination with prior findings on help-

avoidance and help-abuse, our results imply that statistical models 

not only take into account local transitions from attempt to 

attempt, but longer sequences of attempts. This is consistent with 

the help-seeking model of Aleven et al [1]. Bridging data-mining 

and theoretical approaches will lead to a model that more 

accurately reflects student help use. 

Second, the fact that students often make multiple attempts to 

solve a problem-step without hints coupled with ProfHelp-

Multinomial’s poor predictive accuracy of performance on 

attempts after incorrects calls for data mining and other research 

to understand same-step performance after incorrect outcomes. 

Table 4: Prevalence of observations vs. prediction errors 

Attempt Type 
Percent of 

Dataset 

Percent of Prediction 

Errors 

First attempts 67 50 

After FP Hint 7 10 

After PS Hint 4 5 

After BOH 6 5 

After 1st Incorrect 11 20 

After 2nd Incorrect 4 9 

5. CONCLUSIONS 
This work advances the study of same-step help use in ILE. 

Students have a tendency to request multiple hints in a row rather 

than risk an error. Our analysis improves on prior analyses of 

TAH-NRI [8] in that we find that TAH-NRI may differ based on 

the type of attempt, and it persists after accounting for 

proficiency, for a knowledge component’s attractiveness to hints, 

and for prior practice. TAH-NRI is distinct from other help-abuse 

behavior, e.g., from gaming-the-system. Further, there are 

persistent individual differences among students in TAH-NRI. 

Formalizing TAH-NRI in the ProfHelp-Multinomial model 

alleviates the selection bias that caused another model to estimate 

that hints had negative effects. The ProfHelp-Multinomial results 

suggest that students make a strategic decision to get help and 

stick with it across attempts, i.e., the decision to try to solve vs. to 

request a hint is not an independent decision at each attempt.  

The improved understanding of help-seeking developed here is a 

step towards developing effective and efficient ILE, including 

systems that adapt to individual differences among students. 
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ABSTRACT
We present the Topical Hidden Markov Model method, which
infers jointly a cognitive and student model from longitudi-
nal observations of student performance. Its cognitive di-
agnostic component specifies which items use which skills.
Its knowledge tracing component specifies how to infer stu-
dents’ knowledge of these skills from their observed perfor-
mance. Unlike prior work, it uses no expert engineered
domain knowledge — yet predicts future student perfor-
mance in an algebra tutor as accurately as a published ex-
pert model.

Keywords
knowledge component discovery, student modeling, cogni-
tive diagnostic model, knowledge tracing

1. INTRODUCTION
Assessing students’ skills from their performance requires a
cognitive diagnostic model specifying which observed items
require which skills (sometimes called knowledge compo-
nents), and a student model that infers how well students
know each skill, based on their performance on items re-
quiring that skill. For example, a cognitive diagnostic model
for a reading tutor that listens to children read aloud might
model the graphophonemic patterns in a word as distinct
skills. Cognitive diagnostic models are typically engineered
by human domain experts at considerable expense. Meth-
ods to infer them automatically from student performance
data have been restricted to static instruments such as ex-
ams or homework assignments administered only once or
twice. However, intelligent tutorial decisions require a stu-
dent model that traces changes in student skills dynami-
cally over time. This paper presents and evaluates the novel
data-driven Topical HMM method to discover a cognitive
diagnostic model and a student model simultaneously.
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Figure 1: Unrolled example of Topical HMM with
two skills (S = 2), for a single user (U = 1) with
three time steps (T1 = 3). Student indices, parame-
ters (Q,K,D) and priors (α, τ, ω) are omitted for clar-
ity. Dark gray variables are observable during both
training and testing. Light gray variables are visi-
ble only during training. White variables are never
observed (latent).

2. TOPICAL HIDDEN MARKOV MODEL
Topical HMM treats the skills required by a sequence of
observed items as latent topics. We use a mixed member-
ship model to represent the latent skill(s) required by an
item. That is, we represent the item as requiring a single
skill whose identity is uncertain but has a specified prob-
ability distribution, which we interpret as specifying the
relative weight of each skill for the item. Figure 1 unrolls
this graphical model for two skills. The absence of connec-
tions between knowledge nodes for different skills assumes
no transfer between skills, i.e., the student’s knowledge of a
skill can change only when the student encounters an item
that requires the skill. This assumption makes possible an
efficient Gibbs sampler not described here.

Algorithm 1 specifies Topical HMM’s generative story. It
has hyper-parameters, variables, parameters, and priors.

Topical HMM’s hyper-parameters are given or tuned:

• S is the number of skills in the model.

• U is the number of users (students).

• Tu is the number of time steps student u practiced.

• M is the number of items. For example, in the case of
a reading tutor, M may represent the vocabulary size.
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In a tutor that creates items dynamically, M is the
number of templates from which items are generated.

• L is the number of levels of knowledge of a skill, typ-
ically 2 (knowing it or not). To distinguish novice,
medium, and expert proficiency, we would use L = 3.

Topical HMM’s variables correspond to nodes in Figure 1:

• xu,t is the item the student u encountered at time t.

• qu,t is a latent random variable specifying the skill(s)
required for item xu,t.

• ksu,t is a variable that takes values from 1 . . . L to rep-
resent the level of knowledge of skill s. There is a
Markovian dependency across time steps: if skill s is
known at time t − 1, it is likely to still be known at
time t.

• yu,t represents student performance as a binary vari-
able (correct or not), observed only during training.

Topical HMM’s parameters specify the distributions of these
variables. Since we take a fully Bayesian approach, we model
parameters as random variables:

• Qxu,t is the cognitive diagnostic model. It represents
the skill(s) required for item xu,t as a multinomial
Qxu,t to model soft membership. For example, Qxu,t =
[0.75, 0.25, 0, 0] means that item xu,t depends mostly
on skill 1, less on skill 2, and not at all on skills 3 or 4.
Unlike prior work where the mapping of items to skills
must be given, Topical HMM allows Q to be hidden,
i.e. discovered entirely from data.

• Ks,l is a multinomial that specifies the transition prob-
abilities from knowledge state l of skill s to other knowl-
edge states.

• Ds,l is a binomial that specifies the emission (output)
probability of a correct answer given the student’s pro-
ficiency level l on the required skill s.

Topical HMM uses Dirichlet priors α, τ, ω for its parameters.

3. EVALUATION
We use data collected by the Bridge to Algebra Cognitive
TutorR© [8] from 123 students, each of whom encountered an
average of 340.7 items (minimum 48, maximum 562, median
341), for a total of 41,911. The data is unbalanced: over 80%
of the items were correct.

We randomly partition the data into three sets with non-
overlapping students – a training set with 97 students, and
development and test sets with 13 students each. We use
the development set to tune hyper-parameters and select
the number of skills to model the data. We use the training
set exclusively for learning the parameters of the model, and
we only report results on the development or test set. To
avoid tuning on test data, we used the test set only once,
just before writing this paper.

The data set contains data from 893 different problems.
Each problem consists of a sequence of one or more steps,
and it is at this level that we do our analysis. We consider
the different steps to be the items the student encounters.
Students did not follow the curriculum in the same order; the
tutor decided which problems to assign in what order, and
the students chose the order to do the steps in each problem.
To name items consistently across students, we named each

Algorithm 1 Generative story of Topical HMM

Require: A sequence of item identifiers x1...Tu for U users,
number of skills S, number of student states L, number
of items M

1: function Topical HMM(x1 . . . xt,S,U,L,M)
2: . Draw parameters from priors:
3: for each skill s← 1 to S do
4: for each knowledge state l← 1 to L do
5: Draw parameter Ks,l ∼ Dirichlet(τs,l)
6: Draw parameter Ds,l ∼ Dirichlet(ωs,l)

7: for each item m← 1 to M do
8: Draw Qm ∼ Dirichlet(α)

9: . Draw variables from parameters:
10: for each student u← 1 to U do
11: for each timestep t← 1 to Tu do
12: Draw skill qu,t ∼ Multinomial(Qxu,t)
13: for s← 0 to S do
14: if s = qu,t then
15: . knowledge state could change:
16: k′′ ← ksu,t−1 . previous time step

17: Draw ksu,t ∼ Multinomial(Ks,k′′
)

18: else
19: . knowledge state can’t change:
20: ksu,t ← ksu,t−1

21: q′ ← qu,t . current skill
22: k′ ← k

qu,t
u,t . current knowledge state

23: Draw performance yu,t ∼ Multinomial(Dq′,k′
)

item by concatenating the tutor-logged problem name and
step name, yielding 5,233 distinct items.

We evaluate cognitive diagnostic model by how accurately
they predict future student performance. We operational-
ize predicting future student performance as the classifica-
tion task of predicting whether students correctly solved the
items on a held-out set. This paper focuses on predicting
performance on unseen students. To make predictions on
the development and test set, we use the history preceding
the time step we want to predict. To speed up computations,
we predict up to the up to the 200th time step in the test set.
Since we run evaluations multiple times in the development
set, we only predict up to the 150th time step. Therefore, our
development and test sets have 1950 and 2600 observations
respectively.

We evaluate the classifiers’ predictions using a popular
data mining metric, the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC) curve. The ROC
evaluates a classifier’s performance across the entire range of
class distribution and error costs. An AUC of 1 represents
a perfect classifier; an AUC of 0.5 represents a useless clas-
sifier, regardless of class imbalance. AUC estimates can be
interpreted as the probability that the classifier will assign
a higher score to a randomly chosen positive example than
to a randomly chosen negative example.

The manual expert cognitive diagnostic model was devel-
oped and refined by two cognitive scientists and a teacher
over four years. They first identified 76 different categories
of items, and then determined that students would need fifty
different skills to answer them. The manual model includes
some items that use multiple skills.

When we use Topical HMM with a manually designed
model, we initialize the parameter Q of Topical HMM with
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the expert model and do not update its values. In the case
that the expert decided that an item uses multiple skills, we
assign uniform weight to each skill even though the experts
assumed a conjunctive model. Topical HMM cannot handle
a conjunctive cognitive diagnostic model.

We now describe the values we use for the priors’ hyper-
parameters α, τ , and ω.

• Sparse cognitive model. We encourage sparsity on
the cognitive diagnostic model parameter (Q), moti-
vated by the assumption that items use only a few
skills. We set α = 0.1, because when the value of
the hyper-parameter of a Dirichlet prior is below one,
the samples are sparse multinomials. For example,
Qi = [1, 0, 0, 0] is a sparse multinomial, that repre-
sents that item i depends on skill 1, but not on skill 2,
3 or 4.

• Practice helps learning, and there is no forget-
ting. Manipulating the magnitude of the hyperparam-
eters τ and ω allows us to select the strength of the
prior belief that students transition to a higher level
of knowledge, and that they do not go back to the
previous level. We use cross validation to select the
magnitude of these hyperparameters with values 10 or
100.

For our experiments, we initialize the model randomly
and then collect 2,000 samples from a Gibbs Sampling Al-
gorithm. We discard the first 500 samples as a burn-in pe-
riod. To infer future student performance, we save the last
1,500 samples, averaging over the samples and calculating
the Maximum A Posteriori (MAP) estimate.

We compare the performance of these methods:

• HMM. Can we find evidence of multiple skills? Topi-
cal HMM should perform better than a cognitive model
that assigns all of the items to a single skill. We
run Knowledge Tracing [4] with a cognitive diagnostic
model that has only one skill in total. This approach
is equivalent to a single HMM.

• Student Performance. What is the effect of stu-
dents’ individual abilities? We predict that the likeli-
hood of answering item at time t correctly is the per-
centage of items answered correctly up to time t − 1.
Intuitively, this is the student’s “batting average”.

• Random cognitive diagnostic model. Does the
cognitive diagnostic model matter? We create a ran-
dom cognitive diagnostic model with five skills and as-
sign items randomly to one of five categories. We then
train Topical HMM to learn the student model (transi-
tion and emission probabilities), without updating the
cognitive diagnostic model.

• Item difficulty. What is the classification accuracy
of a simple classifier? We use a classifier that pre-
dicts the likelihood of answering item x as the mean
performance of students in the training data on item
x. Note that this classifier does not create a cognitive
diagnostic model.

• Manual cognitive diagnostic model. How accu-
rate are experts at creating a cognitive diagnostic mod-
els? We use Topical HMM with the 50-skill cognitive
diagnostic model designed by an expert.

• Data-driven cognitive diagnostic model. We ini-
tialize Topical HMM with the best model discovered
using the development set (with 5 skills).
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Figure 2: Test set AUC performance of different
models

Figure 2 shows the AUC of the different methods applied
to the test set, with 95% confidence intervals calculated with
an implementation of the Logit method 1. Our data-driven
model with five skills outperforms all of the other models,
with an AUC of 77.28. Because the confidence intervals do
not overlap, we can conclude with 95% confidence that our
data-driven model is significantly better than assuming a
cognitive diagnostic model with a single skill (HMM), using
the student’s “batting average” (Student Perf.), or assigning
items to skills randomly (Random). The confidence inter-
vals for the data-driven cognitive diagnostic model, the man-
ually engineered cognitive diagnostic model, and the item
difficulty approach overlap, with AUC scores of 77.28, 76.71
and 74.76 respectively.

4. RELATION TO PRIOR WORK
This section relates Topical HMM to prior work in automatic
discovery of cognitive diagnostic models and student mod-
els. In psychometrics, the branch of psychology and educa-
tion concerning educational statistics, matrix factorization
methods have been applied to discover a cognitive diagnostic
model from static assessment instruments such as a single
exam, or a homework assignment. A survey of previous ap-
proaches to automatic discovery of cognitive diagnostic mod-
els can be found elsewhere [13]; popular approaches include
Item Response Theory [10], and matrix factorization tech-
niques such as Principal Component Analysis, Non-Negative
Matrix Factorization [5, 13], and the Q-Matrix Method [1].
These methods can help explain what skills students have
mastered, but they ignore the temporal dimension of data.
Unlike Topical HMM, these approaches do not discover a
clustering of items to skills per se: performance is based on
continuous latent traits. More specifically, matrix factor-
ization techniques predict student performance as a combi-
nation of latent user traits, and latent item difficulty traits
(skills) that may be multidimensional. Moreover, matrix
factorization techniques cannot be applied to the problem
of predicting performance of unseen students, because they
require the latent user trait matrix. This problem also car-
ries over for higher dimension factorization techniques, such
as tensor factorization [12].

Learning Factors Analysis [3] uses temporal data, but re-
quires initial knowledge to improve upon. Dynamic Cog-
nitive Tracing [7] proposed a fully automatic method, but
did not scale due to memory use exponential in the number
of items and runtime exponential in the number of skills.
Moreover, Dynamic Cognitive Tracing was only tested on
synthetic data.

1http://www.subcortex.net/research/code/area_
under_roc_curve
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To our knowledge, we are the first ones to take time into
consideration to estimate a cognitive diagnostic model from
data of real students interacting with a tutor.

Knowledge Tracing [4] is a popular method to model stu-
dents’ changing knowledge during skill acquisition. It re-
quires (a) a cognitive diagnostic model that maps each item
to the skill(s) required, and (b) logs of students’ correct and
incorrect answers as evidence of their knowledge of particu-
lar skills. Knowledge Tracing can be formulated as a graph-
ical model: items that belong to the same skill are grouped
into a single sequence, and an HMM is trained for each se-
quence. The observable variable is the performance of the
student solving the item, and the hidden state is a binary la-
tent variable that represents whether the student knows the
skill. Topical HMM generalizes Knowledge Tracing, which
assumes the cognitive diagnostic model is known and each
item uses exactly one skill. Topical HMM discovers the cog-
nitive diagnostic model automatically and is more flexible
since it allows more than one skill per item.

Attempts to use tensor factorization – matrices with more
than two dimensions – to model student learning have been
limited [12] as they require all students and items to be seen
during training, which is often not feasible.

Other approaches to student modeling also exist. Per-
formance Factors Analysis [6] predicts student performance
based on item difficulty and student performance. Learning
Decomposition [2] uses non-linear regression to determine
how to weight the impact of different types of practice oppor-
tunities relative to each other. Parameter Driven Process for
Change [11] is able to use different student modeling tech-
niques, such as Knowledge Tracing or NIDA [9], to group
students with similar response or skill patterns over time.

5. CONCLUSIONS AND FUTURE WORK
Our main contribution is a novel method, Topical HMM,
which discovers cognitive and student models automatically.
A difficulty of modeling real student data is sparsely ob-
served students, items and skills. Unlike some prior meth-
ods, Topical HMM discovers cognitive diagnostic models
that generalize to unseen students. Our work is also the
first automatic approach to discover a cognitive diagnostic
model from real student data collected over time.

Previous work on automatic discovery of cognitive diag-
nostic models from static data was successful in distinguish-
ing between broad areas (i.e., French and Math), but not
finer distinctions within an area [13, 5]. Given that we were
able to discover different skills within an algebra tutor data
set we are optimistic about this line of research. In future
work we are interested in assessing the interpretability of the
cognitive diagnostic models discovered by Topical HMM. A
limitation of this study is that we evaluated our approach
on only one dataset. Future work may test Topical HMM
on more data sets from real students.
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ABSTRACT
Increasing college participation rates, and a more diverse
student population, is posing a challenge for colleges in fa-
cilitating all learners achieve their potential. This paper re-
ports on a study to investigate the usefulness of data mining
techniques in the analysis of factors deemed to be significant
to academic performance in first year of college. Measures
used include data typically available to colleges at the start
of first year such as age, gender and prior academic per-
formance. The study also explores the usefulness of addi-
tional psychometric measures that can be assessed early in
semester one, specifically, measures of personality, motiva-
tion and learning strategies. A variety of data mining models
are compared to assess the relative accuracy of each.

Keywords
Educational data mining, academic performance, ability, per-
sonality, motivation, learning style, self-regulated learning.

1. INTRODUCTION
Factors impacting on academic performance have been the
focus of research for many years and still remain an active
research topic [5], indicating the inherent difficulty in defin-
ing robust deterministic models to predict academic per-
formance, particularly in tertiary education [14]. Non pro-
gression of students from first year to second year of study
continues to be a problem across most academic disciplines.
This is particularly true of the Institute of Technology1 sec-
tor in Ireland, where students have a weaker academic his-
tory than university students, and there is increasing num-
bers of non-standard students in the classroom [12]. This
increase in participation poses a challenge to colleges to re-
spond in a pro-active way to enable all leaners achieve their
potential.

1The Institute of Technology sector is a major provider of
third and fourth level education in Ireland, focusing on the
skill needs of the community they serve (www.ioti.ie).

Educational Data Mining (EDM) is emerging as an evolv-
ing and growing research discipline in recent years, covering
the application of data mining techniques to the analysis of
data in educational settings [4, 17]. EDM has given much
attention to date to datasets generated from students’ be-
haviour on Virtual Learning Environments (VLE) and In-
telligent Tutoring Systems (ITS), many of which come from
school education [1]. Less focus has been given to college ed-
ucation, and in particular, to modelling datasets from out-
side virtual or online learning environments. This paper
reports on the preliminary results of a study to analyse the
significance of a range of measures in building deterministic
models of student performance in college. The dataset in-
cludes data systematically gathered by colleges for student
registration. The usefulness of additional psychometric mea-
sures gathered early in semester one is also assessed.

2. STUDY CRITERIA
In deciding on measures to include in the study, four key
areas were reviewed: aptitude, personality, motivation and
learning strategies. These were chosen firstly because re-
search highlights these factors as being directly or indirectly
related to academic performance [18], and secondly because
these factors can be measured early in semester one. The
following sections will report on correlations between indi-
vidual factors and academic achievement, and also look at
regression models of combinations of measures. All studies
cited below are based on college education.

2.1 Influence of learner ability
There is broad agreement that ability is correlated to aca-
demic performance, although opinions differ on the range of
sub factors that constitute ability [8]. For example, some
studies have used specific cognitive ability tests to measure
ability, for which there is extensive validity evidence. How-
ever such tests have been criticised with regarding to the
objects of measurment. For example Sternberg 1999 [19]
asserts that high correlation between cognitive intelligence
scores and academic performance is because they measure
the same skill set rather than it being a causal relation-
ship. Therefore many studies use data already available to
colleges to measure ability, i.e. grades from 2nd level edu-
cation or SAT/ACT (Scholastic Aptitude Test / American
College Testing) scores [18]. In a meta analysis of 109 stud-
ies by Robbins et al 2004 [16] prior academic achievement
based on high school GPA or grades was found to have mod-
erate correlation with academic performance (90% CI: 0.448
± 0.4,). Average correlation between SAT scores and aca-
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demic performance was lower (90% CI: 0.368± 0.035).

2.2 Influence of personality
Factor analysis by a number of researchers, working indepen-
dently and using different approaches, has resulted in broad
agreement of five main personality dimensions, namely open-
ness, agreeableness, extraversion, conscientiousness and neu-
roticism, commonly referred to as the Big Five [9]. Of the
five dimensions, conscientiousness is the best predictor of
academic performance [20]. For example, Chamorro et al
2008 [6] reported a correlation of 0.37 with academic per-
formance (p<0.01, n=158). Openness is the second most
significant personality factor, but results are not as consis-
tent. Chamorro et al 2008 [6] reported a correlation of 0.21
(p<0.01, n=158) between openness and academic perfor-
mance. However the strength of the correlation is influenced
by assessment type, with open personalities doing better
where the assessment method is not restricted by rules and
deadlines [10]. Studies on the predictive validity of other
measures of personality are inconclusive [20].

2.3 Motivational factors
Motivation is explained by a range of complementary the-
ories, which in turn encompass a number of factors, some
of which have been shown to be relevant, directly or indi-
rectly, to academic performance [16]. Factors relevant to
academic performance in college include achievement moti-
vation (drive to achieve goals), self-efficacy and self-determined
motivation (intrinsic and extrinsic motivation). In Robbins
et al 2004 meta analysis of 109 studies, self-efficacy and
achievement motivation were found to be the best predic-
tors of academic performance [16]. Correlations with self-
efficacy averaged at 0.49 ±0.05 (CI: 90%), correlations with
achievement motivation averaged at 0.303 ± 0.04 (CI: 90%).
Self-determined motivation is not as strong a predictor of
academic performance [11].

2.4 Influence of learning strategies
The relationship between academic performance and per-
sonality or motivation is mediated by a students approach
to the learning task. Such learning strategies include both
learning style (such as deep, strategic or shallow learning
approach) [6] and learning effort or self-regulation [13].

Analysing the influence of learning style directly on aca-
demic performance, some studies show higher correlations
with a deep learning approach [6], while others cite marginally
higher correlations with a strategic learning approach [5].
The difference in these results can be explained, in part, by
the type of knowledge being tested for in the assessment
itself [21]. Many studies argue that there is a negative cor-
relation between a shallow learning approach and academic
performance [5].

Self-regulated learning is recognised as a complex concept to
define, as it overlaps with a number of other concepts includ-
ing personality, learning style and motivation, particularly
self-efficacy and goal setting [2]. For example, while many
students may set goals, being able to self-regulate learning
can be the difference between achieving, or not achieving,
goals set. Violet 1996 [21] argued that self-regulated learn-
ing is more significant in tertiary level than earlier levels

of education because of the shift from a teacher-controlled
environment to one where a student is expected to manage
their own study. A longitudinal tertiary level study by Ning
and Dowling 2010 [13] investigating the interrelationships
between motivation and self-regulation found while both had
a significant influence on academic performance, motivation
was a stronger predictor of academic performance.

2.5 Combining psychometric measures
Individually the factors discussed above are correlated with
academic performance. Also of relevance is how much of the
variance in academic performance they account for. Cassidy
2011 [5] accounted for 53% of the variance in a regression
model including prior academic performance, self-efficacy
and age (n=97, mean age=23.5). Chamorro-Premuzic et
al 2008 [6] accounted for 40% of the variance in a regres-
sion model including ability, personality factors and a deep
learning strategy (n=158, mean age=19.2). A similar vari-
ance was reported by Dollinger et al 2008 [7] (44%) in a
regression model including prior academic ability, personal-
ity factors, academic goals and study time (n=338, mean
age=21.9). However not all studies concur with these re-
sults. In a study of non-traditional students, Kaufmann et
al 2008 [11] accounted for 14% of the variance in a model
with prior academic performance, personality factors and
self-determined motivation (n=315, mean age=25.9). This
suggests that models based on standard students may not
be applicable to a more diverse student population.

There is clearly overlap, either correlation or causal, between
the factors discussed above. A dataset that includes these
measures will have a complex pattern of interdependencies.
This raises questions on how best to model this type of data,
what dimensions are useful to include, and how consistent
are results across student groups.

3. THE STUDY DATASET
This study was based on first year students at an Institute
of Technology in Ireland. 30% of first year students took
part (n=713) based on their participation in online profil-
ing during induction. Data was gathered over two years,
September 2010 and September 2011. Students were from
a variety of academic disciplines including computing, en-
gineering, humanities, business and horticulture. The age
range was [18,60] with an average age of 23.75. Average
CAO Points2 was 257.9 ± 75. 59% of the students were
male.

The data was compiled from three sources:

1. Prior knowledge of the student: Table 1 lists attributes
used from data available following student registration.
This includes age, gender and ability measures based
on prior academic performance. Access to full time
college courses in Ireland is based on academic achieve-
ment in a set of state exams at the end of secondary
school. Students have a grade for Maths, English, a
foreign language, and four additional subjects chosen
by the student. These subjects were categorised as
science, humanities and creative / practical.

2CAO Points are a measure of prior academic performance
in Ireland, range [0,600].
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2. Psychometric data: Table 2 lists the additional mea-
sures used which were assessed using an online ques-
tionnaire developed for the study (www.howilearn.ie).
The questionnaire was completed during first year in-
duction. It covered measures of personality, motiva-
tion, learning style and self-regulated learning. Ques-
tions are taken from openly available, validated instru-
ments.

3. Academic performance in year 1: A binary class label
was used based on end of year GPA score, range [0-4].
GPA is an aggregated score based on results from be-
tween 10 and 12 modules delivered in first year. The
two classes were poor academic achievers who failed
overall (GPA<2, n=296), and strong academic achiev-
ers who achieved honours overall (GPA≥2.5, n=340).
To focus on patterns that distinguish poor academic
achievers from strong academic achievers, students with
a GPA of between 2.0 and 2.5 were excluded, giving a
final dataset of (n=636).

4. RESULTS
To date, six algorithms have been used to train models on
the dataset, Support Vector Machine(SVM), Neural Net-
work(NN), k-Nearest Neighbour (k-NN), Näıve Bayes, De-
cision tree and Logistic Regression, using RapidMiner V5.2
(rapid-i.com). Models were run on the full dataset, and also
on two subgroups of the dataset split by age. An age bound-
ary of 21 was chosen because the majority of under 21s had
a poor academic performance (61%), whereas the majority
of over 21s had a strong academic performance (70%). All
datasets were balanced by over sampling the minority class,
the attributes were scaled to the range [0,1], and model ac-
curacy was assessed using cross validation (k=10). Model
accuracy for data available at registration only (prior) was
compared to model accuracy when psychometric data was
included (all). Results and model parameters are detailed
in Table 3.

When modelling all students using prior attributes only,
pairwise comparison of the mean accuracies using least sig-
nificant difference (dlsd = 5.07, p = 0.05) indicates model
performance was comparable across learners, with the only
significant pairwise difference being between Näıve Bayes
(75.74%) and SVM (69.41%). Model accuracies changed
marginally when psychometric variables were included. The
most notable change was the SVM model, where model ac-
curacy increased from 69.41% to 75% (t(18) = 2.05, p =
0.055). The accuracy of most models improved when trained
on younger students only. Again the most notable change
was the SVM model. It increased from 69.41% to 82.62%,
which was significant (t(18) = 3.53, p = 0.0024). Model
accuracies changed marginally when psychometric variables
were included for this group.

Models trained on older students were the least accurate
with the exception of an SVM model using all attributes,
which achieved the highest accuracy of all models at 93.45%.
Accuracies for Decision Tree and Logistic Regression were
particularly poor, with models performing no better than
random guessing. In this student group, prior academic per-
formance was not available for 38% of the students (n=108),
explaining the improvement in accuracies when psychomet-

Table 1: Data available from the college

Learner Ability measures, mean and standard deviation:
Aggregate Mark (CAO points) (258±76)
English Result (45.5±18) Maths Result (23.8±14)
Highest Result (64.7±14) Humanities Average(39.7±13)
Science Average (31.8±16) Creative Average (47.9±19)
Other factors:
Age (23.75±7.6) Gender (m=440, f=304)
Note: Range for age is [18,59], valid range for CAO points
is [0,600], valid range for other values is [0,100]

Table 2: Additional measures*

Personality, Goldbergs IPIP scales (http://ipip.ori.org):
Conscientousness (5.9±1.5 ) Openness (6.35±1.3)
Motivation, MSLQ [15]:
Intrinsic Goal Orientation(7.1±1.4) Self Efficacy (6.8±1.5)
Extrinsic Goal Orientation (7.8±1.4)
Learning style, based on R-SPQ-2F [3]:
Shallow Learner (1.4±2) Deep Learner (5.2±2.9)
Strategic Learner (3.5±2.5)
Self-regulated Learning, MSLQ [15]:
Self Regulation (5.8±1.3) Study Effort (5.9±1.7)
Study Time (6.2±2.3)
*The mean, standard deviation, and instrument from
which questions were sourced are given for each measure.
Valid range for all measures is [0,10]

ric attributes were included in the models. When students
with missing data were removed from this group, includ-
ing psychometric measures did not improve model accura-
cies significantly for any of the models. SVM again had the
highest accuracy at 91%, while Neural Networks achieved
similar accuracies to the under 21 student group.

5. CONCLUSION
Results from this study show that models of academic per-
formance in tertiary education can achieve good predictive
accuracy, particularly if younger students and mature stu-
dents are modelled separately. This suggests that patterns
are different for standard versus non-standard students. The
preliminary analysis has demonstrated that good accuracy
can be achieved based on data already available to colleges.
Including additional psychometric measures improves pre-
dictive accuracy for mature students, but the evidence so
far suggests this is due to missing data regarding prior aca-
demic performance rather than the additional added value
of the psychometric measures themselves.

The most accurate models were SVMs trained on under 21s
and over 21s separately. In general, models that can learn
more complex patterns, and handle high dimensionality, are
getting higher accuracies for both student groups. The dif-
ference in accuracy across models is most pronounced for
mature students, suggesting the patterns in that subgroup
are more complex. When training a single model for all stu-
dents, including students for whom prior academic results
are not available (i.e. the quality of the dataset is reduced),
models give comparable accuracy (73.82%±1.8).

The results published here represent early results from the
study. Further analysis of the psychometric measures is re-
quired to determine their predictive value, and also their use-
fulness in understanding how the profile of students who fail
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Table 3: Model accuracies (% mean and st. dev)

Dataset Attri-
butes

SVM* NN** k-NN
(k=16)

Näıve
Bayes

Decision
Tree

Log
Reg

Full
(n=636)

prior 69.41
±7.11

74.32
±4.72

73.97
±4.46

75.74
±5

72.94
±5.78

72.01
±6.41

all 75
±4.88

75.33
±7.99

74.85
±3.63

72.35
±6

74.56
±5.54

70.84
±3.60

Under21
(n=350)

prior 82.62
±9.47

78.1
±8.7

76.9
±4.77

77.14
±5.55

70
±4.42

74.94
±6.22

all 80.71
±10.4

78.1
±5.3

79.05
±5.41

79.29
±7.76

69.76
±4.89

76.45
±6.47

Over 21
(n=286)

prior 77.03
±9.56

72.29
±11.33

64.99
±7.33

57.16
±16.79

50.62
±1.41

48.96
±22.12

all 93.45
±4.41

77.31
±9.3

71.7
±4.86

57.16
±16.79

50.62
±1.41

52.47
±18.08

Over 21
no miss-

prior 91.03
±6.46

78.3
±11

71.54
±11.47

62
±11

51.5
±1.36

64.31
±10.71

ing data
(n=178)

all 91.03
±6.46

79.6
±12.12

70.69
±6.1

69.26
±5.67

51.5
±1.36

66.26
±10.07

prior: attributes available from the college, all: all attributes
*Anova kernel, epsilon=0.7 and C=1.
*Learning rate=0.7, and momentum=0.4, 2 hidden layers (10,5).

differs from those who do well. To date, two subgroups have
been examined, split by age. Other subgroups will be re-
viewed, including an analysis of differences across academic
disciplines, and an analysis of students with GPA between
2.0 and 2.5 (not included in this study). Finally, model ac-
curacies will be verified by testing the models against a third
year of data, students registered in September 2012.
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ABSTRACT
Much research has been done on affect detection in learn-
ing environments because it has been reported to provide
better interventions to support student learning. However,
students’ actions inside these environments are limited by
the system’s interface and the domain it was designed for. In
this research, we investigated a learning environment wherein
students had full control over their activities and they had to
manage their own goals, tasks and affective states. We iden-
tified features that would describe students’ learning behav-
ior in this kind of environment and used them for building
affect models. Our results showed that although a general
affect model with acceptable performance could be created,
user-specific affect models seemed to perform better.

Keywords
affect modeling, educational data mining, student-driven learn-
ing

1. INTRODUCTION
The current society and workplace is dynamic and requires
people to continuously learn new skills and adapt to what
is needed. In order to prepare students for this kind of en-
vironment, they need to learn how to manage their learning
goals, their time, their motivation and their affective states
in environments wherein they receive little or no support
and they have complete control over their learning.

Self-regulated learners are likely to be capable of adapting to
such environments because they can effectively manage the
different aspects of a learning scenario. One of the most im-
portant yet difficult skills to learn in self-regulation is mon-
itoring one’s cognitive and affective states. Knowledge of
one’s thoughts and affective states helps students evaluate
the current situation and identify if it is better to continue

∗also affiliated with: Center for Empathic Human-Computer
Interactions, College of Computer Studies, De La Salle Uni-
versity, Manila, Philippines

with the current activity or change it. When students learn
on their own, it is likely that they will spend time doing non-
learning related activities. These do not always serve as dis-
tractions because they have also been shown to help regulate
emotions [12]. Self-monitoring becomes essential in this case
because students need to identify when and how much time
spent in non-learning related activities is acceptable so that
they can still achieve their learning goals. Self-monitoring
is not easy because it is a complex meta-cognitive activity
requiring much attention and sophisticated reasoning [13].
Learning in complex domains increases cognitive load and
makes self-monitoring even more difficult.

In this research we are moving towards the creation of sys-
tems that can help students self-monitor by automatically
detecting their affective states. It will be helpful for stu-
dents to be informed about their affective states when they
experience high cognitive load so that they can change their
behavior accordingly. Such systems can also suggest activi-
ties to help them learn better (e.g., refer to notes, seek help)
when certain affective states are detected. Another goal of
the research is to use a data collection methodology that
does not disrupt students’ usual learning behavior. The suc-
ceeding sections discuss our methodology, the data we used,
our affect model creation process and our results.

2. RELATED WORK
Many researchers have tried improving existing learning sys-
tems by incorporating affect detection for better feedback.
D’Mello et al. [7] for example developed affect models using
data from students’ interactions with a conversational agent
in the domain of computer literacy. The features they used
for building these models were based on students’ responses,
the correctness of the students’ answers, their progress and
the type of feedback provided by the system. The model
they built to distinguish each affective state from each other
did not perform very well (i.e., Kappa = 0.163), however the
models they built for distinguishing affective states from a
neutral state performed better (i.e., Kappa = 0.207 - 0.390).

Baker et al. [1] also developed affect models for students
using Cognitive Tutor Algebra. They used features that
described students’ actions, the correctness of their actions
and their previous actions. They built affect models which
distinguished one affective state from another (e.g., bored
vs. not bored, frustrated vs. not frustrated) whose resulting
Kappa values ranged from 0.230 to 0.400.
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Our work differs from previous research because we built
affect models using data from students who were not limited
to learning in a certain domain, who controlled their own
learning, who did not receive feedback and there was no
information regarding their learning progress.

3. LEARNING BEHAVIOR DATA
In our previous work, we collected data from one male under-
graduate student, one male master’s student and two female
doctoral students who engaged in research activities as part
of their academic requirements [9]. The students were aged
between 17 and 30 years old wherein three of them were
taking Information Science while one doctoral student was
taking Physics. During the data collection period, two of
the students were writing conference papers and two made
power point presentations about their research. Students
had control over how they conducted their learning activities
and did not receive any direct support from their supervisor.
These conditions required all students to manage their own
cognitive and affective states as they learned which satisfied
our target learning scenario.

Data was collected in five separate two-hour learning episodes
from each student over a span of one week. Students freely
decided on the time, location and type of activities they
did but were required to learn in front of a computer that
recorded their learning behavior. All students used a com-
puter in doing their research so the setup was naturalistic
and they did not have to change the ways in which they
usually learned.

Data about the students’ learning behavior was collected
by asking them to annotate their behavior after each learn-
ing episode using a behavior recording and annotation tool
we developed called Sidekick Retrospect [9]. At the begin-
ning of a learning episode, students inputted their learning
goals. The system then began logging the applications they
used, taking screenshots of their desktop and capturing im-
age stills from their webcam with corresponding timestamps.
After a learning episode, students were presented a timeline
which showed the desktop screenshots and image stills de-
pending on the position of their mouse on the timeline. This
helped students recall what happened during the learning
episode so they could annotate it.

Students made annotations by selecting a time range and in-
putting their intentions, activities and affective state. Inten-
tions can either be goal related or non-goal related relative to
the goals set at the beginning of the learning episode. Activ-
ities referred to any activity done while learning which could
either be done on the computer (e.g., using a browser) or out
of the computer (e.g., reading a book). Two sets of affect
labels were used for annotating affective states wherein goal-
related activities were annotated as delighted, engaged, con-
fused, frustrated, bored, surprised or neutral and non-goal
related activities were annotated as delighted, sad, angry,
disgusted, surprised, afraid or neutral. Academic emotions
[4] were used for annotating goal related intentions because
they gave more contextual information about the learning
activity. However, academic emotions might not have cap-
tured other emotions outside of the learning context so Ek-
man’s basic emotions [8] were used to annotate non-goal
related intentions.

Students would inherently recall what happened during a
learning episode when they made annotations so it would
be easier for them to identify the appropriate labels. Go-
ing through the entire learning episode sequentially would
also help them annotate more accurately because they would
see how and why their activities changed as well as its out-
comes. It is possible that students might not annotate the
data correctly for fear of judgment or getting lower scores.
However, in our experiment we made it clear to the students
that their learning behavior would not affect their grades in
any way and assured them that these would not be shown
or discussed with their supervisors.

The students’ annotations were processed and cleaned so
that contiguous annotations had a different intention, ac-
tivity or affective state. Those that were exactly the same
were merged. The resulting data consisted of 1,081 annota-
tions from all students with an average of 54.05 annotations
(N=20; σ=27.18) in each learning episode.

4. FEATURE ENGINEERING
The data consisted of only three features (i.e., timestamp,
intention and activity) and the affective state label for cre-
ating affect models. Models built using these initial features
performed poorly so new features had to be designed.

Although the students worked on different topics and used
different applications, all of them processed and performed
experiments on previously collected data, searched for re-
lated literature and created a report or document about it.
Although students performed many different activities, an-
alyzing the data showed that these activities can be catego-
rized into six general types – information search (e.g., using
a search engine), view information source (e.g., reading a
book, viewing a website), write notes, seek help from peers
(e.g., talking to a friend), knowledge application (e.g., paper
writing, presentation creation, data processing) and off-task
(e.g., playing a game). This was used as a new feature which
we called task. We also added as features the duration of
the task and its position in the learning episode. A task’s
position in the learning episode was expressed as a normal-
ized time value ranging from zero to 100, wherein zero in-
dicated the start of the episode, 50 indicated the middle of
the episode and 100 indicated the end of the episode.

Previous research has shown that the occurrence and dura-
tion of previous cognitive or affective states influenced the
student’s current affective state [2, 9]. However, there is
no study that describes how long their influences last. For
this study, we only considered the effects of cognitive and
affective states in the last five minutes which was based on
the average duration of tasks in our data. Similarly, there
was no study indicating how many elements in a sequence
of previous tasks influenced the current task. However, the
data showed that students performed only a maximum of
five tasks within a five minute interval (i.e., when students
quickly shifted from one task to another). So, we considered
the past five tasks relative to the current task as features.

To express the relationship between the previous and current
tasks, we used task frequency (i.e., the number of times a
certain type of task was performed in the last five minutes),
task duration (i.e., the number of seconds each type of task

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 245



www.manaraa.com

Table 1: Affect model performance
Classifier Kappa F-measure Accuracy

Näıve Bayes 0.345 0.349 63.10%
J48 (C4.5) 0.333 0.290 62.57%
JRip 0.326 0.331 61.22%
SVM 0.286 0.351 59.91%
Rep-tree 0.284 0.362 59.06%
Bayesian Network 0.181 0.317 39.43%

was performed in the last five minutes), most frequent task
(i.e., the most frequent type of task in the last five minutes)
and dominant task (i.e., the type of task that was performed
for the longest time in the last five minutes).

The new set of 22 features was used with the affect label for
affect modeling.

5. AFFECT MODELING
Rapidminer 5.3 [11] was used in running different machine
learning algorithms to build the affect models. Batch cross-
validation was used for evaluating the models such that all
the data from one student was held out for testing each time.
This was used to test if the resulting model would generalize
over students.

RapidMiner’s genetic algorithm feature selector was used
to identify the most relevant features for the classification
task. The fitness of each feature subset was calculated by
running a given machine learning algorithm on that subset
and then using the resulting model’s batch cross-validated
kappa value. Cohen’s Kappa [3] was used because it consid-
ers misclassifications of multiple class labels which cannot
be handled by other measures like accuracy. Kappa has also
been used frequently in classifying educational data [1, 7].

Table 1 shows the results of the evaluation where the Näıve
Bayes model gave the highest kappa value of 0.345 using the
features selected by the feature selector. This indicates that
the model can perform around 34% better than chance.

The feature selector used 12 out of the 22 features for build-
ing the affect models. Three of these features were related
to the student’s current state (i.e., position in the learning
episode, duration and task). Five of the features were related
to the past tasks employed by the student (i.e., taskn−1 ...
taskn−5). Two of the features were related to the amount of
time spent performing a previous task in the last five minutes
(i.e., information search duration and write notes duration).
Finally, two features were related to the frequency of per-
forming tasks in the last five minutes (i.e., apply knowledge
frequency and off-task frequency).

Just like other research, features related to previous actions
were also found to correspond with the current affective state
[2, 6, 9, 12] and is probably the reason why these were se-
lected. The task feature was probably selected because some
affective states occurred more frequently while performing a
particular task. For example, confusion and engagement
were commonly associated with knowledge application and
viewing information sources most likely because these activ-
ities require utilizing current knowledge and understanding

Figure 1: Occurrence of affective states over time

Table 2: Kappa values of user-specific affect models
J48 JRip Rep-Tree SVM BN NB

1 0.675 0.665 0.628 0.625 0.604 0.310
2 0.270 0.147 0.166 0.164 0.229 0.206
3 0.498 0.490 0.400 0.425 0.414 0.375
4 0.532 0.445 0.484 0.529 0.300 0.256

new information. However, boredom and neutral affective
states were commonly experienced only when viewing in-
formation sources probably because unlike knowledge appli-
cation, some information sources may not have been rele-
vant to the student. Delight was usually experienced when
students performed off-task activities probably because stu-
dents engaged in activities they enjoyed during this period.

Certain affective states were experienced more frequently at
certain positions in the learning episode which might have
caused it to be selected as a feature. Figure 1 shows the total
number of times an affective state was experienced by stu-
dents at certain points of the learning episode. Engagement
was experienced more frequently at the start and at the end
of the session while the occurrence of confusion and delight
increased in the middle of the episode. This is indicative of
the phases of flow wherein a learner starts in an equilibrium
state of understanding, which is challenged by new knowl-
edge usually exhibited by feelings of confusion and is later
assimilated leading back to an equilibrium state [5, 10].

We also investigated the performance of user-specific affect
models by using each student’s data separately. The models
were evaluated with batch cross-validation using the session
number to see if it generalized over learning sessions.

Table 2 shows that the kappa values of the user-specific affect
models were higher compared to the general affect model.
Among all machine learning algorithms, J48 performed best
with a Kappa value of 0.675. The feature selector selected
features similar to those in the general affect model with
subtle differences in the features related to the frequency
and duration of previous tasks. For example, in one stu-
dent’s affect model, the frequency of information searches in
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the past five minutes was selected as a feature while the fre-
quency of writing notes in the past five minutes was selected
instead in another student’s model. These are indicative of
students’ affective states being influenced differently by cer-
tain tasks. This also shows that individual differences play a
part in the affective states experienced by a student making
them behave differently in similar contexts.

The features selected in both the general and user-specific
models described the frequency, duration and type of pre-
vious actions performed by the students as well as the stu-
dents’ current learning state. These are contextual informa-
tion about the students’ learning state which seems to be
good predictors of students’ affective states as shown by the
performance of the resulting affect models.

6. CONCLUSION
In this paper, we have presented the development of affect
models that are capable of identifying students’ affective
states. The features used described the context in which
the student learned such as the previous and current tasks
they performed and are currently doing. The novelty of our
work is that the affect models we built could identify affec-
tive states in a learning environment wherein students were
not bound by a particular domain or learning system and
the students had complete control over their activities. Even
though information regarding the students’ progress was un-
available, the performance of the models was still acceptable.
Our results could not directly be compared to previous work
because the affective states predicted by our models were in
the context of a particular task unlike the works of Baker et
al. [1] and D’Mello et al. [7] that predicted affective states
in particular time intervals. However, the approach seems
promising because the performance of the model was almost
as good as the results in these works.

We acknowledge that the general affect model was created
using only a few participants. However, the important ob-
servation we got was that user-specific models had better
results indicating the importance of individual differences in
building affect models. Evaluating the performance of affect
models using data from more students would help confirm
such findings.

There is a need to find features that could increase the per-
formance of these affect models and experiment on different
thresholds (e.g., task frequencies and durations in either less
than or more than five minutes prior to the current task)

Affect models built with our methodology can be used by
other systems for monitoring affective states. Students can
then be made aware of their affect through prompts so they
can adapt their activities accordingly. These systems could
also suggest changes to particular tasks when certain affect
is detected. Enabling systems to help students self-monitor
can help them self-regulate and thus learn better.
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ABSTRACT
We present an algorithm for reducing the size and complex-
ity of the Interaction Network, a data structure used for
storing solution paths explored by students in open-ended
multi-step problem solving environments. Our method re-
duces the number of edges and nodes of an Interaction Net-
work by an average of 90% while still accounting for 40% of
actions performed by students, and preserves the most fre-
quent half of solution paths. We compare our method to two
other approaches and demonstrate why it is more effective
at reducing the size of large Interaction Networks.

1. INTRODUCTION
One major advantage of computer based tutoring systems,
for multi-step problems, is the ability to log data show-
ing ‘how’ students solved problems, and their mistakes, an
aspect not often found in traditional paper based home-
work. However providing educators a method of under-
standing the data logged by these systems, efficiently so
that it can be acted upon, remains challenging. One ap-
proach is to provide a visualization tool to display the so-
lutions to educators, to facilitate gaining insights into how
students solved their open-ended multi-step problems. We
define open-ended problems, as problems with at least two
differing solution paths requiring multiple steps to complete.
These types of problems are often seen in Intelligent Tutor-
ing Systems (ITS) and similar computer based instruction,
like the Deep Thought Logic Tutor[3].

The interaction network is a network similar to a state-space
for tutors, built from data-logs, which leverages student in-
formation. One important challenge facing the Interaction
Network and InVis, the tool built for exploring those net-

works, is the size of the network, often resulting in thousands
of nodes and edges for roughly a hundred students worth of
data. These large networks make it difficult to retrieve a gen-
eral overview and understanding of student solutions. We
present a reduction algorithm that drastically reduces the
number of nodes in the network, allowing users to focus on
the common approaches used by students to solve problems.

We compare the reduction of nodes and edges between our
reduced network and the original, as well as other metrics,
like the percent coverage of student solutions. We also com-
pare our approach to two alternative filtering processes to
show the benefits of our method. We provide a set of domain
experts with one of the problems from the Deep Thought
logic tutor and ask they describe the different approaches
students use to solve the problem, as well as the common
mistakes. We compare the expert provided solutions to the
reduced Interaction Network to confirm whether or not our
method has appropriately captured the solution paths.

We show that our proposed reduction algorithm when ap-
plied to the Interaction Network successfully reduces the
number of nodes of the Interaction Network by between 86
and 96 percent, while preserving the solution traces to an
average of 52 percent of the goals and 40 percent of the
student action frequencies. Furthermore, our method pre-
serves all the solutions suggested by experts. These types
of reduced networks could aid in providing a more efficient
means of understanding student behaviors, mainly by lim-
iting the network to the most important solutions. When
combined with InVis, this could provide an efficient method
of understanding how students solved problems in computer
based systems, potentially providing a useful role for the ed-
ucator in their course, by providing a better understanding
of student solutions.

2. RELATED WORK
Others have looked at reducing the state space in learning
environments for purposes of improving intelligent tutor ef-
ficiency and improving interpretation of the data for use by
course developers and instructors [9]. Our work differs, as
we focus on clustering different student solutions to complex
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problems in order to reduce the space of student strategies.

The source for our student data is the Deep Thought logic
tutor. This tutor allows students to solve first-order prepo-
sitional logic problems[3]. Students are provided a set of
premises and are challenged with deriving a conclusion. By
applying a set of different logic axioms, students can either
work from the premises towards the conclusion or alterna-
tively, Deep Thought allows students to work backwards,
from the conclusion towards the premises. The Interaction
Network can be applied to an individual problem.

Sudol et al. describe a method of generating a similar state
space that we use here, but for the domain of programming.
In their work, they present the probability distance metric
for states in programming problems for introductory stu-
dents [10]. Menzel and Le have also focused on exploring
the state-space of ’ill-defined’ domains, using a constraint
based system[7]. Mitrovic explores open-ended problems in
their web-based SQL tutor which is a constraint based sys-
tem, but their system has also incorporated a student model
to aid users [8].

From our experience with earlier versions of the InVis tool,
large networks made it difficult for educators and researchers
to efficiently decipher the types of solutions students are us-
ing to solve problems from the Deep Thought logic tutor.
In our previous work, users explored networks for nearly 20
students at a time. However, our goals for the InVis tool
are to make understanding student solutions efficient, which
can be achieved by viewing more students at a time. An
advantage to looking at more students at once is, it can be
easier for users to compare different solutions, as they will
not have to maintain those different solutions in their work-
ing memory but can quickly make comparisons based on the
visualization. Finally, the visualization research community
provides us with the Visual Analytics mantra, which argues
when there is too much data, visualizations should lever-
age the machine to analyze the data, identify and present
the important features of the data, rather than providing an
overview of all the data and relying on the user to filter[2].

An Interaction Network is a model of the state space which
includes student information on edges and nodes. It is a con-
nected, directed, labeled multi-graph with states as vertices,
actions as directed-edges to connect the states. The Inter-
action Network stores the set of all students who visited any
particular state-vertex or action-edge, allowing us to count
frequencies and connect other information, like test scores
or hint usage values, to the Interaction Network represen-
tation. A detailed description of the Interaction Network is
provided in previous work[5].

3. REDUCTION ALGORITHM
Data sets containing many student solution attempts can
create large state spaces. One of the goals of InVis is to pro-
vide an efficient understanding of common student behav-
iors. However, exploring networks with thousands of nodes
can be slow, and is also subject to hardware limitations.
In our experience, even professional software tools for view-
ing graphs start to slow down when the node counts exceed
1500, on typical PC hardware. We developed an algorithm
for reducing the network by roughly 90%, while preserving

Figure 1: This is the reduced network for problem
3-5. This reduced network contains 186 nodes (85%
reduction) and 219 edges (88% reduction).

important information.

The purpose of this algorithm is to maximize the amount
of information we can gain from the data, while minimizing
the number of nodes and edges, to make common approaches
more clear. We also want to be as close as possible to a di-
rected simple graph. A simple directed graph is defined as
a graph containing no loops or parallel edges. Our assump-
tion is that simple graphs are easier to read when following
state-transitions, because they have no parallel edges. Next
we want to preserve as many paths from the problem start
to the goals as possible, to retain as many student solu-
tions as we can. We would also like to provide continuity
and solution variations. Continuity in this case, implies the
reduced network maintain complete solution paths, so the
graph is understandable, as opposed to a list of the most fre-
quent nodes. By providing variations to similar solutions we
should be able to provide better estimations to the numbers
of students who performed a particular solution. Without
the context of the progression of the states, users would be
unable to understand how the problems were solved. We
want to provide a means for understanding how many stu-
dents solved the problem, not just which actions were most
frequent.

We will use four metrics for measuring our success.

1. Vertex and Edge Reduction Rates
2. Number of Goals
3. Number of Interactions
4. Average Student Frequency per Edge

The vertex and edge counts will inform us how well we re-
duced the number of states and actions, we aim for reduc-
tion in magnitude. Goal counts will let us know how many
of the solution paths we have maintained, from start to fin-
ish. For this metric, not only the count is important, but
to maintain continuity all goals must have a path from the
start of the problem to the respective goal state. The sum
of edge frequencies will inform us of the total number of
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Figure 2: This is the problem 3-5 data set after the
shortest paths reduction applied. This network con-
tains 383 nodes(69% reduction), and 382 edges (79%
reduction). Note, the two longest solution paths
have been cropped in this image.

actions performed by all students, and in turn what per-
cent of student actions are being preserved in our reduction.
Arguably, edges with higher frequencies are more informa-
tive because more students performed that action, over an
action performed by a fewer students. Lastly, the average
student frequency per edge will give us an indicator of how
important each edge is in the network.

We asked two professors with over a decade of experience
teaching logic, and two graduate students who have either
taught the course or performed a teaching assistant role to
provide us with the set of solutions they expected to see
from students. These four experts provided us with eight
solutions total, four of which differed in direction or actions
used to solve the problem. Problem 3-5 was chosen because
it has one of the larger ranges of possible solutions in our
problem set. We will use these provided solutions in com-
parison to the reduced network and compare how many of
those solutions are preserved in the reduced network.

3.1 Algorithm
The idea for this algorithm is inspired by compression algo-
rithms. We want to identify the edges with the highest fre-
quencies and preserve them, then find goal states which are
close to those paths. The Interaction Network for the prob-
lem 3-5 data set has 1252 nodes and 1835 edges. The pro-
posed algorithm works by focusing on high frequency edges,
of which there are few, and filtering out the low, and often
frequency one edges, for which there are hundreds. This
algorithm works by accepting three parameters, the Inter-
action Network on which to act upon, the percent of desired
reduction, and a growth parameter. Prior to reduction, we
first calculate a set of values in a pre-reduction step. In tu-
tors which do not contain ‘undo’ actions, this step will not be
necessary. To adjust for the behavior of moving forward, fol-
lowed by an undo, we calculate a table of negative weights.
For each state, an incoming action followed by an ‘undo’,
will increment a negative weight counter for the incoming
action. This will be used to devalue the frequency of these
actions. Next we remove the ‘undo’ edges from the network,
this reduces the number of cycles and parallel edges presum-
ably making the flow of state-transitions in the Interaction
Network easier to follow.

Figure 3: This is the problem 3-5 data set after the
frequency one filter reduction is applied. This fil-
tered network contains 235 nodes(81% reduction),
and 400 edges(78% reduction).

Next we calculate the adjusted edge frequencies, which are
equal to an edge’s original frequency minus the weight calcu-
lated in the previous step. Now, the network is reduced using
the percent reduction parameter. We aimed for an order of
magnitude reduction and so this parameter was set to 10%.
For the reduction step, we generate a new network using
the edges with the top 10% of student frequencies, and their
source and target nodes. Depending on the network a set
of disjoint graphs will be created, we find the roots of each
disjoint graph, which are the nodes with zero in-degree. We
then calculate the shortest paths from the problem start to
each disjoint-root, and inject the necessary edges and nodes
to reconstruct a connected graph. Following this step we
check the list of all goal nodes and attempt to connect any
node in the reduced graph to any of the goal nodes, again
using the shortest path in the original network. We use the
growth parameter to limit the distance of the shortest path,
for this work we used a value of ten. That is, if a goal node
can be reached within ten edges, the path is added, other-
wise it is ignored. As a final step, we attempt to connect
all the nodes within the reduced graph to any other node in
the reduced graph, again using shortest path. The reduced
network for problem 3-5 is provided in figure 1.

4. RESULTS
For each problem we generate the Interaction Network, the
reduced Interaction Network using our algorithm described
here, as well as two other reductions described below. Next
we average the values across all 11 problems and compare.
We discuss the results presented in table 1 and the compar-
isons with the other methods of reduction. Experts provided
eight total solutions independently, four of which differed in
either the actions or direction in which the problem was
solved. Our reduced graph contained three out of the four
solutions provided by experts. The fourth solution, a for-
ward disjunctive syllogism and Modus Tollens approach was
not present in our reduced network or the original full-data
network. A working backward version of this solution is in
the reduced graph which was solved by a single student.

4.1 Comparison
We compare against two alternative methods of filtering or
reduction to help confirm the quality of our chosen approach.
Those methods were a shortest path approach and a fre-
quency 1 removal approach, which are somewhat naive but
provide for good comparison. The shortest path method
of reduction, takes in the start state of the problem and a
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Table 1: The average metric scores across 11 problems and 2239 problem sessions. Original refers to the full
network values. Each column is a method and its score, with percentile comparison to the Original network
in parenthesis. For vertices and edges the percent is the amount of reduction, for goals and interactions it is
the amount of coverage or inclusion.

Shortest Greater than
Original Reduced Paths Frequency One

Vertices 1172 114 (90.26%) 238 (77.85%) 203 (81.73%)
Edges 1690 132 (92.23%) 237 (84.75%) 348 (78.33%)
Goals 38 20 (52.54%) 38 (100.00%) 12 (33.04%)
Interactions 3332 1283 (39.90 %) 1162 (36.89) 1990 (60.77%)
Avg. Edge Freq. 2.10 12.34 6.60 6.03

set of goal nodes for the problem. Next, Dijkstra’s short-
est path algorithm[4] is run and the result is the union of
the shortest paths to each goal. The Frequency one filter
approach, simply removes all edges from the network with
student frequency one.

Referring to table 1 we can see some advantages and disad-
vantages of each approach. First, as expected, the shortest
path approach naturally has 100% goal coverage, that is
we can see a path to every goal from the original Interac-
tion Network. The disadvantages of this approach is that
the paths chosen do not optimize the frequencies of edges,
because the shortest path can contain many frequency one
edges. Next the overall reduction rates are half as effective
as our method, leaving on average twice as many nodes and
edges. This method preserves fewer actions performed by
students while having lower rates of reduction. The result-
ing shortest paths network for problem 3-5 is shown in figure
2. Note, if the growth parameter is set to infinity, the path
to all goals will be preserved - same as the shortest path
method, though naturally reduction rates will be affected.
Thus, our method can facilitate 100% goal coverage.

Alternatively, the frequency one filter, maintains a higher
rate of interactions, as we would expect since fewer edges
are removed. However, frequency one filtering suffers from
low rates of reduction, having double the number of nodes
and triple the number of edges on average, while also having
lower rates of goal coverage, 33% compared to our method
which achieved 52%. This method has lower reduction rates
and lower goal coverage. Figure 3 shows the resulting net-
work for problem 3-5 using the frequency one filtering pro-
cess. By comparing the average edge frequencies in table 1
we can see our method has double the value than either of
the other two approaches. This score is meaningful because
it is the average number of actions performed by students,
per edge within the network.

5. CONCLUSIONS
We provide an algorithm for reducing the complete Inter-
action Network to a summary of the most common prob-
lem solving approaches used by students. We showed that
this algorithm was capable of reducing the number of ver-
tices and edges of the Interaction Network by an average
of around 90%, while still depicting more than half the of
the solution paths and accounting for 40% of interactions
performed by students.
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ABSTRACT
Identifying sequential patterns in learning activity data can
be useful for discovering, understanding, and ultimately scaf-
folding student learning behaviors in computer-based learn-
ing environments. Algorithms for mining sequential patterns
generally associate some measure of pattern frequency in
the data with the relative importance or ranking of the pat-
tern. However, another important aspect of these patterns
is the evolution of their usage over the course of a student’s
learning or problem-solving activities. In order to identify
and analyze learning behavior patterns of more interest in
terms of both their overall frequency and their evolution
over time, we present a data mining technique that com-
bines sequence mining with a novel information-theoretic,
temporal-interestingness measure and a corresponding heat
map visualization. We demonstrate the utility of this tech-
nique through application to student activity data from a
recent experiment with the Betty’s Brain learning environ-
ment and a comparison of our algorithm’s pattern rankings
with those of an expert. The results support the effective-
ness of our approach and suggest further refinements for
identification of important behavior patterns in sequential
learning activity data.

Keywords
sequence mining, interestingness measure, information gain,
learning behaviors

1. INTRODUCTION
Identifying sequential patterns in learning activity data can
be useful for discovering, understanding, and ultimately scaf-
folding student learning behaviors. The primary sequential
pattern mining task, as applied in a variety of domains in-
cluding education, is to discover sequential patterns of items
that are found in many of the sequences in a dataset [1].
Some researchers have employed sequential pattern mining
to inform student models for customizing learning to indi-
vidual students (e.g., [2]). Other researchers have employed

sequential pattern mining to better understand learning be-
havior in particular conditions or groups (e.g., [6, 8]).

However, once these behavior patterns are mined, researchers
must interpret and analyze the often large set of patterns to
identify a relevant subset of important patterns to investi-
gate or utilize further. Ideally, these patterns provide a basis
for generating models and actionable insights about how stu-
dents learn, solve problems, and interact with the environ-
ment. Algorithms for mining sequential patterns generally
associate some measure of pattern frequency to rank identi-
fied patterns. However, researchers have developed a variety
of other measures to utilize properties beyond pattern fre-
quency in ranking mined patterns [4]. These measures are
often referred to as“interestingness measures”and have been
applied to results from a variety of data mining techniques.
To better analyze student learning and behavior, interest-
ingness measures have been used tasks like ranking mined
association rules (e.g., [7]).

Investigation of the frequency with which a pattern occurs
over time can reveal additional information for pattern inter-
pretation. Further these changes in pattern occurrence may
help identify more important patterns, which occur only
at certain times or become more/less frequent, rather than
patterns with frequent, but uniform, occurrence over time.
Qualitatively, we would like to identify patterns that are not
rare overall and have significant variations in their frequency
over time. In this paper, we present a novel approach, com-
bining sequence mining and an information-theoretic mea-
sure for ranking behavior patterns that combines tempo-
ral variation in occurrence and overall frequency to pro-
vide more effective identification of temporally-interesting
patterns. To effectively analyze these patterns and quickly
identify trends in the evolution of pattern usage, we em-
ploy a related visualization in the form of heat maps. We
demonstrate the utility of this technique through applica-
tion to student activity data from a recent experiment with
the Betty’s Brain learning environment and a comparison
of our algorithm’s pattern rankings with those of an expert.
The results support the effectiveness of our approach and
suggest further refinements for identification of important
behavior patterns in sequential learning activity data.

2. IDENTIFYING TEMPORALLY-
INTERESTING PATTERNS

With long sequences of temporal data, such as student learn-
ing activities in a computer-based learning environment, re-
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searchers and analysts are not only interested in discovering
frequent sequential patterns, but, in many cases, also need to
analyze their occurrence over time. In this paper, our focus
is on studying how students’ learning behaviors and strate-
gies are employed with differing frequency over the course of
learning or problem-solving activities (e.g., as the result of
scaffolds and feedback provided by the learning environment
or changing demands of the task over the course of learning).
In this section, we present the Temporal Interestingness of
Patterns in Sequences (TIPS) technique, and corresponding
interestingness measure, for identifying and visualizing the
most temporally-interesting patterns of student behavior.

The first step in analyzing learning activity sequences is to
define and extract the actions that make up those sequences
from interaction traces logged by the environment. The def-
inition of actions in these sequences for Betty’s Brain data
is discussed further in Section 3. Given a set of sequences
corresponding to the series of actions performed by each stu-
dent, the TIPS technique consists of four primary steps:

1) Generate candidate patterns that are common to the
majority of students by applying sequential pattern mining
to students’ learning activity sequences (with a frequency
threshold of 50%).

2) Calculate a temporal footprint for each candidate pattern
by mapping it back to locations where it occurs in the ac-
tivity sequences. Specifically, each sequence is divided into
n consecutive slices, such that each contains 100

n
% of the

student’s actions in the full sequence, where n is the chosen
number of bins defining the temporal granularity of the com-
parisons. Corresponding slices (e.g., the first slice from each
sequence, the second slice from each, and so on) are then
grouped into bins and each action in the slices is marked to
indicate whether or not it is the beginning of a pattern match
in its original sequence. This set of binned and marked ac-
tions defines the temporal footprint of the pattern.

3) Provide a ranking of the candidate patterns using an
information-theoretic interestingness measure (described in
more detail below) applied to the temporal footprint of each
pattern.

4) For the highly-ranked patterns, visualize their temporal
footprints using heat maps to more easily assess usage trends
and spikes. Specifically, we employ a single-dimensional heat
map where each temporal bin’s value is its percentage of the
total pattern occurrence. The heat map is generated by
assigning a color to each bin, which is determined by where
its value falls between the highest and lowest value in the
heat map.

In order to identify the more temporally-interesting pat-
terns, the TIPS interestingness measure (in step 3) applies
information gain with respect to pattern occurrence across
the n bins of the temporal footprint. Information gain (IG)
is defined as the difference in expected information entropy
between one state and another state where some additional
information is known (e.g., a set of data points considered as
a homogeneous group versus one split into multiple groups
based on the value of some other feature or attribute). IG
is leveraged in classifiers to determine which features are

most discriminatory because they provide the least amount
of uncertainty among classes in the data. TIPS applies in-
formation gain to determine which patterns are the best de-
scriptors of the data because knowledge of their occurrence
provides the least amount of uncertainty about the temporal
location of actions in the sequences. In TIPS, IG is applied
to the temporal footprint of a pattern by using the n bins
defined in the first step as the classes for the data points,
where a data point is a single action in one of the students’
sequences. The feature, in this case, corresponds to whether
the action is the start of an occurrence of a given pattern.

For example, when analyzing students’ activity sequences to
extract their learning behavior patterns, we may divide up
their activity sequence into 5 bins, with each bin containing
20% of the student’s actions in the learning environment.
The TIPS measure is then applied for a pattern by deter-
mining the information gain between the baseline where ap-
proximately the same number of actions are found in any
particular bin and the case where we know whether each
action corresponded to the occurrence of a pattern, which
may happen more or less often in different bins. This IG
measure for a pattern defines its temporal-interestingness in
TIPS and is used to rank all candidate patterns in descend-
ing order, so the pattern that has the highest information
gain will be ranked first.

The application of information gain to define the TIPS mea-
sure provides two important properties: 1) given two pat-
terns with the same total occurrence, the pattern with the
greater temporal specificity (i.e., the one that more uniquely
distinguishes actions among the periods of time defined by
the bins) will have the higher rank, and 2) given two patterns
with the same proportions of their total occurrence in cor-
responding temporal bins, the pattern with the greater total
frequency will have the higher rank. In this manner, the
TIPS measure allows a trade-off between pattern frequency
and temporal specificity. Therefore, TIPS tends to empha-
size patterns with interesting temporal evolution (e.g., spikes
of usage during specific time periods, as well as strongly in-
creasing, decreasing, or peaking trends) even when they are
not especially frequent, while also emphasizing particularly
frequent patterns with more moderate changes in occurrence
over time. Conversely, TIPS tends to deemphasize patterns
that are homogeneous over the length of the sequence or
that occur rarely.

3. BETTY’S BRAIN DATA
The data employed for the analysis in Section 4 consists of
student interaction traces from the Betty’s Brain [3]. learn-
ing environment. In Betty’s Brain, students read about a
science process and teach a virtual agent about it by build-
ing a causal map. They are supported in this process by a
mentor agent, who provides feedback and support for their
learning activities. The data analyzed here was obtained
in a recent study with 68 7th-grade students taught by the
same teacher in a middle Tennessee school. At the beginning
of the study, students were introduced to the science topic
(global climate change) during regular classroom instruc-
tion, provided an overview of causal relations/maps, and
given hands-on training with the system. For the next four
60-minute class periods, students taught their agent about
climate change and received feedback on both domain con-
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Table 1: Selected Patterns with TIPS and Occurrence Rankings
Pattern TIPS Rank Occurrence Rank Avg Occurrence

[Read] → [Add link+] 5 12 7.4

[Remove link−] → [Quiz] 22 38 3.8
[Quiz] → [3+ Explanations] 23 78 2.0

tent and learning strategies from the mentor agent.

In Betty’s Brain, the students’ learning and teaching tasks
are organized around seven activities: (1) reading resource
pages to gain information, (2) adding or removing causal
links in the map to organize and teach causal information
to Betty, (3) querying Betty to determine her understand-
ing of the domain based on the causal map, (4) having Betty
take quizzes that are generated and graded by the mentor
to assess her current understanding and the correctness of
links in the map, (5) asking Betty for explanations of which
links she used to answer questions on the quiz or in queries,
(6) taking notes for later reference, and (7) annotating links
to keep track of their correctness determined by quizzes and
reading. Actions were further distinguished by context de-
tails, which for this analysis were the correctness of a link be-
ing edited and whether an action involved the same subtopic
of the domain as at least one of the previous two actions.
The definition of actions in Betty’s Brain learning activity
sequences are discussed further in [5].

4. RESULTS
To illustrate and characterize the performance of the TIPS
technique, we present selected results of its application to
learning activity sequences from the Betty’s Brain classroom
study described in Section 3. From the 68 students’ activity
sequences, sequential pattern mining identified 215 activity
patterns that occurred in at least half of the students. For
a broad, initial analysis of their usage evolution over time,
we chose to bin pattern occurrence values into fifths of the
activity sequences.

Table 1 presents 3 of the top 30 ranked patterns identified
by TIPS with their average occurrences per student and a
comparison of their rank between TIPS and the baseline
ranking by frequency of occurrence. Overall, nearly half of
the analyzed TIPS patterns (13 of the top 30) had a rank
past 50th by occurrence, with most of those (9 of the top
30) ranking beyond 100th. Such low-ranking (by occurrence)
patterns would be unlikely to have been noticed without the
TIPS analysis.

Figure 1: [Read] → [Add link+]

Figure 1 illustrates the frequency over time for the pattern
of reading followed by adding a correct link. This pattern
was highly ranked both by occurrence (because it had a high
average occurrence) and by TIPS (because it also had strong
temporal variation). Students tended to perform this pat-
tern earlier in their learning activities with a peak between

20% and 40% of their complete sequence of activity. An ini-
tial estimation of students’ behavior by researchers assumed
that students read and added correct links most in the first
fifth of their activities with a decreasing trend as the re-
maining causal relationships were those that were harder to
identify. Rather, the identified usage pattern suggests that
students require most of an hour working with the system
and reading before reaching peak efficiency in determining
correct causal links from the resources.

Figure 2: [Remove link−] → [Quiz]

Another interesting pattern identified by TIPS, which stu-
dents tended to perform late rather than early, was the re-
moval of an incorrect link followed by taking a quiz. This
pattern, illustrated in Figure 2, suggests a monitoring ac-
tivity in which students employ the quiz to check whether
the link was incorrect and should be removed. Although a
generally increasing trend was expected since students add
more incorrect links over time, the pattern’s occurrence was
more heavily weighted toward the end than expected. Over
a third of the occurrences were in the last fifth of student
activities, suggesting that most students either did not feel
the need to monitor their evolving causal map until surpris-
ingly late or took longer than expected to effectively identify
potentially incorrect links and/or understand how to use the
quiz to verify their removal.

Figure 3: [Quiz] → [3+ Explanations]

Figure 3 illustrates another monitoring pattern in which stu-
dents take a quiz and then ask for explanations of multiple
(three or more) quiz questions in a row. This pattern also
tends to occur later in the students’ work on the system, but
without as clear a peak at the end compared to the previous
monitoring pattern. Further, this monitoring pattern had an
occurrence rank of 78, making it especially unlikely to have
been investigated without TIPS. Although the pattern only
occurs twice per student on average, it does suggest that
many students attempted to understand and analyze their
quiz results in depth as part of their monitoring during the
latter half of their work on the system.

To further assess the effectiveness of the TIPS analysis, we
performed a preliminary comparison of the TIPS rankings
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Table 2: Expert Interest Ranking
Measure High Medium Low

TIPS 10 6 4
Occurrence 2 8 10

to those made by an expert - another researcher who co-
ordinated the Betty’s Brain study analyzed here, and who
has analyzed student activity data but had no knowledge of
the TIPS approach. For this comparison, we used the top
20 patterns from each of the TIPS and occurrence rankings,
which resulted in 31 total patterns (9 patterns were in top
20 of both rankings). We presented the expert with only the
total occurrence information and the occurrence over time
(split into fifths corresponding to how the data was analyzed
with TIPS). The order of the patterns was randomized and
values for both the overall occurrence and the occurrence
over time were represented on separate color-coded scales
(between low and high values across all included patterns)
to provide some visualization for comparison among the pat-
terns. The expert was asked to group the patterns into three
relative categories based on the provided information: high
interest (10 patterns), medium interest (10 patterns), and
low interest (11 patterns).

Table 2 presents the number of patterns identified by the
TIPS and occurrence rankings that the expert grouped into
each level of interest. All 10 of the expert’s high interest
results were in the top 20 identified by TIPS, with only 2 of
them also in the top 20 ranked by occurrence. These results
suggest that the TIPS ranking is closer to the expert’s own
interest ranking, given the total occurrence and temporal
evolution information about each. Next, we presented the
expert with the same information but also included the spe-
cific activity pattern for each result. When asked to rank the
patterns again with this additional information, the results
were more equally balanced between the TIPS and occur-
rence rankings, with six of each in the high interest category,
and TIPS having two more than the occurrence ranking in
the medium interest category. Overall, these preliminary
experiments illustrate the expected point that the activity
pattern itself is a major factor in its overall interestingness,
but its occurrence and temporal evolution are both impor-
tant factors. Further, it suggests that rather than relying
on only one interestingness measure for identifying poten-
tially important activity patterns, consideration of the top
patterns identified by each of multiple measures, including
both occurrence and TIPS, may be the most effective way
to analyze mined patterns from learning activity sequences.

5. CONCLUSION
While identification of common and high-occurrence pat-
terns is undoubtedly useful, finding patterns that have inter-
esting evolution of usage over time is also important for re-
searchers and experts in education, as well as other domains.
In this paper, we presented the TIPS technique and in-
terestingness measure for identifying temporally-interesting
behavior patterns in learning activity sequences. TIPS is
designed to identify patterns with interesting temporal be-
havior (e.g., spikes of usage during specific time periods or
strongly increasing, decreasing, and peaking trends) even
when they are not especially frequent, as well as particu-

larly frequent patterns that have at least some clear changes
in occurrence over time.

Results from the use of this technique to mine Betty’s Brain
data illustrated the potential benefits of identifying behav-
iors with an interesting evolution over time and helped char-
acterize differences between TIPS and a baseline occurrence
ranking. Although general trends in occurrence may be ex-
pected for some patterns through consideration of the con-
straints imposed by the system and the learning activities,
TIPS concretely identifies the patterns with strong temporal
evolution, confirming some expectations but also identifying
patterns with temporal trends that differ from expectations
or that would not even have been considered without the
TIPS analysis. Further, results from an expert ranking of
patterns provided preliminary evidence that patterns iden-
tified by TIPS are of particular interest. Overall, the results
illustrated the utility of the TIPS technique and suggested
that combining the top patterns identified by TIPS and oc-
currence ranking may be the most useful approach for initial
analysis and identification of important learning behavior
patterns. Future work will include automatic identification
of an effective number of bins for splitting a given set of
activity sequences in TIPS and application of identified pat-
terns to improve dynamic scaffolding of learning.
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ABSTRACT
Given data about problem solving times, how much can we
automatically learn about students’ and problems’ charac-
teristics? To address this question we extend a previously
proposed model of problem solving times to include variabil-
ity of students’ performance and students’ learning during
sequence of problem solving tasks. We evaluate proposed
models over simulated data and data from a “Problem Solv-
ing Tutor”. The results show that although the models do
not lead to substantially improved predictions, the learnt
parameter values are meaningful and capture useful infor-
mation about students and problems.

1. INTRODUCTION
In intelligent tutoring systems [1, 15] student models typi-
cally focus on correctness of student answers [6], and cor-
respondingly the problems in tutoring systems are designed
mainly with the focus on correctness. This focus is partly
due to historical and technical reasons – the easiest way to
collect and evaluate student responses are multiple choice
questions. Thanks to the advances in technology, however,
it is now relatively easy to create rich interactive problem
solving activities. In such environments it is useful to ana-
lyze not only correctness of students answers, but also timing
information about a solution process.

To attain a clear focus, here we consider only the information
about problem solving times, i.e., we model students perfor-
mance in exercises where the only performance criterium
is time to solve a problem. Examples of such exercises are
logic puzzles (like the well-known Sudoku puzzle) or suitably
formulated programming and mathematics problems [9].

In previous work [8] we described a model which assumes a
linear relationship between a problem solving skill and a log-
arithm of time to solve a problem, i.e., exponential relation
between skill and time. In this work we present extensions
of the model in two directions. The first extension models
variability of performance of individual students. The sec-

ond extension models students’ learning (improvement of
problem solving skill) during a sequence of tasks.

The feasibility of detecting students’ learning and variability
of performance from problem solving data depends on many
factors: how much data are available, what is the noise in
the problem solving times, what is the magnitude of learning
effects, whether students solve problems in the same order.
We use simulated data to identify conditions under which
detection of students’ parameters may be possible.

We also evaluate our models on real data from the Prob-
lem Solving Tutor [7, 9]. With the available data set the
extended models do not bring substantial improvement of
predictions of future problem solving times. Nevertheless,
the experiments show that the fitted parameter values are
reasonably robust and bring useful information about stu-
dents’ learning and variability of their performance.

2. MODELING PROBLEM SOLVING TIMES
We recapitulate the model of problem solving times which
was introduced in [8] and then describe two extensions of
the model and parameter estimation for these models.

2.1 Related Work
The presented models extend our previous work on modeling
problem solving times [8]. The modeling approach is related
to several areas. It is an example of a learner modeling in
intelligent tutoring systems (see [6] for an overview) and
the model is closely related to models used in item response
theory [2]. Both of these areas focus mainly on modeling cor-
rectness of answers (probability that a student will answer
a test item correctly), we focus on modeling timing (prob-
ability distribution of time to solve a problem). Another
related area are recommender systems [10], which are used
mainly in e-commerce to recommend users products that
may be interesting for them. Particularly relevant technique
is collaborative filtering [11], which takes matrix of ratings of
products by users, and predicts future ratings. Our model
is analogical to collaborative filtering when we reinterpret
users as students, products as problems, and ratings as per-
formance (for other similar work see [3, 14]). With respect to
modeling learning, there is an extensive research on learning
curves (e.g., [13, 12]). In the context of intelligent tutoring
systems the most often used approach is Bayesian knowl-
edge tracing [5], which models probability that a student
has learned a particular skill during a sequence of attempts.

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 256



www.manaraa.com

2.2 The Basic Model
We assume that we have a set of students S, a set of prob-
lems P , and data about problem solving times: tsp is a
logarithm of time it took student s ∈ S to solve a problem
p ∈ P . In the following we always work with a logarithm of
time and use subscript s to index student parameters and
subscript p to index problem parameters.

We assume that a problem solving performance depends on
one latent problem solving skill θs and two main problem pa-
rameters: a basic difficulty of the problem bp and a discrim-
ination factor ap. The basic structure of the model is simple
– a linear model with Gaussian noise: tsp = bp + apθs + ε.
Basic difficulty b describes expected solving time of a stu-
dent with average skill. Discrimination factor a describes
the slope of the function, i.e., it specifies how the problem
distinguishes between students with different skills. Finally,
ε is a random noise given by a normal distribution with zero
mean and a constant variance (note that the model in [8] as-
sumes problem dependent variance). The presented model
is not yet identified as it suffers from the “indeterminacy of
the scale” (analogically to many IRT models). This is solved
by normalization – we require that the mean of all θs is 0
and the mean of all ap is -1.

2.3 Modeling Variability of Students’ Perfor-
mance

The basic model outlined above assumes constant variance
of the noise. But some students are more consistent in their
performance than others and also problem characteristics
influence the variance of the noise. To incorporate these
factors we propose to model the variance as c2p + σ2

sa
2
p –

a weighted sum of a problem variance c2p and a student
variance σ2

s , where student’s contribution to the variance
depends on the discrimination of the problem. Intuitively,
student’s characteristics matter particularly for more dis-
criminating problems.

Thus now we have three problem parameters a, b, c and two
student parameters θ, σ. The model is the same as before,
only the noise is modeled in more detail:

tsp = bp + apθs +N (0, c2p + a2pσ
2
s)

The model with variance c2p+a2pσ
2
s is equivalent to the follow-

ing approach: “at first determine a student’s local skill for
the attempt (based on his variance σ2) and then determine
the problem solving time with respect to this local skill”:

p(θ′|s) = N (θ′|θs, σ2
s) p(t|θ′, p) = N (t|bp + apθ

′, c2p)

The equivalence of these two definitions is a special case of
a general result for Gaussian distributions (see e.g., [4]).

2.4 Modeling Learning
It is sensible to incorporate learning into the model. The
basic model assumes a fixed problem solving skill, but stu-
dents problem solving skill should improve as they solve
more problems – that is, after all, aim of tutoring systems.
The model extension is inspired by the extensive research on
learning curves (e.g., [13, 12]). A learning curve is a graph
which plots the performance on a task (usually time or error
rate) versus the number of trials. The shape of the learning
curve is in the majority of human activities driven by power

law: T = BN−α (where T is the predicted time, N the
number of trials, α the learning rate and B the performance
at the first trial).

If we take the logarithm of the above mentioned form of
the power law, it can be naturally combined with our basic
model of problem solving times:

tsp = bp + ap(θs + δs · log(ksp)) + ε

where δs is a student’s learning rate and ksp is the order of
the problem p in problem solving sequence of a student s.
In the current analysis of this model we assume constant
variance. Nevertheless, the model can be easily combined
with the more detailed model of the noise presented above.

2.5 Parameter Estimation
We need to estimate model parameters from given data. To
do so we use maximum likelihood estimation and stochastic
gradient descent. As this is rather standard approach (see
e.g., [4]) we focus in the following description only on the
derivation of the error function and the gradient.

We derive the maximum likelihood estimation for the model
with detailed noise (including student and problem vari-
ance). The likelihood of observed times tsp for this model
is:

L =
∏
s,p

N (tsp|bp + apθs, c
2
p + a2pσ

2
s)

To make the derivation more readable, we introduce the fol-
lowing notation: esp = tsp − (bp + apθs) (prediction error
for a student s and a problem p), vsp = c2p + a2pσ

2
s (variance

for a student s and a problem p). Thus we can write the
log-likelihood as:

lnL =
∑
s,p

−
e2sp
2vsp

− 1

2
ln(vsp)−

1

2
ln(2π)

Maximizing the log-likelihood is equivalent to minimizing
the following error function:

E =
∑
s,pEsp where Esp = 1

2
(
e2sp
vsp

+ ln(vsp))

It is intractable to find the minimum analytically, but we can
minimize the function using stochastic gradient descent. To
do so we need to compute a gradient of Esp:

∂Esp

∂ap
=
−espθsvsp−apσ2

se
2
sp

v2sp
+

apσ
2
s

vsp

= − esp
vsp

(θs + apσ
2
s
esp
vsp

) +
apσ

2
s

vsp
∂Esp

∂bp
= − esp

vsp
∂Esp

∂θs
= −ap espvsp

∂Esp

∂c2p
= 1

2
(− e2sp

v2sp
+ 1

vsp
) = − 1

2v2sp
(e2sp − vsp)

∂Esp

∂σ2
s

= 1
2
(−a2 e

2
sp

v2sp
+ a2 1

vsp
) = − a2

2v2sp
(e2sp − vsp)

Note that the obtained expressions have in most cases straight-
forward intuitive interpretation. For example the gradient
with respect to θs is −ap espvsp

, which means that the estima-

tion procedure gives more weight to attempts over problems
which are more discriminating and have smaller variance.

Stochastic gradient descent can find only local minima. How-
ever, by good initialization we can improve the chance of
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finding a global optimum. In our case there is a straightfor-
ward way to get a good initial estimate of parameters:
bp = mean of tsp (for the given p);
ap = -1;
θs = mean of bp − tsp (for the given s);
cp = 1

2
of variance of bp − tsp (for the given p);

σs = 1
2

of variance of bp − tsp (for the given s).

If we return to the original simplifying assumption and as-
sume that the variance is constant (independent of a par-
ticular problem and student), then the error function is the
basic sum-of-squares error function and the computation of

gradient simplifies to
∂Esp

∂ap
= −θsesp, ∂Esp

∂bp
= −esp, ∂Esp

∂θs
=

−apesp. Parameter estimation for the model with learning
is analogical.

3. EVALUATION
Now we report on evaluation of the models over simulated
data and real data from the Problem Solving Tutor.

3.1 Simulated Data
The models described in Section 2 can be easily used to
generate simulated data. Even though we have large scale
data about real students, the simulated data are still useful,
because for these data we know “correct answers” and thus
we can thoroughly evaluate the parameter estimation proce-
dure. The results show that the basic difficulty of problems
b and students’ skill θ can be estimated easily even from
relatively few data. Estimating problem discrimination a is
more difficult – to get a good estimate we need data about
at least 30 solvers and even with more data the further im-
provement of the estimates is slow. As could be expected, it
is most difficult to get a reasonable estimate of student and
problem variance. To do so we need data about at least 50
problems and 150 students.

For the model with learning, the possibility of detection of
learning depends on the situation. If the differences in learn-
ing rates are high and noise is low, then it is easy to detect
the learning in the data. If the students’ learning rates are
very similar and noise in data is high, it is impossible to
detect the learning. The feasibility of detection of learning
also depends on the order in which students solve problems.
In many practical cases the ordering in which students solve
problems is very similar. Often students proceed from sim-
pler problems to more difficult ones (this is certainly true
for our data which are used below). If the ordering of prob-
lems for individual students is highly correlated, there is no
way to distinguish between the absolute values of student
learning and intrinsic difficulty of problems. On the other
hand, the ordering of problems does not impact the esti-
mation of relative learning rates (i.e., comparing students’
learning rates).

3.2 Predictions
Next we report on the evaluation of predictions of prob-
lem solving times for data on real students using a Problem
Solving Tutor [7, 9] – a free web-based tutoring system for
practicing problem solving (available at tutor.fi.muni.cz).
The system has more than 10 000 registered students (mainly
university and high school students), who have spent more
then 13 000 hours solving more than 400 000 problems. The

system contains 30 types of problems, particularly computer
science problems (e.g., binary numbers, robot programming,
turtle graphics, introductory C and Python programming,
finite automata), math problems (e.g., functions and graphs,
matching expressions), and logic puzzles (e.g., Sokoban, Nuri-
kabe, Slitherlink). For the experiment we used 8 most solved
problem types from the Problem Solving Tutor, for each
problem we consider only students who solved at least 15
instances of this problem.

We compare model predictions with two simpler ways to pre-
dict problem solving times. At first, we consider the mean
time as a predictor – the simplest reasonable way to pre-
dict solving times (note that, consistently with the rest of
the work, we compute the mean over the logarithm of time
and thus the influence of outliers is limited and the mean is
nearly the same as the median).

At second, we consider a simple ‘personalized’ predictor
t̂sp = mp − δs, where mp is the mean time for a problem
p and δs is a “mean performance of student s with respect
to other solvers”, i.e., δs = (

∑
mp − tsp)/ns, where ns is

the number of problems solved by the student. Note that
this corresponds to the initialization of our basic model (Sec-
tion 2.5); we call it a baseline predictor.

Evaluation of model predictions was done by repeated ran-
dom subsample cross-validation, with 10 repetitions. The
training and testing sets are constructed in the following
way: we choose randomly 30% of students and put the data
of the last 20% of their attempts to the testing set; the re-
maining data forms the training set. Table 1. compares the
results using the root mean square error metric.

The results show that the model provides improvement over
the use of a mean time as a predictor. Most of the im-
provement in prediction is captured by the baseline model;
the basic model brings a slight but consistent improvement.
This improvement is larger for educational problems (e.g.,
Binary numbers) than for logic puzzles (e.g., Tilt maze).

Different variants (basic model with constant variance, indi-
vidual variance, learning) of the model lead to similar pre-
dictions and similar values of RMSE. The model with indi-
vidual variance leads in same cases to improved RMSE, the
model with learning leads to slightly worse results than the
basic model. One possible reason can be the higher number
of parameters which causes slight overfitting. The second
reason may be difference in scale between the parameters
– values of the learning coefficient are typically between 0
and 0.2 while other parameters have wider spread. Thus it
should be possible to improve the results of gradient descent
using different step sizes for each parameter, particularly
smaller step size for the learning parameter δ. Experiments
with the improved algorithm really show statistically signif-
icantly better in results in some cases (e.g., in the case of
Slitherlink, which is a puzzle with many opportunities for
improving performance).

3.3 Analysis of Parameter Values
Even through the more complex models do not lead to sub-
stantially improved predictions, they can still bear interest-
ing information. Predictions are useful for guiding behaviour
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Table 1: Quality of predictions for different models and problems measured by root mean square error metric.
Tilt Robot. Binary Region Slith. Sokoban Rush. Nurik.

Mean time predictor 1.045 1.376 1.259 1.37 1.195 1.246 1.077 1.143
Baseline predictor 0.925 1.324 1.174 1.28 0.976 1.037 0.995 1.026
Basic model 0.92 1.301 1.148 1.28 0.948 1.021 0.981 1.025
Model with variance 0.918 1.304 1.161 1.278 0.947 1.016 0.978 1.025
Model with learning 0.948 1.313 1.181 1.322 0.967 1.034 0.993 1.04

Table 2: Spearman’s correlation coefficient for parameter values obtained from two independent halves of
the data.

Tilt Robot. Binary Region Slith. Sokoban Rush. Nurik.
student skill θ 0.748 0.641 0.822 0.472 0.816 0.789 0.737 0.904
student learning rate δ 0.525 0.394 0.623 0.576 0.455 0.394 0.509 0.570
basic problem difficulty b 0.994 0.961 0.951 0.927 0.981 0.963 0.962 0.837
problem discrimination a 0.469 0.564 0.569 0.282 0.533 0.347 0.434 0.195

of the tutoring systems, but small improvement in predic-
tion precision will not change the behaviour of the system
in significant way. The important aim of the more complex
models is to give us additional information about students
and problems, e.g., the student’s learning rate, which can
be used for guiding the behaviour of tutoring system and
for providing feedback to users.

Since the model with learning does not improve predictions,
it may be, however, that the additional parameters overfit
the data and thus do not contain any valuable information.
To test this hypothesis we performed the following experi-
ment: we split the data into two disjoint halves, we use each
half to train one model, and then we compare the parame-
ter values in these two independent models. Specifically, we
measure the Spearman correlation coefficient for values of
each parameter.

Table 2 shows results for the model with learning. The re-
sults show, that estimates of basic difficulty and basic skill
correlate highly, the weakest correlation between the esti-
mates from the two halves is for the discrimination param-
eter. For students’ learning rate, the additional parameter
of the extended model, we get the correlation coefficient be-
tween 0.5 and 0.7 – a significant correlation which signals,
that the fitted parameters contain meaningful values.

We also analyzed correlations among different model param-
eters, e.g., between skill θ and learning rate δ. Generally
there is only weak correlation between parameters, which
shows that the new parameters bring additional informa-
tion.
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ABSTRACT
Estimating students’ knowledge based on their interactions
with computer-based tutors has the potential to improve
learning by decreasing time taking assessments and facili-
tating personalized interventions. Although there exist good
student models for relatively structured topics and tutors,
less progress has been made with more open-ended activities.
Further, students often complete activities in pairs rather
than individually, with no coding to indicate who performed
each action. We investigate whether pair interactions with
an open-ended chemistry tutor can be used to predict indi-
vidual student post test performance. Using L1-regularized
regression, we show that student interactions with the tu-
tor are predictive both of the average post-test score for the
pair and of individual scores. Towards better understand-
ing pair dynamics in this setting, we also find that for pairs
composed of students with similar pre-test scores, we can
predict the difference in students’ post-test scores.

Keywords
Collaboration, embedded assessment, supervised learning

1. INTRODUCTION
Computer-based educational activities have many advan-
tages over traditional tests as a means to assess student
knowledge. The function of testing is to provide information
about student proficiency. If an analysis of how a student
completes an activity can provide similar information, time-
intensive post-tests can be eliminated, and students can have
access to the immediate feedback known to support learning.
Projects such as ASSISTments [13] and stealth assessment
[15] have demonstrated the potential for this approach.

Both interactive activities specifically designed for assess-
ment and traditional intelligent tutoring systems provide
valuable information about student knowledge. Simulation-
based activities that are designed to be assessments have

proven effective for measuring science inquiry and reason-
ing skills (e.g., [5, 12]). Many tutoring systems use student
modeling to estimate proficiency as a student works through
problems in the tutor. However, estimating students’ knowl-
edge based on their work in games and more open-ended
environments introduces new challenges [3]. These environ-
ments are less structured, lack explicit tags about which
tasks correspond to which skills, and may offer few opportu-
nities to practice the same skill repeatedly in a similar con-
text. Despite these challenges, games or more open-ended
environments are important as they enable different forms of
learning and can be used where formal testing is impractical.

A further challenge in estimating student knowledge from
computer-based activities is that in classroom environments,
students often work with computers in groups. Though col-
laboration can improve students’ learning from computer-
based science activities, automatically logged data rarely
captures explicit collaboration, such as which student pro-
vided any given input, or what conversations occurred in
conjunction with the activity.

In this paper, we explore whether machine learning based
approaches can predict student knowledge based on inter-
actions with an open-ended chemistry tutor, ChemVLab+.
Due to limitations in the number of available computers in
many classrooms, students generally use ChemVLab+ in
pairs, and we analyze only data from paired interactions.
We investigate what predictions we can make about individ-
ual student knowledge, corroborated by a separate post-test,
based on the students’ interactions with ChemVLab+.

2. BACKGROUND
We briefly review the literature on open-ended environments
and collaboration in computer-based educational activities.

2.1 Open-ended tutoring environments
Many computer-based educational environments have open-
ended components in which students explore topics using
free-form actions. One approach to understanding student
learning is to identify behaviors that are correlated with high
or low learning gains. For instance, the WISE platform
has identified patterns of inquiry behavior that are com-
mon in more successful students [10]. Kinnebrew, Loretz,
and Biswas [8] identified patterns of student actions associ-
ated with periods of productivity and analyzed which pat-
terns were correlated with high learning gains. In contrast
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(a) (b)

Figure 1: A screenshot of a virtual lab activity.

to identifying correlations between strategies and post-test
performance, we focus on predicting student post-test scores
given tutor interaction features.

Another area of work in open-ended learning environments
focuses on recognizing strategies and goals. For example,
Ha et al. [6] used Markov logic networks to identify stu-
dent goals based on game behaviors. In the chemistry do-
main, progress has also been made on identifying semantic
actions, such as a titration, based on individual behaviors
in a virtual lab, such as pouring a small amount from one
beaker to another [1, 4]. Strategy recognition provides de-
scriptive information about student behaviors, but doesn’t
relate strategies to learning gains. Incorporate rich strategy
features to predicting student understanding and post-test
performance is an interesting future direction.

2.2 Data mining of student collaborations
Collaborative work is common in educational activities, and
research provides evidence that collaborative work improves
student learning [14, 21, 22]. Much work on computer-
supported collaboration focuses on modeling the collabora-
tive process and on how collaborative activities are related
to learning and knowledge [18, 9]. Within this work, there
is often explicit record of collaborative activities in the form
of audio recordings, observation logs, or community inter-
actions such as comments on a discussion forum [7, 16, 17].
Explicit records enable a system to learn classifiers to charac-
terize individual student interactions and identify the roles
of individual students in a collaboration [11, 19]. In con-
trast, our data lacks such explicit records of collaboration,
a typical situation in the classroom due to practical difficul-
ties and teacher preferences. Thus, we believe that exploring
data from paired interactions in ChemVLab+ may be rele-
vant to other educational tools as well.

3. CHEMVLAB+
ChemVlab+ is a collection of online activities that allow stu-
dents to apply their chemistry knowledge in authentic, real-
world contexts [2]. Each activity involves a separate prob-
lem, such as whether factories are reporting accurate pollu-
tion levels, and consists of a series of pages. ChemVLab+
activities include both freeform actions, such as virtual labs
(see Figure 1), and more constrained actions, such as multi-
ple choice questions.1 The virtual labs enable similar actions
as in a real chemistry lab: students manipulate beakers and
use chemical instruments. These virtual labs are a key part

1Activities can be found at http://www.chemvlab.org.

of ChemVLab+ as they allow students to plan and execute
experiments to investigate the real-world problem.

The data we analyze were collected from three schools during
the 2011-2012 school year. Students first completed a paper
and pencil pre-test. They then completed four ChemVLab+
stoichiometry activities using computers in the classroom;
activities were completed in the same order by all students
and over at least four class periods. Shortly after the final
use of the ChemVLab+ activities, the students completed
a post-test, which was identical to the pre-test. The test
contained multiple choice and numerical free response items;
the topics covered were similar to those in ChemVLab+, and
there were a total of 30 points on the test. In the data, all
266 students completed the activities in assigned groups of
two students, but completed pre- and post-test individually.

4. PREDICTING POST-TEST SCORES
We now explore what we can learn about students’ knowl-
edge based on their interactions with ChemVLab+, begin-
ning with prediction of post-test scores. Paired performance
data cannot necessarily tell us about individuals: intraclass
correlation shows that for our data, the two post-test scores
in the pair are not significantly correlated (r = 0.12, p = .08,
n.s.). However, we will shortly see we still can predict some
interesting aspects of individual and pair performance.

4.1 Methods
For all analyses, we use methods based on lasso (L1-norm)
regularization [20]. Lasso regularization is a popular ma-
chine learning method that adds a penalty term λ||β||1 to the
objective in traditional linear regression approaches, where
β is the vector of predictor coefficients and λ is a scaling
factor. This term favors solutions where many features have
weight zero, even if this results in some increase in error;
larger values of λ favor using fewer predictors. Thus, feature
selection is performed as part of the regression algorithm.

We computed features for each pair of students based on
their behavior in the four ChemVLab+ activities. Twelve
features were used for each activity, including four features
based on help seeking and submission behavior on each page,
four features for activity in the virtual labs, and four features
capturing holistic behavior in the activity (e.g., total time on
task). In some cases, a pair did not complete any pages in an
activity, generally due to being absent from school. In these
cases, we set the value of the feature for number of pages
completed in the activity to zero. For all other features in
that activity, we use feature imputation and set their values
to the average value of that feature for other students.2

As students use ChemVLab+ in pairs but take the post-
test separately, we predict three possible quantities using
the interaction data: the higher of the two post-test scores,
the lower of the scores, and the average of the scores. Note
that if we use only pair interaction data, we can predict
the higher of the two scores, but not which student will get
which score. For each analysis, we want to maximize the
proportion of the data that can be used for training while

2We also tried imputation using data only from pairs who were
similar to the current pair on the other activities; this did not
significantly affect predictive performance.
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MAD by features for regression
Prediction task ChemVLab+ Pretest
Avg. post-test score 2.6 2.5
Higher post-test score 3.0 2.9
Lower post-test score 3.2 3.3

Table 1: Regression error for post-test predictions.

minimizing overfitting. Given the relatively small dataset of
133 pairs of students, we use linear regression, which does
not include interactions among features. By excluding in-
teractions, we limit some of the risk of overfitting due to
chance relationships among features. We fit the regression
using 10-fold cross validation and limit the maximum num-
ber of features that can have non-zero coefficients to 20.

Accuracy is measured as the mean absolute deviation (MAD)

for predictions for all pairs: MAD = 1
n

Pn
i=1|Ŷ − Y |, where

Ŷ is the predicted post-test score, Y is the true post-test
score, and n = 133 is the number of pairs. Lower MAD val-
ues indicate more accurate performance. We compare the
performance of regression using the features based on tutor-
student interactions versus using only pre-test features. The
pre-test is highly correlated with the post-test score (r(265) =
0.67, p < .001), so we would expect pre-test scores to be rel-
atively accurate predictors of post-test scores. To predict
the average post-test score using pre-test features, we have
a feature for the higher pre-test score in the pair and the
lower score. For predicting individual post-test scores using
pre-test features, we use the student’s pre-test score.

4.2 Results
As shown in Table 1, the tutor-student interaction features
achieve comparable predictive performance to using the pre-
test features to predict student performance, and both pro-
vide quite accurate estimates. This suggests that even with-
out prior information about the students, interaction data
alone can provide useful indicators of student knowledge, de-
spite the additional challenge that all interaction data comes
from paired performance. Both sets of features are slightly
better at predicting the average post-test score for the pair,
which has somewhat less variance, and both are slightly
worse at predicting the lower score. The decrease in ac-
curacy for the pre-test features on the latter target is likely
because the lower score has a smaller correlation with the
pre-test score than the higher score (r(132) = 0.48 versus
r(132) = 0.71; for both, p < .001). For all analyses, we also
examined using both interaction and pretest features, but
this did not significantly improve performance, suggesting
that the two types of features capture similar information.

Lasso regression favors sparse solutions: the regression mod-
els used between 9 and 14 features, with the model for pre-
dicting the lower post-test score having the fewest features
and the model for predicting the higher score having the
most. All models included features from each activity as well
as virtual lab features. Overall, these results demonstrate
that the interaction data are relatively accurate predictors
of post-test scores, despite the variety of tasks and the lack
of a model of learning in the tutor. We also explored pre-
dicting learning gains based on the interaction data, but had
less success, probably due to the choice of features. Our fea-
tures captured behavior averaged across pages, but did not
take into account changes in behavior from page to page.

5. TOWARDS RECOGNIZING HOW PAIR-
INGS AFFECT LEARNING

The previous section demonstrates the potential for using
the ChemVLab+ activities as embedded assessments. We
now explore what we can learn about pairs as a unit by
predicting the difference between the two post-test scores
in the pair. When restricted to pairs with similar pretest
scores, large differences in post-test scores may signal a lack
of collaboration, which could be used to drive interventions.
Predicting differences in post-test scores may also reveal in-
teraction features related to collaboration.

5.1 Methods
Lasso regression is again used for prediction and feature se-
lection, with the same 48 features as in the previous analysis.
10-fold cross validation is used to fit the model, and the re-
gression is limited to 20 features with non-zero weights. In
analyses with pretest features, these features are the highest
pretest in the pair, the lowest pretest in the pair, and the
difference between the two pre-test scores.

5.2 Results
We first predicted differences in post-test scores for all pairs.
The average difference in post-test scores was 6.0 points,
with a standard deviation of 4.8 points. As shown in Ta-
ble 2, prediction is relatively poor, and including both tutor
interaction features and pre-test features did not increase
performance. Due to concerns about overfitting, we limited
the regression to linear features, which means the weight of
each tutor feature is the same regardless of pretest-score.
However, we might expect that these weights should be de-
pendent on the pre-test scores. For instance, in a pair with
dissimilar pre-test scores, high rates of hint reading might
be indicative of a lack of collaboration. In pairs with similar
pre-test scores, rates of hint reading might be less predictive
because both students are likely to benefit from the hints.

To address this issue, we restricted the regression to the 43
pairs who had pre-test scores that were within two points
of one another. The average difference in post-test score
for these pairs was 4.9 points (SD= 4.1), and only about
one-third of the pairs have post-test scores that are within
two points of one another. Regressing on pairs with similar
pre-test scores results in substantially lower prediction error
than when all pairs are included (Table 2). Prediction is
much more accurate than the standard deviation, and the
interaction features result in more accurate predictions than
the pre-test scores. For the analysis using the interaction
features, twelve of these features had non-zero coefficients,
including six features based on behavior in the virtual lab.

The previous analysis showed that we can predict differ-
ences in post-test score for pairs with similar initial knowl-
edge. However, it does not tell us how initial knowledge
and collaboration interact. Just as features and weights for
predicting differences in post-test scores may differ for pairs
based on the similarity of their pre-test scores, the regression
may differ for pairs with different levels of initial knowledge.
To explore this issue, we performed two additional analyses:
predicting post-test scores for only those pairs where both
students had below-average pre-test scores (low pairs) and
predicting post-test scores for only those pairs where both
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MAD by features for regression
Pairs included ChemVLab+ Pretest
All 3.9 3.7
Similar pre-test 2.0 3.4
High pre-test 3.0 3.2
Low pre-test 2.7 3.6

Table 2: Regression error for predicting differences
between the post-test scores for students in the pair.

students had above-average pre-test scores (high pairs). The
average pre-test score was 12.5 points out of 30.

The 35 high pairs had an average post-test score difference of
5.5 points (SD= 3.8). As shown in Table 2, this difference
can be predicted relatively accurately. The most notable
thing about this analysis, though, is that only two features
are given non-zero weights. The small number of features
suggests that when students have high initial knowledge, few
features are indicative of the quality of collaboration.

In contrast, eight features have non-zero weight when pre-
dicting differences in post-test for the 43 low pairs. These
pairs had an average post-test score difference 4.6 points
(SD= 4.3), and the interaction features are more accurate
predictors than the pretest features (Table 2). The features
with non-zero weight included three lab features and at least
one feature from each activity. One feature associated with
smaller differences in post-test scores, due to having a rel-
atively large negative weight, was the average number of
submissions per page in Activity 2. This activity was dif-
ficult for students, and a lower number of submissions may
have indicated that students were combining their knowl-
edge, which is likely to result in more similar post-test scores.

6. CONCLUSIONS
Given differences in classroom implementations and the ped-
agogical benefits of more open-ended tutors, there are many
advantages to predicting student performance based on real-
world use of these systems. In this paper, we examined data
from a series of chemistry activities that students completed
in pairs, and found that pairs’ interactions with the activ-
ities were predictive of individual post-test scores. Though
we could make some predictions about differences in post-
test scores for a pair, there is likely to be a limit on how
well we can perform this task given the lack of data about
individuals within the pair. We plan to explore how lim-
ited data about individual behavior, collected via classroom
observation, can be used to create more accurate models of
collaboration, and whether explicitly modeling control of the
computer as a latent variable can improve performance. We
would also like to explore a broader feature set, including
features that capture changes in performance over time and
more fine-grained virtual lab features (e.g., from pattern-
mining [8]). We see this work as a first step in showing the
potential of data mining techniques to transform collabora-
tive educational activities into embedded assessments, even
when activities are not designed for this purpose.
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ABSTRACT
Numerous studies have shown that self-explanation can lead
to improved learning outcomes. Here we examine how the
words which students use in their self-explanations corre-
late with their performance in the course as well as with
the effort they expend on their homework assignments. We
compute two types of numerical features to characterize stu-
dents’ work: vocabulary-based features and effort-based fea-
tures. The vocabulary-based features capture the frequency
with which individual words and n-grams appear within stu-
dents’ self-explanation. The effort-based features estimate
the effort expended on each assignment as the amount of
time spent writing a homework solution or self-explanation
response.

We use the most predictive vocabulary-based and effort-
based features to train a linear regression model to predict
students’ overall course grade. This model explains up to
19.4% of the variance in students’ performance. Further-
more, the underlying parameters of this model provide valu-
able insights into the ways students explain their own work,
and the cognitive processes students employ when asked to
self-explain. Additionally, we use the vocabulary-based fea-
tures to train linear regression models to predict each of
the effort-based features. In doing so we demonstrate that
the vocabulary employed by a student to self-explain his or
her solution to an assignment correlates with the amount of
effort that student expends on that particular assignment.
Both of these findings serve as a basis for a novel automated
assessment technique for evaluating student performance.

1. INTRODUCTION

Self-explanation is the process by which a student explains
his or her solution process, summarizing his or her under-
standing. Prior work has demonstrated that self-explanation
can improve a student’s metacognitive skills, leading to im-
proved learning gains. These studies have typically focused
on summative assessments of students’ learning, demonstrat-
ing, for example, that students who were asked to provide
self-explanation of their homework solutions performed bet-
ter on exams than students who did not provide self-explanation.
In this paper, we present a novel technique which provides a
formative analysis of self-explanation, identifying behaviors
which correlate with good performance. In particular we
employ machine learning techniques to identify successful
patterns latent in students’ self-explanations.

This analysis is enabled by our unique dataset of students’
handwritten coursework. We conducted a study in which
students in an undergraduate Mechanical Engineering Stat-
ics course generated handwritten self-explanations of the
major steps they followed when solving each of their home-
work problems. The students completed the homework and
self-explanations using LivescribeTMSmartpens. These de-
vices produce a digital record of students’ handwritten work
in the form of time-stamped pen strokes, enabling us to see
not only the final ink on the page, but also the order in
which it was written.

We compute numerical features from this digital record which
characterize the vocabulary used and the effort (time) ex-
pended, both in solving problems and writing self-explanation.
Using these features we have computed a statistical model
which predicts students’ grades on various homework assign-
ments. This model accounts for up to 19.4% of the variance
in the students’ performance. Furthermore, the underly-
ing parameters of this model provide valuable insights into
the ways students explain their own work, and the cognitive
processes students employ when asked to self-explain.

Additionally, we use the vocabulary-based features to train
linear regression models to predict each of the effort-based
features. In doing so we demonstrate that the vocabulary
employed by a student to self-explain his or her solution
correlates with the amount of effort that student expends
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on that particular assignment.

2. RELATION TO PRIOR WORK
Chi et al. [4] have argued that“the metacognitive component
of training is important in that it allows students to under-
stand and take control of their learning process.” Metacog-
nition is the awareness of one’s own learning process, and it
serves as a major foundation for research performed on self-
explanation. We use self explanation as a tool to improve
students’ metacognition.

Numerous studies have demonstrated the positive impact
self-explanation has on student performance. Bielaczyc et
al. [2] studied the impact of different self-explanation strate-
gies on a student’s ability to learn LISP programming. The
experiment revealed a significant difference between the learn-
ing gains from the pre- to posttest performance of students
who did and did not generate self-explanation. In this study
students self-explained after viewing study materials but be-
fore solving problems. This differs from our study in which
students generate self-explanation throughout their solution
process.

Chi et al. [4] made comparisons between two groups of stu-
dents: “poor” and “good” performing students. These stu-
dents were asked to generate self-explanation after studying
worked-out example problems. The results of this study
demonstrated that students who perform poorly are typ-
ically unable to generate sufficient self-explanation of the
worked-out example problems. This study indicates that a
correlation may exist between the quality of students’ self-
explanation and their performance.

Hall and Vance [8] investigated the impact of self-explanation
on student performance as well as self-efficacy in a Statis-
tics course. This study showed that students who generated
collaborative self-explanation performed significantly better
at solving problems than students who did not self-explain.
What these studies have in common is their use of summa-
tive performance assessments to show the positive impact
of self-explanation on learning gains. To our knowledge, lit-
tle prior work has focused on formative assessments which
identify behaviors in students’ self-explanations.

Prevost et al. [11] examined typed self explanations from an
online system. Prevost et al. compared multiple choice re-
sponses versus constructed (free form) responses and found
that constructed responses provided better insight into stu-
dent thinking than multiple choice responses. Although
mentioned, the authors did not examine the sequencing be-
tween individual words. Our paper focuses on analyzing
sequences of words to predict student performance without
manually scoring student self-explanations. While past re-
search has typically examined data extracted from close-
structured responses(e.g., multiple choice or check boxes),
our paper examines free-form, handwritten responses in or-
der to predict course performance. Our analysis is similar to
that of Forbes-Riley et al. [5] in which the authors modeled
students’ spoken interactions with a tutoring system.

3. EXPERIMENTAL DESIGN
In the winter quarter of 2012, we conducted a study in
which students enrolled in an undergraduate Mechanical En-
gineering Statics course were given LivescribeTMSmartpens.
These devices serve the same purpose as traditional pens,

allowing students to handwrite their homework on paper.
Additionally, these devices record a digital copy of the hand-
written work as time-stamped pen strokes.

Figure 1: “The device shown is used for cutting PVC

pipe. If a force, F = 15 lb, is applied to each han-

dle as shown, determine the cutting force T . Also,

determine the magnitude and the direction of the

force that the pivot at A applies to the blade.”

Thirty of the students in the course were asked to provide
self-explanation on five of the homework assignments. A
typical homework problem is shown in Figure 1. These
problems required students to solve for unknown forces that
result when external forces are applied to a system in equi-
librium. Students were provided with three to five prompts
eliciting explanations for each of their major solution steps.
An example of a typical self-explanation prompt is, “Why
did you select the system that you used for your free-body di-
agram?” Students handwrote their responses to these ques-
tions and submitted them along with their solutions.

4. DATA PROCESSING
We manually transcribed each handwritten self-explanation,
producing 111 text documents. Each document contains
all self-explanation written by a single student for a single
homework assignment. During this manual transcription we
made slight modifications to the students’ explanations to
make them suitable for later processing. First, we corrected
any spelling mistakes, but did not correct grammatical er-
rors. Second, we replaced each verb with its unconjugated
form. For example, we replaced “pushed” (past tense) with
“push” (infinitive). Our later analysis counts the number of
occurrences of words based on exact spelling. These changes
ensure that spelling variations do not prevent words from
being correctly identified.

We also developed a thesaurus to replace synonymous words
with a single, canonical word. Students use a variety of
words to refer to a given concept or object. For example,
when students described a free-body diagram, they often
used the terms “system” and “body” interchangeably. To
ensure that semantically identical words were identified as
such, we manually developed a thesaurus that maps a canon-
ical concept to each of the words that may be used to express
that concept. For example, we created a “free-body diagram
element” concept category that comprises every word that
students used to refer to any component (body) in a free-
body diagram, such as “jaw” or “handle”. In this example,
whenever the word “jaw” was found in a transcript, it was
replaced with the token “FBD-Element”. We developed a
total of ten conceptual categories with the help of a Stat-
ics domain expert. There were approximately 1640 unique
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words used by students across all documents before correct-
ing spelling or verb tense. After applying our thesaurus-
based replacement, there were 750 unique words.

5. VOCABULARY, EFFORT, AND PERFOR-
MANCE FEATURES

In this section we describe the numerical features which
characterize: the vocabulary employed by a student in his
or her self-explanation; the effort expended by a student on
his or her solution and self-explanation; and each student’s
performance in the course.

We use the “term frequency - inverse document frequency”
score (TF-IDF)[9] to characterize the importance of each
word in a transcribed self-explanation document. The TF-
IDF scores of all words encountered in all documents are
used as features.

To characterize the sequence of words in students’ self-
explanation, we analyze the frequencies of the bigrams and
trigrams which appear in each self-explanation document.
In our analysis, we split word choices on periods and thus
consider bigrams and trigrams within sentence boundaries.
We use the N-Gram Statistics Package (NSP) [3, 1] to both
identify and calculate the frequency of n-grams present in
each document.

NSP provides a number of different methods for measuring
the frequency of a given n-gram. We used the total mu-
tual information (TMI) to score each gram. TMI scores
an n-gram by computing the ratio of the log of the joint
probability of all words in that n-gram over the marginal
probability distributions of each word in an n-gram.

Additionally, we compute two features that characterize the
effort spent on an assignment and the corresponding self-
explanation. We used the average time spent drawing free-
body diagrams, writing equations, and answering self expla-
nation questions. This produced three separate effort based
features.

6. FEATURE SUBSET SELECTION
Given that there are ∼ 750 unique words across all expla-
nations, there would be over 19,000 TF-IDF, bigram, and
trigram features computed for each of the 111 documents.
This is too large a feature set and would lead to an over-fit
model with inflated accuracy. To address this issue we use
two feature subset selection algorithms to reduce the size of
our feature set.

First, we apply the computationally inexpensive RELIEF
[10] algorithm to prune our feature set to the top 500 fea-
tures. The RELIEF algorithm scores each feature by its
similarity to the nearest instance of the same class and to
the nearest instance of each other class. Next, we apply the
computationally expensive, but more rigorous Correlation
Feature Selection (CFS) [7] algorithm to further reduce the
feature subset. We use the RELIEF and CFS implementa-
tion available in the WEKA [6] machine learning software
suite.

7. PREDICTING STUDENT PERFORMANCE
AND EFFORT

We trained four separate linear regression models to predict
students’ course performance, equation effort, free-body dia-
gram effort, and self-explanation effort respectively. Both of

the aforementioned subset feature selection algorithms are
executed separately for each model, resulting in four dis-
tinct feature subsets which range from 13 to 25 features. The
effort-based features and vocabulary-based features are used
as input to the feature subset selection for the performance-
based model, and only the vocabulary-based features are
used for the three effort-based models. Each of these four
models was trained using the linear regression implementa-
tion available in WEKA [6].

Table 1 shows the coefficient weights for each of the features
in the first regression model. The magnitude of each weight
indicates the predictive power of that feature in determin-
ing either students’ performance or effort. Similarly, the
sign of the weight indicates whether or not that feature cor-
relates positively or negatively with performance or effort.
The performance, equation effort, free-body diagram, and
self-explanation models are able to explain 19.4%, 17.8%,
20.0%, and 45.7% of the variance in their respective dataset.
The final three models are computed, but not shown in this
paper.

Table 1: Underlying parameters of the linear regres-

sion model used to predict students’ overall course

grade. Each row corresponds to a single feature

which is the mutual information value of a single n-

gram or the TF-IDF scores of single words. The at-

tribute column presents the n-gram or word used to

compute the feature and the weight column presents

the weight of that feature in the linear regression

model.
Weight Attribute

-1174.8889 a<>force<>on
-395.8207 the<>twoforcemember
-358.6974 twoforcemember<>force
-300.7872 a<>force<>was
-292.9685 on<>an
-153.5296 action<>and<>i
-135.6537 the<>direction<>steeper
-135.6536 direction<>steeper<>angle
-135.6535 steeper
75.4336 solving<>solving<>of
87.9657 point<>i
92.4137 asked<>for
99.8558 interaction<>with
104.9789 knew
115.2228 body<>but
115.4557 interaction<>would<>be
125.317 and<>the<>boom
125.3176 we<>look<>at
125.3178 we<>are<>act
125.3181 act<>a<>force
125.3182 are<>act<>a
125.3186 act<>a
125.319 because<>we<>are
152.9983 to<>the
459.9756 body<>is<>a

8. DISCUSSION
The accuracy of our model for predicting student perfor-
mance is encouraging. More interesting though, is the fact
that the model and its parameters indicate the self-explanation
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behaviors that correlate with strong or weak performance.
By manually investigating these behaviors, we are able to
identify the metacognitive skills students demonstrate re-
garding their problem-solving processes.

Take, for example, the feature with greatest weight, the TMI
score of the trigram “body<>is<>a”. By manually inspect-
ing the self-explanation responses that contain this trigram,
we found that the trigram“body<>is<>a” is typically used
by a student to identify a special type of body in a system.
For example, one student’s self-explanation response reads
“The lever is a two-force system.” In this example, the word
“lever” belongs to the “body” thesaurus category. This pro-
vides strong evidence of a students’ ability to both recognize
and apply concepts learned in class to given homework prob-
lems. By identifying the “two-force system” the student is
able to apply a particular technique from class which only
applies to two-force systems.

Similarly, consider the difference between the trigram
“a<>force<>was” and the bigram “point<>i”. In examin-
ing the self-explanation responses, we found that responses
which contained the trigram “a<>force<>was” were used
passively in sentences, whereas the bigram “point<>i” was
used actively in sentences. This provides evidence of the im-
portance of active voice in self-explanations positively cor-
relating with student performance while passive-voice sen-
tences correlate negatively with performance.

Some attributes tended to reinforce our intuition regard-
ing students’ performance. The word “knew” indicates con-
ceptual understanding and a student’s confidence in their
problem-solving. When we examined these self-explanation
responses, the word “knew” expressed premeditation and
certainty. For example, one such self-explanation transcript
read, “I knew that by taking a moment about point A that
I would cancel out forces at F.”

Obvious grammatical errors tended to lead to poor perfor-
mance. In our manual investigation, we found that the tri-
gram “action<>and<>i” was primarily used in run-on sen-
tences. Consideration of alternative solution paths corre-
lated positively with performance. The bigram“body<>but”
was typically used by a student to indicate that there was
another way to solve a particular problem.

9. CONCLUSION
In this work, we have demonstrated a novel technique for
analyzing students’ handwritten self-explanations of their
homework solutions. This technique is enabled by our unique
dataset of student work. We conducted a study in which
thirty students in an undergraduate Mechanical Engineering
Statics course provided handwritten self-explanations of the
major steps they followed when solving each of their home-
work problems. The students completed the homework and
self-explanations using LivescribeTMSmartpens. These de-
vices produce a digital record of students’ handwritten work
in the form of time-stamped pen strokes, enabling us to see
not only the final ink on the page, but also the order in
which it was written.

We compute numerical features from this digital record which
characterize the vocabulary used and effort expended in
constructing handwritten self-explanations. We applied a
heuristic subset selection algorithm to identify the optimal

subset of features for predicting homework performance. Us-
ing this subset, we computed a linear regression model that
predicts students’ grades on homework assignments. This
model accounts for 19.4% of the variance in the students’
performance. While this is a strong correlation, what is
more valuable are the insights that can be drawn from the
underlying parameters of this model. The coefficient weights
of the model may be used to guide manual analysis of the
students’ self-explanation responses, revealing patterns that
provide insights into the types of self-explanation behaviors
that are indicative of understanding or lack thereof.
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ABSTRACT 

This paper applies meta-learning to recommend the best subset of 

white-box classification algorithms when using educational 

datasets. A case study with 32 Moodle datasets was employed that 

considered not only traditional statistical features, but also 

complexity and domain specific features. Different classification 

performance measures and statistics tests were used to rank 

algorithms. Furthermore, a nearest neighbor approach was used to 

recommend the subset of algorithms for a new dataset. Our 

experiments show that the best recommendation results are 

obtained when all three types of dataset features are used. 
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1. INTRODUCTION 
One of the oldest and best-known problems in educational data 

mining (EDM) [10] is predicting student’s performance as a 

classification task. A wide range of algorithms have been applied 

to predict academic success and course results. However, 

selecting and identifying the most adequate algorithm for a new 

dataset is a difficult task, due to the fact that there is no single 

classifier that performs best on all datasets, as proven by the No 

Free Lunch (NFL) theorem [6]. Choosing appropriate 

classification algorithms for a given dataset is of great importance 

in practice. Meta-learning has been used successfully to address 

this problem [12]. Meta-learning is the study of the main methods 

that exploit meta-knowledge to obtain efficient models and 

solutions by adapting machine learning and the DM process [4].  

Recommendation can be presented in various ways, such as the 

best algorithm in a set, a subset of algorithms, a ranking of 

algorithms, or the estimated performance of algorithms. We 

propose to use several classification evaluation measures and 

statistical tests to rank algorithms, and a nearest neighbor 

approach to recommend the subset of best algorithms for  a given 

new dataset. 

Meta-learning has been used mainly in general domain and 

publicly available datasets such as UCI [2]. However, we have not 

found any papers that tackle algorithm selection using meta-

learning in the EDM domain. There is only one related work 

about using meta-learning to support the selection of parameter 

values in a J48 classifier using several educational datasets [8]. In 

the educational domain, the comprehensibility of  discovered 

classification models is an important issue, since they should be 

interpretable by users who are not experts in data mining (such as 

instructors, course authors and other stakeholders) so they can be 

used in decision-making processes. Indeed, white-box DM models 

based on rules are preferred to black-box DM models such as 

Bayesian and artificial neural networks, although they are 

normally more accurate but less comprehensible [11]. On the 

other hand, statistics and information theory measures [3] and 

more recently data complexity measures [7] are widely used to 

characterize datasets in meta-learning. However, we propose to 

also use domain specific measures to characterize datasets. 

The paper is organized as follows: Section 2 introduces the 

methodology used in this work; Section 3 describes the Moodle 

educational datasets employed in the experimentation; Section 4 

describes the experiments, results, and the model obtained; and 

finally, conclusions and future works are outlined in Section 5. 

2. METHODOLOGY 
We propose a meta-learning methodology that consists of two 

steps (see Figure 1): 

 
Figure 1. Meta-learning methodology. 

 An off-line or training phase for creating the meta-database 

starting from educational datasets and classification 

algorithms. On the one hand, we identified important 

properties for characterizing datasets (statistics, complexity 

and domain) and developing meta-features. On the other 

hand, we used white-box classification algorithms (rule-

based and decision tree algorithms) to evaluate their 

performance on all the available datasets. For each dataset, 

we used a statistical test on several classification evaluation 

measures to rank and select the subset of algorithms that 

gave the best performance, in such a way that there were no 

significant differences, as far as performance is concerned, 

between all the algorithms in the subset. 

 An on-line or prediction phase to recommend a subset of 

classification algorithms to a new dataset using a nearest 

neighbor approach. Firstly, when a new dataset appears, its 

features are compared against all the meta-features in order 

to find the most similar dataset. Then, the subset of 

algorithms recommended for the new dataset corresponds to 

those previously obtained for its nearest neighbor. 
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3. DATASETS 
We used a set of 32 classification educational datasets (see Table 

1) about predicting students’ final performance starting with 

Moodle's usage data [10]. As input attributes, these datasets 

contain a variety of information about the interaction of students 

in Moodle and the class to be predicted is the final mark 

(categorical) obtained by students in the courses. All this data was 

collected from university Computer Science students between 

2007 and 2012. For each dataset, 16 features were obtained that 

can be grouped into the following three types: 

 Statistical features (see Columns 2 to 6 in Table 1): the 

number of instances or students (Ni), the number of 

numerical attributes (Nna), the number of categorical 

attributes (Nca), the number of classes or labels of the mark 

attribute such as Pass/Fail, High/Medium/Low, etc. (Nc), and 

the imbalance ratio (IR), which is the ratio between instances 

of the majority class and minority class. 

 Complexity features that characterize the apparent 

complexity of datasets for supervised learning [7], such as 

the maximum Fisher's discriminant ratio, the overlap of the 

per-class bounding boxes, the maximum (individual) feature 

efficiency, the collective feature efficiency (sum of each 

feature efficiency), the fraction of points on the class 

boundary, the ratio of average intra/inter class nearest 

neighbor distance, the leave-one-out error rate of the one-

nearest neighbor classifier, the non-linearity of the one-

nearest neighbor classifier, the fraction of maximum 

covering spheres, and the average number of points per 

dimension. We used DCoL (data complexity library) to 

obtain all the previous complexity measures [9] from our 

datasets. 

 A domain feature (see the last column in Table 1) that 

indicates what the specific source of each dataset is, which 

can either be a Moodle's report, quiz or forum. Report is a 

general summary about the interaction of each student in 

Moodle, such as: total time in Moodle, number of 

accesses/sessions, number of resources viewed, number of 

assignments done, average score in assignments done, total 

time spent on assignments, number of activities carried out, 

total time spent on activities, etc. Quiz is a specific summary 

about the interaction of each student with quizzes, such as: 

total time spent on quizzes and each quiz done, number of 

quizzes answered, number of quizzes passed, average score 

in quizzes, correctly/incorrectly answered questions, 

knowledge in each concept evaluated by the quiz, etc. Forum 

is a specific summary about the interaction of each student 

with forums, such as: total time spent in forums and each 

forum, number of messages sent, number of messages read, 

number of threads created, number of replies received, 

number of words and sentences written, etc. 

4. EXPERIMENTS 
An initial experiment was carried out to select a subset of white-

box classification algorithms that best predicted the final students’ 

performance for each Moodle dataset. We  used only rule-based 

and decision trees algorithms due to the fact that they provide 

models that can be easily understood by humans and used directly 

in the decision-making process.  

 

 

Dataset Ni Nna Nca Nc IR Domain 

Dataset1 98 4 0 2 1.08 Report 

Dataset 2 194 0 4 2 1.39 Report 

Dataset 3 786 6 0 3 9.8 Quiz 

Dataset 4 658 0 6 3 9.1 Quiz 

Dataset 5 67 40 0 2 1.23 Quiz 

Dataset 6 922 6 0 3 19.27 Quiz 

Dataset 7 910 0 6 3 19.24 Quiz 

Dataset 8 114 0 11 2 1.19 Forum 

Dataset 9 42 0 11 2 6 Forum 

Dataset 10 103 0 11 2 1.53 Forum 

Dataset 11 114 11 0 2 1.43 Forum 

Dataset 12 98 0 6 2 1.91 Forum 

Dataset 13 81 6 0 2 1.19 Forum 

Dataset 14 33 0 12 2 32 Forum 

Dataset 15 82 0 12 2 3.1 Forum 

Dataset 16 113 40 0 4 23.5 Quiz 

Dataset 17 105 41 0 3 1.06 Quiz 

Dataset 18 123 0 10 4 3.89 Quiz 

Dataset 19 102 10 0 3 1.06 Quiz 

Dataset 20 75 0 8 2 2.12 Report 

Dataset 21 52 0 4 2 1.89 Report 

Dataset 22 208 10 0 2 3.25 Report 

Dataset 23 438 0 10 4 15.41 Report 

Dataset 24 421 10 0 4 14.2 Report 

Dataset 25 84 6 0 4 5.43 Report 

Dataset 26 168 6 0 4 11.25 Report 

Dataset 27 136 6 0 4 11.5 Report 

Dataset 28 283 0 10 2 1.67 Report 

Dataset 29 155 0 10 2 1.21 Report 

Dataset 30 72 6 0 4 11 Report 

Dataset 31 40 0 10 2 1.2 Quiz 

Dataset 32 48 10 0 2 1.8 Quiz 

Table 1. Statistics and domain features of the datasets. 

The next 19 classification algorithms provided by Weka 3.6 [13] 

were used: 

 Rule-based algorithms: ConjunctiveRule, DecisionTable, 

DTNB, JRip, NNge, OneR, PART, Ridor and ZeroR. 

 Tree-based algorithms: BFTree, DecisionStump, J48, 

LADTree, LMT, NBTree, RandomForest, RandomTree, 

REPTree and SimpleCart. 

We executed each algorithm using all the Moodle datasets, which 

account for a total of 608 executions (19 algorithms * 32 
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datasets). All algorithms were executed using their default 

parameters and 10-fold cross-validation. 

Several classification performance measures were used to 

compare algorithm performance  [13], such as sensitivity (Sen), 

precision (Prec), F-Measure (F-M), Kappa (Kap) and the area 

under the ROC curve (AUC). For instance, Table 2 shows the 

average values for these measures obtained by each algorithm on 

dataset1. 

Algorithm Sen Prec F-M Kap AUC 

RConjunctiveRule 0.845 0.869 0.846 0.694 0.852 

DecisionTable 0.840 0.866 0.841 0.684 0.840 

DTNB 0.851 0.863 0.852 0.701 0.889 

JRip 0.840 0.870 0.841 0.685 0.837 

NNge 0.742 0.740 0.739 0.461 0.726 

OneR 0.845 0.873 0.846 0.695 0.862 

PART 0.845 0.869 0.846 0.694 0.843 

Ridor 0.851 0.866 0.852 0.702 0.861 

ZeroR 0.582 0.339 0.429 0.000 0.485 

BFTree 0.835 0.855 0.836 0.672 0.873 

DecisionStump 0.856 0.888 0.856 0.716 0.836 

J48 0.845 0.869 0.846 0.694 0.847 

LADTree 0.830 0.848 0.831 0.662 0.829 

LMT 0.840 0.855 0.841 0.681 0.862 

NBTree 0.861 0.873 0.862 0.721 0.876 

RandomForest 0.840 0.855 0.841 0.681 0.854 

RandomTree 0.830 0.848 0.831 0.662 0.838 

REPTree 0.861 0.887 0.862 0.725 0.852 

SimpleCart 0.840 0.858 0.841 0.682 0.844 

Table 2: Performance classification measures for dataset1. 

Secondly, in order to find out which algorithms perform best for 

each dataset taking several classification measures into account, 

we used the Iman&Davenport non-parametric statistical test [5].  

This test was repeated for each of the 32 datasets and produced an 

ordered list of algorithms with their final rank (average rank of the 

19 algorithms over the 5 performance measures), in such a way 

that the algorithm with the best rank (highest position in each list) 

is the one that performs best for the measures under consideration. 

According to the Iman&Davenport test, if the null-hypothesis is 

accepted, we state that all the algorithms are equivalent, i.e., they 

have a similar behavior. In contrast, if the null-hypothesis is 

rejected, we state that there are differences between the 

algorithms. For the 32 tests performed in our experiment at a 

significance level of alpha=0.1, the null-hypothesis was rejected, 

thus indicating that significant differences exist between 

classifiers.  

Therefore, in order to reveal such performance differences, a post-

hoc test needs to be carried out. The Bonferroni-Dunn test [5] can 

be applied, since all the algorithms were compared against a 

control algorithm (the algorithm with the highest rank), the focus 

being on all the possible pairwise comparisons among them. The 

critical value revealed by this test at the same significance level of 

alpha=0.1 was 9.5331. Therefore, for each dataset, that value was 

added to the rank of the control algorithm, and the algorithms 

whose rank belongs to the interval [highest rank, highest rank + 

critical value] are the set of best algorithms recommended for that 

particular dataset, given that there are no significant differences 

between them.  

For instance, the set of best algorithms recommended for dataset1 

are shown in Table 3, in which the critical interval is 

[2,2+9.5331]. The remaining 10 algorithms are not recommended 

due to the fact that their rank is over the upper limit. 

Algorithm Ranking 

NBTree 2 

REPTree 2.667 

DecisionStump 5 

DTNB 5.25 

Ridor 5.667 

OneR 6.333 

ConjunctiveRule 8.083 

J48 8.417 

PART 8.833 

Table 3: Ranking of the algorithms recommended for dataset6 

Finally, in order to recommend algorithms for a new dataset, we 

used a nearest neighbor (1-NN) approach [1]. We used the 

unweighted normalized Euclidean distance to find the closest 

dataset to the new one. In the case of categorical value (the 

domain feature), the distance considered was 0 in the case of 

matching and 1 otherwise. Then, the set of best algorithms 

previously calculated to the most similar dataset was 

recommended for the new dataset. 

We carried out a second experiment to compare the results 

obtained when  the different types of features that characterize the 

datasets were used. We noticed that distinct nearest neighbors 

were obtained for the same dataset depending on the features 

used. For instance, the nearest neighbors obtained for dataset1 

when using different feature combinations are shown in Table 4. 

Statistic Complex 

Statisic+ 

Complex 

Statistic+ 

Complex+ 

Domain 

Dataset13 Dataset11 Dataset11 Dataset22 

 Table 4: Nearest neighbors for dataset1 depending on the 

combination of used features. 

As  can be seen in Table 4, dataset13 (from forum domain) is the 

most similar to dataset1 (from report domain) when only statistics 

features (see Table 1) are used, but dataset11 (from forum 

domain) is the most similar when  complex and statistics features 

are used together, and finally, dataset22 (from report domain) is 

the most similar when all the features that also take the domain 

into account are used (see Table 1). 

Four separate tests using the hold-one-out method were directed 

to check which combination of features (by employing only 

statistical features, only complexity, both statistical and 

complexity, and also the domain attribute) enables the best 
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recommendation to be obtained. Following this hold-one-out 

procedure, first we calculated the similarity between each dataset 

and the remaining 31 datasets to select the most similar dataset. 

Next, the set of recommended (and previously calculated) 

algorithms for each dataset is considered as the real output, 

whereas the set of algorithms of its nearest neighbor is the 

predicted one. Then, several evaluation measures commonly used 

in pattern recognition and information retrieval systems (such as 

search engines and recommender systems) were computed to 

evaluate the quality of the recommendations. Precision and recall 

are the metrics employed, which are defined in terms of a set of 

retrieved documents in an information retrieval domain, but in this 

work, they are defined in terms of retrieved algorithms: 

|_|

|}_{}_{|

algorithmspredicted

algorithmspredictedalgorithmsreal
precision




 

|_|

|}_{}_{|

algorithmsreal

algorithmspredictedalgorithmsreal
recall


  

There is an inverse relationship between precision and recall, in 

such a way that obtaining higher values of one measure means 

obtaining lower values for the other. Nevertheless, there is another 

measure, called F-Measure, which combines both precision and 

recall and  is computed as the harmonic mean of both: 

recallprecision

recallprecision
MeasureF




 2  

The F-measure results achieved for the four combinations of 

features used are shown in a box plot or box-and-whisker diagram 

that shows the smallest observation (sample minimum), lower 

quartile (Q1), median (Q2), upper quartile (Q3), and largest 

observation (sample maximum), as can be seen in Figure 2. As 

can be observed, better results are obtained when the statistical 

and complexity features are considered jointly rather  than when 

they are considered independently. Moreover, the best results are 

reached when the domain attribute is also included. 

 

Figure 2. Blox plot of the F-measure. 

5. CONCLUSIONS 
In this paper, meta-learning has been used to address the problem 

of recommending a subset white-box classifier from Moodle 

datasets. Several classification performance measures are used 

together with several statistical test to rank and select a subset of 

algorithms. Results show that complexity and domain features 

used to characterize datasets can improve the quality of the 

recommendation.  For future work, we plan to extend the 

experimentation, for example, using more datasets, algorithms 

(including black box models), characteristics, evaluation 

measures, etc. 

Future research may employ a greater number of classification 

datasets from other sources or other kinds of education systems 

(primary, secondary, higher, special education, …) in which 

different specific domain features to characterize datasets can be 

used. A further line of research would be to develop more 

advanced off-line procedures, such as the employment of several 

K-NN neighbors instead of the 1-NN, and methods for merging 

several rankings and subsets of algorithms in neighboring 

datasets.  
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ABSTRACT 

The current study investigates the relation between personalizable 

feature use, attitudes, and in-system performance in the context of 

the game-based system, iSTART-ME. This analysis focuses on a 

subset (n=40) of a larger study (n=126) conducted with high 

school students. The results revealed a positive relation between 

students’ frequency of interactions with personalizable features 

and their self-reported engagement and perceived system control. 

Students who frequently interacted with personalizable features 

also demonstrated better overall in-system performance compared 

to students who interacted with these features less often. The 

current paper adds to the growing literature supporting the 

potential positive impact that personalizable features have on 

students’ attitudes and performance in adaptive learning 

environments.  

 

Keywords 

Personalization, attitudes, game-based features, off-task behaviors 

1. INTRODUCTION 
A growing trend in the field of adaptive learning environments 

has been the study of educational games on users’ interest and 

engagement during learning [1-2]. When games are incorporated 

into these learning environments, students have demonstrated 

increased engagement and motivation [3-4]. However, few studies 

have investigated how features within educational games may lead 

to off-task behaviors and ultimately influence in-system 

performance (notable exceptions include [5-6]). 

An exploration of the interactive features in educational game 

environments may allow researchers to identify the aspects of 

system interfaces that benefit or hinder students’ learning. 

Developers have integrated many types of interactive choice-

based features into educational game interfaces, including: 

personalizable avatars, interactive maps, and customizable 

background colors. These features have been found to increase 

student motivation and engagement [7-8]; however, the learning 

impact of these potentially off-task behaviors is relatively unclear.  

Off-task behaviors have been defined as any behavior that does 

not involve the specific learning task designated to the student [9]. 

Although off-task behaviors are frequently observed within 

classrooms [10], tutoring systems [11], and workplaces [12], the 

impact of these behaviors on learning remains inconclusive [6,9, 

13].  

For instance, Rowe, McQuiggan, Robinson, and Lester (2009) 

found that off-task choices within games were negatively 

correlated to posttest measures of learning performance. These 

findings are in line with previous work that has suggested a 

negative relation between off-task behaviors and student learning 

[5,9]. However, Rai and Beck (2012) found no relation between 

students’ interactions with off-task features and learning 

performance. These mixed results render it challenging for 

researchers to decipher the true cost-benefit ratio of game-based 

features within educational learning environments.  

Although previous work has provided some insight into the 

impact of off-task behaviors on student learning, they have yet to 

find a “sweet spot” amongst variables such as students’ use of 

personalizable features that elicit off-task behaviors, in-system 

performance measures, and student attitudes. The current study 

investigates these relations within the context of the game-based 

system, iSTART-ME [14]. 

1.2 iSTART-ME 

The Interactive Strategy Training for Active Reading and 

Thinking – Motivationally Enhanced (iSTART-ME) system is a 

game-based learning environment designed to improve students’ 

reading comprehension ability. This system is an extension of a 

previous version of iSTART, which provides students with 

instruction and practice using reading comprehension strategies 

while reading challenging texts [15]. 

The iSTART-ME interface is controlled through a selection menu 

where students can read and self-explain texts, personalize 

avatars, play mini-games, earn points, win trophies, and view their 
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progress in the system (see Figure 1 for menu screenshot). 

Students earn points and win trophies by playing games. As 

students accumulate points, they advance through a series of 

achievement levels. Each subsequent level requires more points to 

proceed than the previous level. Within iSTART-ME, in-system 

performance can be measured via students’ achievement levels 

and trophies. Together, these measures represent students’ 

commitment to and quality of strategy practice.  

 

Figure 1. Screenshot of iSTART-ME Interface 

System points within iSTART-ME also serve as a form of 

currency (iBucks) that students can use to buy rewards on the 

main interface. There are two primary incentives that students can 

unlock with their earned iBucks: mini-games and personalizable 

features. Mini-games were added to iSTART-ME to provide 

students with opportunities to practice the reading comprehension 

strategies in a game-based environment. Within iSTART-ME, 

mini-games are considered on-task because they are extensions of 

the overall learning goal of the system. However, the second 

incentive that students can unlock, personalizable features, is 

considered off-task, because it is tangential to the learning task.  

Within iSTART-ME, personalizable features include changing 

background colors, editing a pedagogical agent and customizing 

an avatar. Students can spend their earned iBucks on these 

features as many times as they choose for a variety of 

configurations (see Figure 2 for avatar configuration examples). 

Personalizable features were added to the system interface as a 

means to increase students’ control and engagement in the 

iSTART-ME environment. With the addition of these potentially 

distracting features, it is important to investigate the extent to 

which students’ interactions with these elements impact their 

attitudes and performance within the system.  

 

Figure 2. Examples of Avatar Configurations 

2. METHODS 
Participants in this study included 40 high school students from a 

mid-south urban environment. The sample included in the current 

work is a subset of 126 students who originally participated in a 

larger study that compared three conditions: iSTART-ME, the 

original version of iSTART, and a no-tutoring control [17]. The 

current study focuses on the students who were assigned to the 

iSTART-ME condition. These students had access to the full 

game-based system in which the game-based interface features 

were available. 

All students completed an 11-session experiment consisting of a 

pretest, 8 training sessions, a posttest, and a delayed retention test. 

During the first session, students completed a pretest that included 

survey measures assessing motivation, prior self-explanation 

ability, prior reading ability [17], and attitudes toward technology 

and games. During the following 8 sessions, students engaged 

with the iSTART-ME interface for a minimum of 1 hour, where 

they could play games, interact with texts and personalize system 

features. After training, students completed a posttest, which 

included measures that were similar to the pretest. Finally, 5 days 

after the posttest, students returned to complete a retention test, 

which contained measures similar to the pretest and posttest (i.e., 

self-explanation and attitudinal measures).  

2.1 Self-report measures 
Using posttest self-report surveys, we assessed students’ attitudes 

toward the iSTART-ME system (see Table 1 for selected 

examples). All responses were on a scale of 1 (Strongly Disagree) 

to 6 (Strongly Agree). Survey measures were combined to create 

composite scores for boredom, enjoyment, and motivation.  

Table 1. Selected Examples of Posttest Self-Report Measures 

Dependent 

Measure 

 Response Statement Response 

Scale 

Enjoyment 
 “I had fun using the computer 

system” 
1 - 6 

Boredom “I felt bored” 1 - 6 

Motivation 
“I was motivated to participate 

in this study” 
1 - 6 

Lack of Control 
“I felt like I had no control over 

the system” 
1 - 6 

1 (Strongly Disagree) to 6 (Strongly Agree) 

 

3. RESULTS 
We examined interactions with personalizable features and their 

relation to students’ performance and attitudes during training 

within iSTART-ME. Using the process data from students’ 

interactions, we calculated the number of times students spent 

their earned iBucks on personalizable features. We first examined 

how off-task personalization of any kind (avatar, background 

theme, or agent) related to in-system performance (achievement 

levels and trophies won) and posttest attitudinal composite 

measures (i.e., enjoyment, boredom, and motivation) and a single 

measure of perceived lack of control. The correlation results in 

Table 2 indicate that students’ number of avatar edits was 

marginally negatively related to posttest boredom and 

significantly negatively related to perceived lack of control. 
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Hence, there was a weak negative relation between students’ 

perceived boredom and lack of control within the system and 

avatar edits. However, no other personalization feature in the 

system had a marginal or significant relationship to any of the 

other dependent variables.  

Table 2. Correlations between Frequency of Off-task 

Personalization Edits and Dependent Measures 

Dependent 

Measure 

Avatar 

Edits 

(n=30) 

Background 

Theme Edits 

(n=15) 

Pedagogical 

Agent Edits 

(n=17) 

Achievement Level .26 .35 .06 

Total Trophies Won .33 .39 -.10 

Enjoyment 

Composite 
.11 .07 .14 

Boredom Composite -.35(M) -.13 -.31 

Motivation 

Composite 
.19 .15 -.04 

Lack of Control -.36* -.18 -.21 

*p < .05; p<.10 (M) 

 

3.1 Differences in avatar interactions 

Table 2 reveals that the customizable avatar was the only 

personalizable feature that showed a significant relation to student 

attitudes. These results also demonstrate that none of the three 

personalizable features showed a significant relation to any of the 

in-system performance measures. Therefore, we focus the 

remainder of our analyses on students’ interactions with the 

customizable avatar feature. To further explore the relation 

between avatar editing, attitudes, and in-system performance, we 

created two categories of students: those who edited their avatar 

(editors) and those who did not (non-editors). Out of the 40 total 

participants who completed the iSTART-ME condition, 30 

students made at least one edit to their avatar. A median split was 

performed including only those students who edited their avatar at 

least once. This median split resulted in 19 students who made at 

least three or more edits (high editors) and 11 students who 

performed only one or two avatar edits (low editors). This median 

split helps to profile students and identify varying patterns of on-

line interactions within game-based learning systems. 

3.2 Group differences in avatar edits 

Differences between high and low avatar editors’ attitudes and in-

system performance were examined using separate one-way 

ANOVAs. These analyses revealed a significant difference 

between high and low editors in terms of overall in-system 

performance (see Table 3). Compared to high editors, low avatar 

editors had significantly lower system achievement levels, 

F(1,28)=4.22, p< .05, and significantly fewer trophies, F(1,28)= 

5.24, p< .05. These results indicate that students who engaged in 

more off-task behaviors (i.e., more than two avatar edits) showed 

significantly better in-system performance relative to students 

who engaged in fewer off-task behaviors (i.e., only one or two 

avatar edits).  

One potential reason for these editor differences may, in part, be 

due to the system design. Within iSTART-ME, points are used to 

unlock various features. Thus, students who earn more points will 

be able to spend more on off-task features. To examine this issue 

further, a ratio of points spent to points earned was calculated for 

each student. A one-way ANOVA on this spending ratio revealed 

no significant differences between high and low editors, 

F(1,28)=.794, p=.381. This finding indicates that high and low 

editors spent the same relative amount of points throughout their 

interactions. Although high and low editors spent the same 

relative amounts, the previous results suggest that high editors 

were more likely to spend those points on the off-task 

personalization features, whereas low editors spent their points 

elsewhere (i.e., they remain on-task).  

Separate ANOVAs were also conducted to examine the relation 

between avatar edits and students’ self-reported posttest attitudes 

toward the system (see Table 3). The results indicated that 

students who were classified as high editors reported less 

boredom, F(1,28)=5.84, p<.05, compared to high editors. 

Interestingly, low editors reported feeling a higher lack of 

control within the system, F(1, 28)=7.62,  p<.01, compared 
to high editors. 

Table 3. Mean Overall Performance and Attitudes Scores per 

Group 

Dependent 

Measure 

Low Avatar 

Editors 

M (SD) 

High Avatar 

Editors 

M (SD) 

Achievement 

Level 
13.76 (6.25) 18.45 (5.66) 

Trophies Won 15.15 (11.77) 36.00 (36.98) 

Boredom 

Composite  
2.30 (.93) 1.55 (.59) 

Lack of 

Control  
2.36 (1.30) 1.18 (.75) 

 

4. DISCUSSION 
The incorporation of educational games within learning 

environments has demonstrated positive impacts on student 

engagement [1, 4]. However, many features within these games 

may promote off-task behaviors. The current study aimed to gain 

a deeper understanding of the relations among these features, in-

system performance, and students’ attitudes.  

In line with previous work, our results demonstrated significant 

negative relations among students’ interactions with 

personalizable features, boredom, and lack of control. These 

results replicate previous work suggesting that personalization 

potentially augments students’ investment and perception of 

control within a system [7]. ANOVAs revealed distinct 

differences between high and low avatar editors for their self-

reported attitudes and in-system performance. High editors 

advanced to higher achievement levels and won more trophies 

compared to low editors. High editors also expressed less 

boredom and higher levels of perceived control in the system.  

In contrast to some prior work [6], the current analyses on off-task 

behaviors, in-system performance, and student attitudes provide 
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tentative support for the inclusion of personalized features within 

adaptive learning environments. Interestingly, the most frequently 

utilized and influential feature was the customizable avatar. One 

hypothesis for this effect is that creating a personal avatar may 

increase students’ investment within the system [8]. Future work 

will explore the relation between avatars and investment, along 

with the potential benefit that this may have on persistence (i.e., 

students returning to the training environment). 

Additionally, further work is needed to investigate how students’ 

motivation and attitudes mediate choices within the system (both 

on- and off-task) to affect overall system learning outcomes. The 

current work begins to explore this complex interaction and 

examines potential features that can engage students over an 

extended training period while maintaining performance quality. 

Investigating these dynamic elements within learning 

environments will advance our understanding of the proper 

balance between system designs that promote high levels of both 

engagement and performance.  
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ABSTRACT 

The purpose of this study was to investigate students’ patterns of 

interactions within a game-based intelligent tutoring system (ITS), 

and how those interactions varied as a function of individual 

differences. The analysis presented in this paper comprises a 

subset (n=40) of a larger study that included 124 high school 

students. Participants in the current study completed 11 sessions 

within iSTART-ME, a game-based ITS, that provides training in 

reading comprehension strategies. A random walk analysis was 

used to visualize students’ trajectories within the system. The 

analyses revealed that low ability students’ patterns of interactions 

were anchored by one feature category whereas high ability 

students demonstrated interactions across multiple categories. The 

results from the current paper indicate that random walk analysis 

is a promising visualization tool for learning scientists interested 

in capturing students’ interactions within ITSs and other 

computer-based learning environments over time. 

 

Keywords 

Intelligent Tutoring Systems, sequential pattern analysis, random 

walk analysis, individual differences  

 

1. INTRODUCTION 
A growing trend in the field of educational technology has been to 

use aggregated or summative analysis to trace students’ 

interactions with game-based features inside of Intelligent 

Tutoring Systems (ITSs) [1-5]. These analyses capture students’ 

interactions with the system overtime and at fixed intervals [3-5]. 

For example, aggregated analysis on the frequency of students’ 

utilization of game-based features across multiple training 

sessions found that patterns of interactions varied as a function of 

individual differences in performance orientation [4]. Similarly, 

summative methods have been used to investigate how the 

availability of game-based elements inside of a system impacts 

students’ overall enjoyment [3]. 

Although aggregated and summative analyses shed some light on 

users’ overall system interactions, those statistical methods cannot 

trace nuances in students’ paths in adaptive learning 

environments. The current study utilizes sequential pattern 

analysis to reveal distinct differences in students’ propensity to 

interact with various game-based features.  

Sequential pattern analysis places an emphasis on fine-grained 

detail. Therefore, this means of analysis may give researchers a 

deeper understanding of students’ interactions in a system by 

examining nuances in patterns overtime. Random walk analysis is 

just one of many available sequential pattern analysis tools (e.g., 

Euclidean distance and dynamic time warping). A random walk 

analysis is a mathematical tool that generates a spatial 

representation of a path [6]. This technique has been used in a 

variety of domains such as economics [7], ecology [6], 

psychology [8] and medicine [9-10]. For instance, this method has 

been used in the study of genetics and aptly renamed DNA walks 

[9-10]. DNA walks provide researchers with a simple 

visualization of genome codes and patterns [10]. Overall, random 

walk analysis has been a useful technique for visualizing the 

nuances of fine grain patterns in categorical data over time.   

The current study employs a random walk analysis in the 

visualization of students’ interactions with the game-based ITS, 

iSTART-ME. We are particularly interested in examining how 

students’ patterns of interactions with game-based features vary as 

a function of individual differences across numerous sessions. 

Investigating these patterns as they unfold over time is expected to 

provide researchers with a deeper understanding of variations in 

students’ tendency to use game-based features.  

1.2 iSTART-ME 

The Interactive Strategy Training for Active Reading and 

Thinking – Motivationally Enhanced (iSTART-ME) is a game-

based ITS developed on top of an existing system, iSTART [11]. 

iSTART was developed to provide instruction and practice in 

comprehension strategies and improve student comprehension of 

difficult science texts.  

iSTART-ME training includes three initial phases where reading  

comprehension strategies are introduced, demonstrated, and 

practiced (phases are discussed in more detail in [1]). A fourth 

phase includes extended practice, where students apply the 

strategies across numerous texts and multiple sessions. iSTART-

ME situates this extended practice within a game-based selection 

menu (see Figure 1), which includes: generative practice games, 

personalizable features, achievement screens, and identification 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 276



www.manaraa.com

 

 

mini-games. Generative practice games are designed so that 

students must generate text and practice applying the reading 

comprehension strategies. Identification mini-games provide 

examples and require students to identify the specific strategy 

being used.  Personalizable features are incentives designed to 

afford students a higher locus of control and investment with the 

environment. Achievement screens allow students to track their 

progress and performance across the iSTART-ME system. All 

four features are available during interactions with iSTART-ME, 

and students are free to choose among the options at any time.  

 

Figure 1. Screenshot of iSTART-ME Interface 

 

2. METHODS 

2.1 Participants 

Participants in the current work (n=40) were a subset of 124 high 

school students who participated in a study at a large university 

campus in the Mid-Southern United States [12]. The current 

analyses focus only on those students who were randomly 

assigned to interact with the game-based iSTART-ME system 

(other students in the original study were assigned to an ITS or a 

no-tutoring control).  The students included here consisted of 20 

males and 20 females, with an average age of 16 years.  

2.2 Procedure 

Students in this study completed an 11-session experiment that 

consisted of a pretest, 8 training sessions within iSTART-ME, a 

posttest, and a delayed retention test. During session 1, 

participants completed a pretest to assess their attitudes, 

motivation, prior self-explanation (SE) quality, vocabulary 

knowledge, and prior reading ability. SE quality was measured at 

pretest using the iSTART algorithm, which ranges from 0 (poor) 

to 3 (good) [13]. This score provides a rough indicator for the 

amount of cognitive processing involved, and represents the 

quality of a student’s self-explanation [14]. Prior reading ability 

was assessed using the Gates MacGinitie Reading Test [15]. 

Students interacted with the iSTART-ME system during sessions 

2 through 9. During session 10, students completed a posttest, 

which included measures similar to the pretest. Finally, five days 

after the posttest, students returned to complete a retention test, 

consisting of similar self-explanation and comprehension 

measures. 

2.3 Analysis 

The current study employs a random walk algorithm to visualize 

student interaction patterns across time (sessions 2 through 9). 

Game-based features were grouped into four distinct categories 

and each was assigned to a vector on an X, Y scatter plot. 

Although the current study used only four dimensions, the number 

of dimensions that can be included when using random walk 

analyses is relatively unlimited. The walk proceeds by placing an 

imaginary particle at the origin (0, 0) and, each time a participant 

interacts with a specific feature, the particle moves in the direction 

of the vector assignment (see Table 1 for directional assignment).  

Table 1. Directional Assignment per Interaction 

System Interaction Directional assignment 

Generative Practice Games -1 on X-axis (move left) 

Identification Mini-Games +1 on Y-axis (move up) 

Personalizable Features +1 on X-Axis (move right) 

Achievement Screens -1 on Y-axis (move down) 

 

Figure 2 is an example of what a walk may look like for a student 

with four interactions corresponding to the following sequence: 1) 

generative practice game (move left), 2) identification mini-game 

(move up), 3) personalizable feature (move right), and 4) a second 

identification mini-game (move up). These simple rules are used 

for every interaction a student makes and give us their “walk” 

through the system.  

 

Figure 2. Example of Directional Rules for Walk Sequence 

 

3. RESULTS 
The current study examined students’ patterns of interactions with 

game-based features and how they may vary as a function of 

individual differences. Students’ data logs from their eight 

sessions in iSTART-ME were used to categorize every interaction 

into one of the four possible game-based feature types: generative 

practice games, personalizable features, achievement screens, and 

identification mini-games. The random walk algorithm was then 

used to construct a unique pattern for each participant (see Figure 

3 for one student’s complete “walk” pattern).  
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Figure 3. Individual Walk for a Student in the iSTART-ME Study 

A slope was calculated as a coarse measure of each student’s 

unique walk pattern. This slope provides a measure of each 

student’s interaction trajectory across the time spent within the 

game-based portion of iSTART-ME. Slope calculations obscure a 

portion of the variability in walk patterns. On the one hand, some 

information is lost in that analysis. On the other hand, this metric 

provides valuable insight into students’ interaction trajectories 

over time. Utilizing these slopes, we examined the relation 

between slope magnitude and individual differences in prior 

reading ability, prior SE quality, and prior vocabulary knowledge 

(see Table 2). A correlation analysis revealed that the magnitude 

of walk slopes was negatively related to prior reading ability and 

prior SE quality. This analysis also indicated a marginally 

significant relation between slopes and pretest vocabulary 

knowledge. Students with higher reading and SE quality pretest 

scores demonstrated a more vertical trajectory in their patterns of 

interactions. That is, higher ability students were more likely to 

interact with both generative practice games and identification 

mini-games and were less likely to hover around the generative 

practice game function.  

Table 2. Correlations between Slope of Students’ Walks and 

Individual Difference Variables 

Individual Difference Variables Slope (r) 

Prior Reading Ability -.593** 

Prior SE Quality -.496** 

Vocabulary Knowledge  -.297(M) 

p<.05*;  p<.01**; M= Marginally Significant, p<.10 

 

A median split on pretest reading comprehension scores was used 

to classify students as either high or low ability. A one-way 

ANOVA examining trajectory differences between high and low 

reading ability students indicated that high reading ability students 

had significantly steeper slopes (M = -1.76, SD = 0.96) compared 

to low reading ability students (M = -0.58, SD = 0.56, F(1,38) = 

23.58, p < 0.0011. The effect size for this relation (ƞ2 = 0.38) 

suggests a moderate to high practical significance [16]. Figure 4 

provides a visualization of those differences. In summary, the 

results indicate that low reading ability students are more likely to 

use the generative practice game features and are less prone to 

interact with the other game features. 

A similar ANOVA examined differences in walk slopes for 

students with high and low pretest SE quality scores1 These 

results reveal that students with higher quality self-explanations at 

pretest had significantly steeper slopes (M = -1.62, SD = 1.00) 

compared to those with low SE quality (M = -0.62, SD = 0.60, 

F(1,38) = 14.99, p < 0.001). The effect size for this relationship 

(ƞ2 = 0.68) suggests a high practical significance [16]. These 

results indicate that students who generated low quality self-

explanations prior to training tend to hover consistently around a 

specific feature (generative practice games) whereas, high SE 

quality students seem to interact at a more balanced rate between 

generative practice games and identification mini-games. Figure 5 

provides a visualization of these differences. 
 

                                                                 
1 Multivariate regression analyses confirmed results of the 

median-split analyses. 

 

Figure 4. Visualization of Slope Trajectories for High and Low 

Reading Ability Students 

 

 

 

Figure 5. Visualization of Slope Trajectories for Students with 

High and Low Prior Self-Explanation Quality Scores 

 

4. DISCUSSION 
The current study used a random walk analysis to view sequences 

of patterns in students’ interactions within the game-based ITS, 

iSTART-ME. We suggest that sequential pattern analysis may 

benefit learning scientists by providing a new method for tracking 

and viewing students’ interactions with game-based features 

across time. Using the slopes of each student’s unique walk we 

found that there was a relation between a students’ trajectory 

through the system and their prior reading comprehension ability 

and prior self-explanation (SE) quality scores. Investigating this 

relation further, we found that students with higher reading ability 

and higher SE quality scores showed significantly different 

trajectories compared to low reading ability and those students 

with lower quality self-explanations. Low ability students tended 

to interact more with generative practice games, whereas high 

ability students interacted in a more balanced way with both 

generative practice games and identification mini-games.  

The implications of the current study are promising for 

researchers in two ways. First we have shown that random walk 
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analysis can be used to view fine-grained patterns of interactions 

within an ITS. Researchers can use this analysis technique to track 

students’ interactions within a system across time. Although this 

method is well known and used in many diverse fields [6-9], this 

is the first time, to our knowledge, that random walk has been 

used to investigate users’ trajectories inside of an adaptive 

learning environment. Secondly, we have shown that individual 

differences can be distinguished by using slopes derived from 

each student’s walk. These slopes show us the trajectory of 

students’ interactions and what features are anchoring them. This 

may be useful for real time analysis of system usage. For instance, 

if students’ patterns of interactions are too stagnant, the system 

may need to prompt them to interact with a different feature. 

Random walk analyses may also improve the adaptability of 

adaptive environments by allowing researchers to monitor and 

track users’ behaviors inside the system.   

The current analysis opens the door for a wide range of time series 

analysis techniques, a full description of which is beyond the 

scope of this paper. For example, we are currently exploring the 

benefit that long-range correlations and probability analysis may 

offer to the study of students’ interaction patterns. Future work 

will also focus on the order in which students interact with 

features and how much time students spend on each feature. 

Examining time and order will give us a better understanding of 

students’ patterns of interactions and how these patterns may 

evolve across time.  
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ABSTRACT 

In this paper, we present a technique that we have developed to 

transform sequences of technical events into more abstract actions 

and semantic activities. The sequences of more abstract units are 

then used for discovering patterns of students’ interaction with 

computer models using heuristic miner. Our proposed approach 

automatically segments sequences of technical events that 

occurred during model runs and pauses and, on the basis of the 

nature of technical events that occurred during model runs and 

pauses, clusters them into actions. Then, using heuristic rules, it 

classifies actions into activities. We demonstrate the usefulness of 

our multilevel abstraction for extracting and exploring 

characteristic patterns of students’ interaction with computer 

models. Our study shows that each abstraction level could help to 

identify distinct characteristics of students’ interaction. 

Keywords 

Process mining, data pre-processing, multilevel data analysis, 

model-based learning.  

1. INTRODUCTION 
It has been acknowledged that model-based inquiry could be a 

very effective pedagogical approach for teaching and learning 

complex scientific knowledge. Computer models could help 

students to engage in first-hand scientific investigations of 

complex social and natural phenomena and construct deep, 

authentic understanding of many complex processes, such as 

climate change [3, 4]. However, a number of studies that 

investigated model-based learning have found that not all learners 

succeed achieving desired learning outcomes [1, 8, 9]. They 

suggested that students’ failure and success to learn from 

computer models may be related to the differences in how 

students interact with computer models. For example, studies 

demonstrated that some students, when they explore computer 

models, systematically change one parameter after parameter; in 

contrast, other students approach tasks in more haphazard ways 

and change different model settings simultaneously [6]. While the 

former students usually succeed completing given inquiry tasks, 

the latter students tend to be less successful demonstrating desired 

learning outcomes. However, methods for exploring students’ 

model-based inquiry processes have been complicated, usually 

based on human coding, thus hard to implement in computer 

systems. Only recently researchers have started to explore the 

possibilities to extract students’ inquiry characteristics and 

patterns automatically from the log files [2, 7]. These techniques 

could help to detect productive and unproductive students’ 

behaviours and scaffold students’ inquiry automatically. 

 A traditional approach in exploring learning processes 

automatically is to use event logs of students’ interaction with 

computer software as an input to process mining algorithms. 

However, processes of students’ interaction with computer models 

tend to be very flexible, unstructured and composed from large 

numbers of fine-grained technical events. Consequentially, 

technical events may be too far remote from students’ intended 

purposeful actions and the identified patterns could be hard to 

understand and use.  

Our goal is to develop a method for identifying semantically more 

abstract and meaningful students’ actions and activities from 

lower level technical events recorded in the logs. The sequences 

of more abstract units then could be used to investigate students’ 

model-based inquiry patterns. In this paper, we present a 

multilevel data preprocessing approach that we have created and 

used in combination with process mining for investigating 

students’ model-based inquiry strategies. Using real data, we 

illustrate that by identifying more abstract semantic units and 

examining their sequences we can gain additional insights into 

how students interact with NetLogo computer models. 

The rest of this paper is organised as follows. Section 2 reviews 

related work and introduces our approach. Section 3 illustrates the 

capability of our approach using real event log data. Section 4 

presents conclusions. 

2. RELATED WORK AND APPROACH 
There have been a number of studies that focused on analyzing 

data logs of less-structured processes. However, the process 

models extracted from raw data logs using traditional process 

mining techniques have been usually difficult to interpret. One of 

recently proposed techniques to deal with this issue is abstraction. 

Particularly, Bose and Aalst [1] explored a way that identifies the 

looping constructs in logs and replaces the repeated occurrences 

of the loops by more abstract entities (aka. activities). They also 

proposed a technique for discovering sub-processes or common 

functionalities in the traces and replacing them with more abstract 

entities. Our technique adopts Bose and Aalst [1] approach and 

focuses on how event logs could be semantically transformed into 

more abstract action and activity sequences. However, it interprets 

looping events and repeated occurrences of events differently 

from Bose and Aalst [1]. Our technique segments technical event-

sequences into “bags of events” and then uses a heuristic-based 

classifier to automatically identify activities. 

2.1 Study Context and Data 
Data for this study came from a larger design-based project that 

investigates how school students learn scientific knowledge about 
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climate change [4]. In total, 90 students from a high girls’ school 

learnt about climate change by exploring computer models. 

Students completed inquiry tasks in dyads. In this paper, we 

conducted the analysis of dyads’ interactions with the Carbon 

Cycle model (Figure 1). In total, we recorded 21 event log.  

 

Figure 1. A carbon cycle model 

2.2 Pre-processing Logs with Abstractions 
Our data pre-processing included three steps. During the first two 

steps, we abstracted action-sequences from the event-sequences, 

and in the third step, we further abstracted activity-sequences 

from action-sequences. The recorded log files comprised process 

instances. A process instance is a sequence of events in which 

each event represents an interaction with a model (e.g., a click of 

“Setup” button).  

In the first step, we identified five main categories of technical 

events: two types of basic model control; tracking of different 

model elements; change of modelling speed; and change of model 

parameters (Table 1). In our analysis we regarded dichotomous 

events as two discrete events (e.g., “Go” was regarded as “Start” 

and “Stop” of the simulation), whereas all events with continuous 

parameters we regarded as singular events without parameters 

(e.g., “Speed” was considered as change of speed without taking 

into account the direction of change and size). Thus, the pre-

processed log files were composed from the sequences made up 

from seven singular technical events. In this step, process 

instances (sequences of events) were segmented using “Start,” 

“Stop” and “Setup” events as the main semantic delimiters. As a 

result, each process instance consisted of non-overlapping 

segmented sequences of events. The sequences that began with 

“Start” and ended with “Stop” identified those events that students 

made during model simulation, including their implementations of 

planned modelling experiments and more spontaneous 

interactions with the model. The sequences that began with “Stop” 

and ended with “Start” distinguished those events that students 

made when the simulation was paused. We called these two types 

of sequences “runs” and “pauses,” respectively. The execution 

time of each segmented sequence was computed as a time 

difference between the end and start of the segment. “Setup” 

terminated the execution of the model. Thus, semantically, 

“Setup” events that occurred during runs were similar the 

sequences of three events “Stop-Setup-Start” and was interpreted 

as a pause with the execution time of 0 seconds. 

In the second step, we identified actions by classifying segmented 

event-sequences identified in the first step. Each event-sequence 

was considered to be “a bag of events”. In order words, the order 

of events, except “Start” and “Stop,” in each event-sequence was 

not considered; and all events were indexed using a binary digit. 

The occurrence of an event was assigned value 1, if the event 

happened in the sequence at least once; otherwise, the occurrence 

was assigned value 0 (i.e. the event did not occur). Based on this 

binary presentation, we clustered all segmented event-sequences 

into actions. Actions were represented by a string of five digits. 

Each event, but “Start” and “Stop,” was assigned a unique 

position (see Table 1). The absence or presence of the event 

within each action was identified by assigning value “0” or “1” 

for the digit representing that event in the string. For example, 

simulation speed was represented by the second digit and fossil 

fuel use was represented by the third digit; thus the sequence 

“start-01100-stop” represented a modelling action during which a 

dyad changed the simulation speed and fossil fuel use while the 

simulation was running. Therefore, each action had a distinct 

semantic and represented the nature of students’ interaction with 

the model during “runs” or “pauses.”  

Table 1. Types of interactions with the carbon cycle model 

Buttons in 

the model 

Category 

[type]1 

Technical events 

[position] 

Examples 

of actions 

Go 

[On/Off] 

Model control 

[Dichotomous] 

Start [S] 

Stop [E] 

S-00000-E 

E-00000-S 

Setup [nil] 

 

Model control 

[Singular] 

Setup [1] S-10000-E 

 

Follow a 

CO2 

molecule 

[On/Off] 

Tracking  

[Dichotomous] 

Follow molecule 

– On [4] 

Follow molecule 

– Off [5] 

S-00010-E 

S-00001-E 

Change of 

speed 

[value] 

Speed change 

[Continuous] 

Change of speed 

[2] 

S-01000-E 

Change 

fossil fuel 

use [value] 

Parameter 

change 

[Continuous] 

Change fossil 

fuel use [3] 

S-00100-E 

 

In the third step, activities were created by classifying actions. We 

identified activities using three features: action types, event types, 

and duration. Action type specified whether an activity was a 

“pause” or a “run”. Event type specified the nature of events that 

occurred during each activity and included four heuristic 

categories: control, interaction, configuration and combined 

activities. Control activities included simple runs, pauses, and 

reset. They indicated those periods when students controlled the 

model by simply running, and pausing the simulation or resetting 

the simulation to the initial conditions. Interaction activities 

indicated those periods when students controlled their interaction 

with the model by adjusting simulation settings, such as making 

visible and tracking the behaviour of an individual CO2 molecule 

                                                                    
1Type - is the type of a variable in the log file corresponding 

different types of behaviour: Singular events have one discrete 

value (no parameter); Dichotomous events have two possible 

values (On or Off); Continuous events have a range of values 

(continuous parameters). **Position – identifies the position of the 

digit that represents each technical event in the action. 
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and changing simulation speed. Configuration activities included 

those periods when students changed model variables that impact 

the modelled phenomenon, such as the rate of CO2 emissions. 

Combined activities included the combination of model control, 

interaction and configuration. Interaction and configuration 

activities also involved model control. To specify the time feature, 

we used action durations: value 1 indicated that the execution time 

was longer than 0 seconds; value 0 indicated that the length of an 

action was 0 seconds. This classification resulted in nine kinds 

activities (Table 2) from which we created activity logs. The three 

logs - the event-sequences, action-sequences, and activity-

sequences – then were used as inputs to process mining. 

Table 2. Classification of actions into activities 

Actions2 Sec Activity 

S-00000-E >0 Control_Run 

S-010XX-E | S-0X01X-E | S-0X0X1-E >0 Inter_Run 

S-00100-E >0 Conf_Run 

S-011XX-E | S-0X11X-E | S-0X1X1-E >0 Comb_Run 

E-10000-S =0 Reset_Run 

E-X0000-S >0 Control_Pause 

E-X10XX-S | E-XX01X-S | E-XX0X1-S >0 Inter_Pause 

E-X0100-S >0 Conf_Pause 

E-X11XX-S | E-XX11X-S | E-XX1X1-S >0 Comb_Pause 

 

3. RESULTS 
There were 21 event logs that, in total, included 2582 technical 

events. The event logs were segmented into 1520 event-

sequences. Each event-sequence was transformed into “bags of 

events” with binary indexing. All transformed event-sequences 

were then clustered into action-sequences and activity-sequences. 

In order to demonstrate the capability of our data preparation 

method, we present and compare process patterns of one dyad 

created using data at three different levels of abstraction - events, 

actions and activities. We generated three causal dependency 

diagrams (nets) from the pre-processed data using the Heuristic 

Miner algorithm with the default parameters [9, 10]. The analysis 

and comparison of these three causal nets shows that each of the 

process models depicts distinct features of students’ interaction 

with the simulation (Figures 2-4). 

The event process model shows that “start” and “stop” dominated 

in students’ interaction with the model and each event was 

recorded in the log 33 times (Figure 2). “Setup” event during 

which students reset parameters appeared also quite often (20 

times); whereas “fossil-fuel-use” and “speed” events were 

executed only 14 and 11 times, respectively. The model shows 

that “stop” event plays quite distinct role in the process pattern; 

and two other events - “start” and “fossil-fuel-use” - have high 

dependencies on “start” event (0.9). This indicates that the dyad 

                                                                    
2X represents either 1 or 0. The position in the sequences of five 

digits indicates that a certain event occurred during the activity: 1) 

setup; 2) speed; 3) fossil fuel use; 4) track a CO2 molecule - on; 5) 

track a CO2 molecule - off. Sequences that begin with “start” (S) 

indicate that action was performed while the model was running; 

whereas sequences that begin with “stop” (E) indicate actions 

performed while the simulation was paused. 

usually took these two actions after stopping the model. “Start” 

and “stop” events are mutually co-dependent. It means that these 

students often started the simulation and then stopped it without 

any further interaction and/or configuration. Nevertheless, “start” 

and “stop” events form a part of a larger three-event loop of 

“stop”, “fossil fuel use” and “start” with dependencies 0.9 of these 

three events on each other. It indicates that these students usually 

configured the model after stopping the simulation. “Start,” 

“speed” and “stop” events form another loop, where “speed” 

event has a dependency on “start” event (0.5) and “stop” event has 

a dependency on “speed” (0.7). The dependencies in this event 

loop, however, are lower, which indicates that the change of speed 

did not necessary follow the start of the simulation or preceded 

the stop. Indeed, the extracted process net shows that “speed” also 

depends on “fossil fuel use,” which suggests that the students 

sometimes changed speed just after changing “fossil fuel use” 

parameter, thus configured modeling and interaction parameters 

together. Further, “setup” event has a noticeable dependency on 

“stop” (0.7), suggesting that the dyad usually reset the simulation 

after stopping it. However, there is a loop from “setup” event to 

“setup” indicating that students, for some reasons, sometimes 

pressed “setup” button multiple times. 

 

Figure 2. Process model mined from event-sequence 

The action process net reveals additional characteristics of 

students’ modeling behavior (Figure 3). The model distinguishes 

characteristic features of each run and each pause. Therefore, we 

can see what the dyad did during and in between the execution of 

the simulation. As Figure 3 shows, the students took only two 

kinds of actions when the simulation was running. Firstly, the 

students simply ran the simulation without any interaction and 

configuration (i.e. S-00000-E). This action dominated in their 

process model (27 times). Secondly, the students sometimes 

changed the simulation speed while it was running (i.e. S-01000-

E), but this action appeared less frequently (8 times). In contrast, 

the students took a large variety of different actions between the 

executions of the simulation. Particularly, there are 7 types of 

“pause” actions. Among the six actions connected to the simple 

simulation run, 5 of them are co-dependent. That is, there are both 

out-going and in-coming dependency arrows to these five actions 

from the simple simulation run. This model shows that more 

complex interactions during the runs usually tended to follow 

more complex model configurations during the pauses, whereas 

simple interactions during the runs tended to follow more simple 

model reset or pause actions. It is important to note, that this 

tendency was not depicted in the process model that was based on 

the technical events (Figure 2). 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 282



www.manaraa.com

 

Figure 3. Process model mined from action-sequence 

The activity process net provides additional insight into the 

students’ modeling behavior (Figure 4). As we can see, students’ 

activity pattern involves two kinds of model run activities: simple 

control of the model (27 activities) and interaction with the model 

while the simulation is running (8 activities). These activities are 

similar to the actions depicted in the action process model (Figure 

3). However, the activity pattern depicts that students’ activities 

during the pauses also form two dominant groups: pauses that 

involve simple control (16 activities) and pauses that involve 

configuration of the model (13 activities). The control pauses are 

strongly co-dependent with just one activity, which is the control 

of the simulation during model runs (dependency 0.9). In contrast, 

the pauses that involve model configuration are codependent with 

both types of simulation runs: simple control and interaction with 

the simulation while the model was running (dependencies 0.9). 

This pattern shows that students’ active configuration during 

pauses was followed by a mix of passive observation and more 

proactive exploration during runs, whereas passive behavior 

during pauses was always followed by their passive behavior 

during runs.  

 Figure 4. Process model mined from activity-sequence 

 

4. DISCUSSION AND CONCLUSION 
The technique described here presents our work in progress. In 

conclusion, we have created a technique to identify actions and 

activities based on the combination of events of students’ 

interaction with computer models. We also illustrated that using 

larger semantic units and examining their sequences we could 

gain additional insights into how students interact with computer 

models.  

The result presented here demonstrates the value of our technique 

in extracting patterns of students’ interaction with computer 

models for individual pairs of students. Although a pattern of 

students’ interaction can be extracted for a particular pair of 

students, there are different patterns for different pairs. In 

addition, we did not take into account students’ performance and 

learning gain. In future, we are planning incorporate students’ 

performance and learning gain into our study and process 

analysis. 

5. ACKNOWLEDGMENTS 
The research reported in this paper was funded by an Australia 

Research Council Linkage Grant No. LP100100594. We thank 

Paul Stokes, Nick Kelly, Kashmira Dave and the teachers and 

students for their invaluable assistance in this study. 

6. REFERENCES 

[1] Bose, R.P.J.C., and Aalst, W.M.P.V.D. 2009. Abstractions in 

process mining: A taxonomy of patterns. In Proceedings of 

Bussiness Process Management, 159-175. 

[2] Buckley, B.C., Gobert, J.D., Horwitz, P., and O'dwyer, L.M. 

2010. Looking inside the black box: Assessing model-based 

learning and inquiry in Biologica™, International Journal of 

Learning Technology, 5(2), 166-190. 

 [3] Goldstone, R.L., and Wilensky, U. 2008. Promoting transfer 

by grounding complex systems principles, Journal of the 

Learning Sciences, 17(4), 465-516. 

[4] Kelly, N., Jacobson, M., Markauskaite, L., and Southavilay, V. 

2012. Agent-based computer models for learning about climate 

change and process analysis techniques. In Proceedings of 10th 

International Conference of the Learning Sciences, International 

Society of the Learning Sciences, Sydney, Australia, 25-32. 

 [5] Levy, S.T., and Wilensky, U. 2010. Mining students' inquiry 

actions for understanding of complex systems, Computers & 

Education, 56(3), 556-573. 

 [6] Mcelhaney, K.W., and Linn, M.C. 2011. Investigations of a 

complex, realistic task: Intentional, unsystematic, and exhaustive 

experimenters, Research in Science Teaching, 48(7), 745-770. 

 [7] Pedro, M. S., Baker, R.S.J., Gobert, J.D., Montalvo, O., and 

Nakama, A. 2013. Leveraging machine-Learned detectors of 

systematic inquiry behavior to estimate and predict transfer of 

inquiry skill, user model. User-Adapt. Interact., 23(1), 1-39. 

 [8] Thompson, K., and Reimann, P. 2010. Patterns of use of an 

agent-based model and a system dynamics model: The application 

of patterns of use and the impacts on learning outcomes, 

Computers & Education, 54(2), 392-403. 

 [9] Weijters, A.J.M.M., and Ribeiro, J.T.S. 2011. Flexible 

heuristics miner (FHM). In CIDM'11, Eindhoven University of 

Technology, Eindhoven, 310-317. 

[10] Weijters, A.J.M.M., van der Aalst, W.M.P., and Medeiros, 

A.K.A.D. 2006. Process mining with the heuristics miner 

algorithm, Technology, 166, 1-3

 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 283



www.manaraa.com

A Comparison of Model Selection Metrics in DataShop  
John C. Stamper 

Human-Computer Interaction Institute 
Carnegie Mellon University 

Pittsburgh, PA 
john@stamper.org 

Kenneth R. Koedinger 
Human-Computer Interaction Institute 

Carnegie Mellon University 
Pittsburgh, PA 

koedinger@cmu.edu  
 
 

Elizabeth A. McLaughlin 
Human-Computer Interaction Institute 

Carnegie Mellon University 
Pittsburgh, PA 

mimim@cs.cmu.edu  
 

ABSTRACT 
Variations of cognitive models drive many instructional decisions 
that intelligent tutoring systems currently make. A better 
knowledge component model will yield better instruction, but 
how do we identify better cognitive models? One answer has been 
to create a latent variable version of a cognitive model or a so-
called knowledge component (KC) model, then compare different 
models by how well they predict student performance data. In this 
research we analyze 1,943 proposed KC models that exist in 
DataShop (http://pslcdatashop.org) and compare and contrast the 
different metrics used to measure the quality of predictive fit to 
the data.  All these metrics are designed to avoid over-fitting to 
the data, including AIC, BIC, and cross validation. We find that 
AIC is the metric most consistent with all the others and 
corresponds better with cross validation results than BIC. 

Keywords 

Model Selection, AIC, BIC, Cross-validation, KC Modeling. 

1. INTRODUCTION 
An important area of Educational Data Mining (EDM) is the 
building and improvement of models of student knowledge. 
Creating good models are important in the design of adaptive 
feedback, assessment of student knowledge, and predicting 
student outcomes [9]. A correct model of student knowledge is 
consistent with student behavior, such that, it predicts task 
difficulty and transfer between prior opportunities to practice and 
learn (via positive or negative feedback and next-step hints) and 
future opportunities to demonstrate learning (by correct 
performance). These models are evaluated by how well they 
predict the student performance on actual student data. To prevent 
selecting models that overfit the data (and would thus not work 
well in new contexts), prediction fit is measured using a number 
of techniques including cross validation, the Akaike information 
criterion (AIC), and the Bayesian information criterion (BIC). 
Cross validation is the gold standard for evaluating prediction fit 
and avoiding over-fitting, but it can take substantial time to run 
making it undesirable for searching for new models. AIC and BIC 
are metrics that can be calculated quickly, which makes them 
desirable when comparing a large number of proposed models, 
but how adequate are they and which one is better at anticipating 
cross validation results? This research explores comparisons of 
AIC, BIC, and various cross validations that are available in 
DataShop. 

DataShop is the world’s largest open data repository of 
transactional educational data collected from a wide variety of 
online learning environments [10]. The data is fine-grained, with 
student actions recorded roughly every 10 seconds on average, 
and it is longitudinal, spanning semester or yearlong courses. As 
of May 2013, over 400 datasets are stored including over 100 

million student actions, which equates to over 250,000 student 
hours of data. Most student actions are “coded” meaning they are 
not only graded as correct or incorrect, but are categorized in 
terms of the hypothesized skills or knowledge components (KCs) 
needed to perform that action. DataShop stores a widespread 
selection of educational data from assorted technologies, domains 
and researchers. STEM subjects are well represented as are 
languages such as Chinese, English and French.   There are also 
accessible datasets in miscellaneous content areas like reading, 
psychology, logic and handwriting. The acquisition of student 
log-data comes from a multitude of sources including intelligent 
tutors, online-courses and internet games and simulations. The 
collection methodologies include random controlled experiments, 
longitudinal studies, and anonymous on-line game playing.  

Given the accessibility of data and diversity of applications stored 
in DataShop’s repository, we were interested in exploring the 
metrics commonly used for model selection and prediction (i.e., 
AIC, BIC and Cross-validation). In particular, we examined 
correlations and rank order correlations between the various 
metrics to determine if one metric stands apart as a better 
predictor.  Next, we examined best model selections for AIC and 
BIC and how they compared to cross validation best model 
selection. 

A KC is defined as a piece of knowledge that can be applied to 
solve a specific task. Practically, KCs can be considered 
generalizations of skills or concepts that form the basis of a 
cognitive model of student knowledge. A typical step in a 
problem that a student will solve will include one or more KCs 
that describe the knowledge that the student is applying. A 
mapping of KCs to problem steps in a set of instruction forms a 
KC Model. Multiple mappings can be fit to the same set of 
student instruction based on the granularity of the KCs that make 
up each model. Figure 1 shows a screen shot from DataShop 
listing the KC Models and their evaluation metrics for a dataset 
called “Cog Model Discovery Experiment Spring 2010.” 

A KC model can be used to track individual student knowledge or 
predict student responses based on a statistical representation of 
the KC Model. In DataShop, the model used to evaluate student 
learning is called the Additive Factors Model (AFM) [3; 11]. 
AFM is an extension of item response theory that incorporates a 
growth or learning term [cf.,6]. AFM is shown in Figure 2. The 
discrete portion of the student model is represented by qjk, the so-
called “Q matrix” [13], which maps hypothesized difficulty or 
learning factors (the knowledge components or skills) to steps in 
problems. These factors are hypothesized causes for difficulty (�k) 
or for learning improvement as students practice (�k). AFM gives 
a probability that a student i will get a problem step j correct 
based on the student’s baseline proficiency (�i), the baseline 
difficulty (�k) of the required KCs (qjk), and the improvement (�k) 
in those KCs as the student gets practice opportunities (Tik). 
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Figure 2. In the Additive Factors Model (AFM), the probability 
student i gets step j correct (pij) is proportional to the overall 
proficiency of student i (�i) plus for each factor or knowledge 
component k present for this step j (indicated by qjk), add the base 
difficulty of that factor (�k) and the product of the number of 
practice opportunities this student (i) has had to learn this factor 
(Tik) and the amount gained for each opportunity (�k). 

The AFM model can be used to evaluate and predict learning, 
which can be visualized in DataShop with the use of learning 
curves. Fig 3 shows a learning curve for a KC called “Find circle 
circumference.” The red line represents the actual student error 
rate from data collected in the dataset over each opportunity 
students have to apply the KC. The blue line represents the 
predicted model derived through AFM. DataShop allows for 
visual inspection of the KCs and their predicted fit with AFM, 
which can be used to help identify potential improvements in the 
KC model when the data and AFM curves do not match [12]. 

 

Figure 3. Learning Curve visualization from DataShop showing 
the KC “Find circle circumference”. The y-axis is the error rate 
and the x-axis is each opportunity students have to apply the KC. 
The red is actual data and blue line is the predicted value. 

When a potential improvement is found and a new model is 
proposed, it can be imported into DataShop and the system will 
automatically evaluate the new model against five metrics: AIC, 
BIC, Student Stratified Cross Validation (SSCV), Item Stratified 
Cross Validation (ISCV), and Non-Stratified Cross Validation 
(NSCV). Using these metrics the researcher can make a judgment 
as to whether the potential model leads to a better fit on the data.  

When time is not an issue, cross validation is considered by most 
to be the best way to score models, but there is no consensus on 
how the cross validation should be done for educational 
transaction data. DataShop provides three cross validation 
measures that are each 10 fold and provides a value for the root 
mean squared error (RMSE). One measure stratifies the data by 
student, another by item, and the third is not stratified. While 
cross validation is considered the best method to score models, it 
is more time consuming and computationally expensive for large 
datasets than AIC or BIC. For this reason, when comparing many 
models we use AIC or BIC to score the models.  

One active research area where many models are compared and 
evaluated against each other is the automated search for improved 
models. Using the AFM model and datasets in DataShop we have 
previously implemented an automated search algorithm, Learning 
Factors Analysis (LFA), for discovering better cognitive models 
[8]. This algorithm has been successfully applied to DataShop 
datasets and succeeded in improving existing models. Figure 1 
includes two models that were automatically generated and are 
named “LFASearch…” The LFA search algorithm uses existing 
KC Models to complete a directed search, which results in labeled 
models that are easily interpretable by researchers. 

AIC and BIC are measures for the goodness of predictive fit of a 
statistical model. They extend the log-likelihood measure of fit by 
penalizing less parsimonious models. Unlike the RMSE 
calculation from cross validation, the values of AIC and BIC have 
no meaning for an individual model, and are only useful when 
comparing alternative models built on the same dataset. Within 
DataShop, this means that models must have the same number of 
observations tagged with KCs to be comparable. DataShop also 
has a Model Values page under the Learning Curve tool that has 
more detailed information on the model metrics (AIC, BIC, and 
the cross validations), and the inputs used to calculate them (log 
likelihood, number of parameters, etc.). AIC is a metric for model 
comparison that trades off the complexity of the estimated model 
against how well the model fits the data [1]. In this way, it 
penalizes the model based on its complexity (the number of 
parameters). The equation for calculating AIC is AIC= 2k – 2 
ln(L), where k is the number of parameters and L is the 
likelihood. The equation for BIC is BIC=k ln(n) – 2 ln(L), where 
n is the number of observations, k is the number of parameters, 
and L is the likelihood. BIC is similar to AIC, but BIC penalizes 
free parameters more strongly than AIC as can be seen by the 
formulas and noting that the coefficient of the number of 
parameters (k) is much larger for BIC (ln(n) for n observations) 

 
Figure 1. Screenshot of the KC Models page in DataShop (http://pslcdatashop.org) for the dataset Cog Model Discovery Experiment 
Spring 2010. Here we can see named models with a different number of KCs in each. Note that all the models with the same number 
of observations with KCs (41,756 for example) are comparable with each other. DataShop also allows for the user to select the metric 
on which to sort the models. In this case, the models are sorted by AIC where a lower value is better. 
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than for AIC (2) for any non-trivially sized data set. In general, 
this means that BIC favors models with less parameters (again 
more strongly the AIC), and converges to the “true” or correct 
model [1], however, this does not mean that for BIC to be useful 
that the “true” model must exist in the set of possible models [2]. 
Both reduce the chance of over-fitting the data by penalizing for 
increasing the number of parameters in the model. They are much 
faster to compute than cross validation and are believed to 
reasonably predict the results of cross validation, though no 
systematic investigation of that has been performed, at least, for 
the kinds of EDM models investigated here. Given that AIC is 
more lenient, one might suspect it would be more susceptible to 
favoring models that over-fitted the data.  On the other hand, BIC 
might over penalize more complex models that indeed do capture 
true variability in the data. Many of the previous efforts to 
evaluate knowledge component models in EDM have used BIC as 
the evaluation criteria including Learning Factors Analysis (LFA) 
[3], Performance Factors Analysis (PFA) [11], and Instructional 
Factors Analysis (IFA) [4].  

2. DATA AND METHOD 
DataShop has grown to include almost 400 datasets as of 
February 2013. One of the fundamental features available in 
DataShop is the ability to fit different KC Models to a dataset. 
There are a number of ways KC Models can be generated with 
DataShop. 
1) KC Models can be imported with log data of an initial dataset.  
2) KC Models can be exported, modified, and re-imported 

through DataShop’s intuitive user interface (Examples of this 
can be seen in the DataShop tutorial channel on Youtube [5]). 

3) KC Models can be automatically generated by automated 
search algorithms such as  LFA Search[8]. 

4)  Every imported dataset automatically gets 2 models generated 
by DataShop- the Unique Step Model, which includes a KC 
for every step, and the Single KC model, which applies the 
same KC to every step. 

 
Currently, there are 1,943 proposed KC Models in DataShop that 
were used for this analysis. Two conditions were established for a 

dataset to be included in the analysis: (1) three or more models 
with an equal number of observations were required and (2) the 
number of observations had to be greater than 800. We found 50 
datasets within DataShop that met the conditions and 12 of them 
had more than one grouping of models (10 had 2 sets; 1 had 3 sets 
and 1 had 4 sets) for a total of 65 comparable KC sets. In addition 
to the aforementioned diversity of content and technology, the 65 
KC sets have a broad range of the number of parameters (9 to 
654), models (3 to 48), students (7 to 510), knowledge 
components (1 to 287), and observations (884 to 95,512). Such 
variation provides a rich environment for a deep analysis into 
what might be the best measure for model selection.  As shown in 
Figure 1, DataShop provides a leaderboard of commonly used 
metrics across models within a dataset.  We examined the 
correlations and rank order correlations for AIC, BIC, and Cross-
validation across the 65 KC sets. We chose to report rank order 
correlations in addition to correlations because it is less sensitive 
to outliers that may excessively inflate (or, less frequently, lower) 
a correlation.   

3. RESULTS AND DISCUSSION  
After running the correlations between the metrics, we found that 
for the majority of KC sets (44 of 65), AIC and BIC do not agree 
on which model best fits the data. More importantly, AIC is 
overwhelmingly the better predictor when compared with cross 
validation best models (an average 94% match vs. BIC’s 33%).  
To be more precise, of the 44 comparable KC sets, 41 of AIC best 
models match with SSCV best models vs. 13 for BIC, for ISCV - 
41 AIC best models match vs. 14 for BIC, and for NSCV - 42 
AIC best models match vs. 16 for BIC.  It is noteworthy that the 
three AIC best models that do not match with at least one cross 
validation best model have a substantially lower average number 
of KCs (12) and number of observations (5,941) than the 41 
models with a match (average of 53 KCs and 17,374 
observations). This appears to be because the AIC implementation 
in DataShop does not take into account second order Akaike 
Information Criterion (AICC) which has an adjustment for smaller 
sample sizes in relation to number of parameters [1]. As an 
example, Table 1 shows a small subset of the 65 comparable KC 
sets illustrating a strong positive correlation between AIC and 

Table 2. Correlations and rank order correlations across the five metrics provided in DataShop (AIC, BIC, SSCV,ISCV and NSCV). 

 
AIC-
BIC 

AIC-
SSCV 

AIC-
ISCV 

AIC-
NSCV 

BIC-
SSCV 

BIC-
ISCV 

BIC-
NSCV 

SSCV-
ISCV 

SSCV-
NSCV 

ISCV-
NSCV 

Correlation
s 0.574 0.824 0.891 0.890 0.522 0.464 0.446 0.812 0.777 0.919 

Rank Corr.  0.532 0.817 0.852 0.847 0.478 0.403 0.420 0.760 0.735 0.868 

 

Table 1. AIC and BIC correlations against each other and Cross-validation 

KC set name # 
students 

# 
models 

# 
obs 

 

AIC-BIC 
correl 

AIC-correlation BIC-correlation 

SSCV ISCV NSCV SSCV ISCV NSCV 

Assistments Math 2008-2009 
Symb-DFA (302 Students) 302 31 8181 0.666 0.936 0.994 0.989 0.438 0.662 0.630 
Assistments Math 2008-2009 
Symb-DFA (302 Students) 302 23 4957 0.986 0.956 0.977 0.973 0.961 0.961 0.961 
OLI Engineering Statics - Fall 
2011 - CMU (74 students) 74 4 71805 0.973 0.967 1.000 0.999 0.882 0.976 0.979 
OLI Engineering Statics - Fall 
2011 - CMU (74 students) 74 5 37423 0.983 0.989 0.650 0.996 0.999 0.568 0.972 
IWT Self-Explanation Study 2 
(Fall 2009) (tutors only) 99 13 7094 0.200 0.822 0.945 0.916 0.538 0.198 0.064 
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each of the three cross validations regardless of whether the AIC-
BIC correlation is strong (rows 2-4), weak (row 5) or average 
(row 1). In all but one instance, the AIC correlations with cross 
validation are better than BIC. Table 2 shows the average 
correlations and rank correlations between AIC, BIC, and the 
Cross-validations (as stated earlier, three types of ten-fold cross 
validations are reported in DataShop: student stratified cross 
validation (SSCV), item stratified cross validation (ISCV) and 
non-stratified cross validation (NSCV)). From these averages in 
Table 2, AIC and BIC have correlations with each other of just 
over 0.5, which makes sense since they often do not agree on the 
best fitting model. More importantly, AIC is a better predictor 
than BIC of all three kinds of cross validation.  Interestingly, table 
2 shows SSCV is better indicated by AIC than the other CV 
metrics.   

Thus, on those grounds, it seems as though AIC is the best single 
measure. In general, AIC best models average more knowledge 
components (53 vs. 34) and more parameters (205 vs. 166) than 
BIC best models.  It is not surprising, then, that there is a high 
level of disagreement between best model selections for AIC and 
BIC (68% do not match).  When comparing the best models of 
AIC and BIC to the best models of all three types of cross 
validation, AIC again matches better than BIC (approximately 
70% to 10%).  This better matching of best models is another 
strong argument that AIC is a better metric for model selection.     

4. CONCLUSION AND FUTURE WORK 
Although cross validation is the gold-standard for model 
selection, it is not a reasonable metric to use for computationally 
expensive processes, such as inside the LFA search, as it is too 
time consuming. Efficiency concerns together with uncertainty 
about which is a better heuristic led us to a detailed comparison of 
AIC/BIC across datasets and many models. Our evidence points 
toward AIC as the better predictor of cross validation results.   

A possible reason may follow from the fact that AIC favors 
greater complexity within models than BIC. While the KC models 
in DataShop are a good approximation of student cognitive 
processing, it is quite likely that they significantly under-represent 
the true complexity of student thinking.  Thus, rather than the 
higher bias toward simplicity that is implicit in BIC, it may be 
that higher complexity is a better prior belief.  The true (more rich 
and complex) cognitive model is most likely outside the space of 
models that we are searching within and AIC is claimed to be 
better than BIC in such circumstances [14]. On the one hand, it is 
a positive sign of maturity of the field of Educational Data Mining 
that we now have so many datasets and so many alternative KC 
models that a comparison like this one is possible.  On the other 
hand, it is clear that more and better research is needed to better 
uncover the true complexity and richness of student thinking.  

It is also important to note that AIC and BIC are not the only 
model selection metrics available, and in the future we hope to 
explore alternatives for possible inclusion in DataShop. Further, 
the only statistical model used in this analysis was AFM. While 
we expect that the results would be similar with other regression 
based statistical models (such as PFA or IFA), we have 
implemented a facility in DataShop to accept external analyses, 
and we plan to score additional statistical models across the 
DataShop metrics using the external analyses support.   

We thank the DataShop team for providing custom reports of the 
KC Model metrics and Hui Cheng for help with the LFA Search. 
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ABSTRACT
There are various methods for determining the moment at
which a student has learned a given skill. Using the Akaike
information criterion (AIC), we introduce an approach for
determining the probability that an individual student has
learned a given skill at a particular problem-solving step. We
then investigate how well this approach works when applied
to student log data. Using log data from students using
the Andes intelligent tutor system for an entire semester,
we show that our method can detect statistically significant
amounts of learning, when aggregated over skills or students.
In the context of intelligent tutor systems, one can use this
method to detect when students may have learned a skill
and, from this information, infer the relative effectiveness of
any help given to the student or of any behavior in which
the student has engaged.

Keywords
data mining, information theory

1. INTRODUCTION
The traditional experimental paradigm for studying student
learning is to use a pre-test and post-test combined with
two or more experimental conditions. Pre-test and post-
test scores can indicate whether learning has occurred, but
not when it may have occurred. At best, one might infer
when learning has occurred if an isolated change to the in-
structional materials or help-giving strategy results in better
post-test performance. It is more difficult to infer whether
a change in student behavior at some point has resulted in
greater learning, since student behavior is largely uncon-
trolled and must be recorded in some way. In a laboratory
setting, these issues can be addressed by careful experimen-
tal design, albeit with an accompanying loss of authenticity.

Moving from the laboratory to a more realistic setting, such
as a classroom study, presents a challenge since there is nec-
essarily an extended time between any pre-test and post-

test. Heckler and Sayre [4] introduce an experimental tech-
nique where they administered a test to a different subgroup
of students in a large physics class each week during the
quarter, cycling through the entire class over the course of
the quarter (a between-students longitudinal study). With
a sufficiently large number of students (1694 students over
five quarters), they were able to produce plots of student
mastery of various skills as a function of time, and identify
exactly which week(s) students learned a particular skill.
However, the shortest time scale that one could imagine for
this kind of approach (administering a test in a classroom
setting) can, at best, be a day or so. Can we do better?

The use of an intelligent tutor systems (ITS) provides a way
forward. In this case, student activity is analyzed and logged
for each user interface element change, with a granularity
of typically several 10s of seconds. Instead of relying on a
distant pre-test or post-test, the experimenter can examine
student (or tutor system) activity in the immediate vicinity
of the event of interest.

Baker, Goldstein, and Heffernan [1] construct a model that
predicts the probability that a student has learned a skill at
a particular time based on the Bayesian Knowledge Tracing
(BKT) algorithm [3]. BKT gives the probability that the
student has mastered a skill at step j using the students
performance on previous opportunities to apply that skill.
The authors supplement the BKT result with information on
student correctness for the two subsequent steps j+1 and j+
2 and infer the probability that the student learned the skill
at that step. Finally, they use their model to train a second
machine-learned model that does not rely on future student
behavior, so it could be run in real time as the student is
working

We will address the same problem using an information-
theoretic approach. Starting with the Akaike information
criterion and a simple model of learning, we use a multi-
model strategy to predict the probability that learning has
occurred at a given step, and to predict how much learning
has occurred. We apply our approach to student log data
from an introductory physics course. We find that, for an
individual student and skill, detection of learning has large
uncertainties. However, if one aggregates over skills or stu-
dents, then learning can be detected at the desired level of
significance.
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1.1 Correct/Incorrect steps
Our stated goal is to determine student learning for an indi-
vidual student as they progress through a course. What ob-
servable quantities should be used to determine student mas-
tery? One possible observable is “correct/incorrect steps,”
whether the student correctly applies a given skill at a par-
ticular problem-solving step without any preceding errors or
hints. There are other observables that may give us clues
on mastery: for instance, how much time a student takes
to complete a step that involved a given skill. However,
other such observables typically need some additional theo-
retical interpretation. Exempli gratia, What is the relation
between time taken and mastery? Baker, Goldstein, and
Heffernan [1] develop a model of learning based on a Hidden
Markov model approach. They start with a set of 25 addi-
tional observables (for instance, “time to complete a step”)
and construct their model and use correct/incorrect steps
(as defined above) to calibrate the additional observables
and determine which are statistically significant. Naturally,
it is desirable to eventually include such additional observ-
ables in any determination of student learning. However, in
the present investigation, we will focus on correct/incorrect
steps.

What do we mean by a step? A student attempts some
number of steps when solving a problem. Usually, a step j
is associated with creating/modifying a single user interface
object (writing an equation, drawing a vector, defining a
quantity, et cetera) and is a distinct part of the problem
solution (that is, help-giving dialogs are not considered to be
steps). A student may attempt a particular problem solving
step, delete the object, and later attempt that solution step
again. A step is an opportunity to learn a given Knowledge
Component (KC) [6] if the student must apply that KC or
skill to complete the step.

For each KC and student, we select all relevant step at-
tempts and mark each step as “correct” (or 1) if the student
completes that step correctly without any preceding errors
or requests for help; otherwise, we mark the step as “incor-
rect” (or 0). A single student’s performance on a single KC
can be expressed as a bit sequence, exempli gratia 00101011.

2. THE STEP MODEL
We need to compare the student log data to some sort of
model of learning. In another paper [5], we introduced the
“step model” and showed that it was competitive with other
popular models of learning when applied to individual stu-
dent log data. It is defined as:

Pstep(j) =

{
g, j < L

1− s, j ≥ L (1)

where L is the step where the student first shows mastery of
the KC, g is the“guess rate,” the probability that the student
gets a step correct by accident, and s is the “slip rate,” the
chance that the student makes an error after learning the
skill. These are analogous to the guess and slip parameters
of BKT [3]. This model assumes that learning occurs all at
once, reminiscent of “eureka learning” discussed by [1].

2.1 Method
We examined log data from 12 students taking an inten-
sive introductory physics course at St. Anselm College dur-
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Figure 1: Histogram of number of distinct student-
KC sequences in student dataset A having a given
number of steps n.

ing summer 2011. The course covered the same content as
a normal two-semester introductory course. Log data was
recorded as students solved homework problems while using
the Andes intelligent tutor homework system [7]. 231 hours
of log data were recorded. Each step was assigned to one
or more different KCs. The dataset contains a total of 2017
distinct student-KC sequences covering a total of 245 dis-
tinct KCs. We will refer to this dataset as student dataset
A. See Figure 1 for a histogram of the number student-KC
sequences having a given number of steps.

Most KCs are associated with physics or relevant math skills
while others are associated with Andes conventions or user-
interface actions (such as, notation for defining a variable).
The student-KC sequences with the largest number of steps
are associated with user-interface related skills, since these
skills are exercised throughout the entire course.

One of the most remarkable properties of the distribution
in Fig. 1 is the large number of student-KC sequences con-
taining just a few steps. The presence of many student-KC
sequences with just one or two steps may indicate that the
default cognitive model associated with this tutor system
may be sub-optimal; there has not been any attempt, to
date, to improve on the cognitive model of Andes with, say,
Learning Factors Analysis [2]. Another contributing factor
is the way that introductory physics is taught in most insti-
tutions, with relatively little repetition of similar problems.
This is quite different than, for instance, a typical middle
school math curriculum where there are a large number of
similar problems in a homework assignment.

3. MULTI-MODEL APPROACH
We need to determine the step where a specific student has
learned a particular skill. Our strategy is to take the step
model, Pstep(j), and treat L as a constant, yielding a set
of n sub-models Pstep,L(j), one for each value of L. We
then fit each of the n sub-models to the student data and
calculate an AIC value. Finally, we find the Akaike weighs
for each of the sub-models. The Akaike weights give the
relative probability that learning occurred at each step.
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Figure 2: Akaike weights for the sub-models
Pstep,L(j). This gives the relative probability that the
student learned the KC just before step L. The case
L = 1 corresponds to no learning occurring during
use of the ITS.

Let us illustrate this technique with a simple example. Sup-
pose the bit sequence for a particular student-KC sequence
is 00011011 (8 opportunities); see Fig. 2. We fit this bit se-
quence to 8 sub-models of the step model, corresponding to
L ∈ {1, 2, . . . , 8}, by maximizing the log likelihood, logLL.
The associated AIC values are given by AICL = 2K−logLL
where K is the number of fit parameters. Note that there
are two parameters (s and g) when L > 1 and there is only
one parameter (s) when L = 1. Not surprisingly, the best fit
(lowest AIC) corresponds to the first “1” in the bit sequence
at step 4. From the AICs, we calculate the Akaike weights

wL =
e−AICL/2∑
L′ e−AICL′/2

. (2)

The Akaike weight wL gives the relative probability that
sub-model Pstep,L(j) is, of all the sub-models, the closest to
the the model that actually generated the data.

Note that the case L = 1 corresponds to the student having
“learned the skill” some time before the first step or after
the last step. That is to say, the student does not acquire
the skill while using the tutor system. Thus, w1 should be
interpreted as the relative probability that no learning has
occurred while using the tutor system.

4. WEIGHTED GAIN
Our ultimate goal is to distinguish steps that result in learn-
ing from steps that do not. Hopefully, one can use this in-
formation to infer something about the effectiveness of the
help given on a particular step, or the effectiveness of the
student activity on that step.

It is not sufficient to know when learning has occurred but
one must also determine how much learning has occurred.
Consider the bit sequence 11011000. When fit to the step
model, the best fit will occur at L = 6 but this would corre-
spond to a decrease in student performance for that skill. In
many cases seen in our log data, the change in student per-
formance is almost zero. In order to take this into account,
we propose using the Akaike weight wL times the associated
performance gain ∆L to characterize a step. We define the
performance gain ∆L = 1 − ĝ − ŝ where ĝ and ŝ are the
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Figure 3: Weighted gain wL∆L as a function of L
for an example bit sequence. The associated quality
factor is Q = 0.66 ± 0.29; it is significantly smaller
than 1 since the student makes a slip on step 6. Q is
significantly greater than zero at the p = 0.01 level.
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Figure 4: Histogram of weighted gains wL∆L for all
steps in all student-KC sequences of dataset A.

Maximum Likelihood estimators for g and s given by sub-
model Pstep,L(j). For the “no learning” case L = 1, we set
∆1 = 0. We will call wL∆L the “weighted gain” associated
with Pstep,L(j). A calculation of wL∆L for an example bit
sequence is shown in Fig. 3. Not surprisingly, the largest
gain occurs at L = 4, corresponding to the first 1 in the bit
sequence. The remaining weighted gains are much smaller.

A histogram of wL∆L for student dataset A is shown in
Fig. 4. We find that the vast majority of steps (29730)
have almost zero weighted gain. We also see that there is
a significant number of steps with negative gain (988), but
there are somewhat more steps with positive gain (1312) .

The fact that there are so many steps with negative gain is
symptomatic of bit sequences that are very noisy (a lot of
randomness). Indeed, if we compare the histogram for stu-
dent dataset A with the histogram for a randomly generated
dataset R (we take A and randomly permute the steps) we
find a similar distribution; see Fig. 5.

What would the distribution look like if the data weren’t so
noisy? To see this, we generated an artificial “ideal” dataset
I where there were no slips or guesses, but having the same
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Figure 5: Histogram of weighted gains wL∆L for the
student dataset A, a randomly generated dataset R,
and an artificial ideal dataset I.

length distribution as A (Fig. 1). Thus, the bit sequences
in I all have the form 00 · · · 011 · · · 1. In this case, for each
student-KC sequence, we expect a single large weighted gain
(corresponding to the first 1 in the bit sequence) and the
remaining weighted gains to be nearly zero. The resulting
distribution of gains is shown in Fig. 5.

We propose to use the following average of the weighted
gains as a “quality index” for determining how suitable a
dataset is for determining the point of learning for an indi-
vidual student-KC sequence:

Q =
1

N

∑
α

∑
L

wL∆L (3)

where α is an index running over allN student-KC sequences
in a dataset. We use the sample standard deviation of the
weighted gains wL∆L to calculate the standard error asso-
ciated with Q. An example calculation is shown in Fig. 3.

For the random dataset R, the distribution of ∆L is sym-
metric about zero and Q approaches zero as N → ∞. For
the “ideal” dataset I, we expect that, when L coincides
with the first 1 in the bit sequence, wL will be nearly one
with the associated ∆L also nearly one so that Q → 1 in
the limit of many opportunities. Numerically, we obtain
Q = 0.5240 ± 0.0003. The fact that it is smaller than one
is due to the large number of student-KC sequences hav-
ing just a few steps. For the student dataset A, we obtain
Q = 0.0467± 0.0065, which is small, but significantly larger
than zero (p < 0.001). Thus, we conclude that one can
detect statistically significant learning when applying our
method to this student dataset, with the location of that
learning given by the Akaike weights wL.

5. CONCLUSION
We believe that a direct estimate of the moment when a
student learns a skill could be very useful for improving
instruction, improving help-giving, and understanding stu-
dent learning. However, the question of whether learning
has occurred at a particular step can only be answered in a
probabilistic sense: unambiguous“Aha moments”seem to be
relatively rare. Using the Akaike Information Criterion, we
have introduced a method for determining this probability.

As can be seen in Fig. 5, there is not much difference between
our student dataset and a randomly generated dataset. How-
ever, the quality index Q which can be used to quantify the
size of the signal of learning as well as the size of the back-
ground. We see that the quality index Q = 0.0467± 0.0065
for the student dataset A is roughly 10% the size of Q for the
ideal dataset I; we interpret this to mean that the “signal”
for learning is roughly 10% as big as the “noise.” However,
the fact that Q for the student dataset is seven standard
deviations from zero means that we have detected learning
for 2000 student-KC sequences with room to spare. Using
the fact that the error is proportional 1/

√
N , where N is the

number of student-KC sequences, we estimate that we could
still detect learning with only 260 student-KC sequences at
the p = 0.01 level. This gives us an initial estimate for
the amount of log data needed to measure the moment of
learning, at least for students using the Andes tutor system.

Finally, we see that many of the student-KC sequences are
quite short, as shown in Fig. 1. We speculate that this is due
to to the way that introductory physics is typically taught,
with relatively little reinforcement of specific KCs, empha-
sizing, instead, more general problem solving meta-skills.
If we were to repeat this analysis for high school or grade
school math, where there is more repetition, we speculate
that there would be significantly fewer KCs with less than
10 opportunities and that detecting when learning has oc-
curred would be significantly easier.
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ABSTRACT
Consider a large database of questions that assess the knowl-
edge of learners on a range of different concepts. In this
paper, we study the problem of maximizing the estimation
accuracy of each learner’s knowledge about a concept while
minimizing the number of questions each learner must an-
swer. We refer to this problem as test-size reduction (TeSR).
Using the SPARse Factor Analysis (SPARFA) framework,
we propose two novel TeSR algorithms. The first algorithm
is nonadaptive and uses graded responses from a prior set
of learners. This algorithm is appropriate when the instruc-
tor has access to only the learners’ responses after all ques-
tions have been solved. The second algorithm adaptively
selects the “next best question” for each learner based on
their graded responses to date. We demonstrate the efficacy
of our TeSR methods using synthetic and educational data.

Keywords
Learning analytics, sparse factor analysis, maximum likeli-
hood estimation, adaptive and non-adaptive testing

1. INTRODUCTION
A course instructor is naturally interested in estimating how
well learners understand certain concepts (or topics) that are
relevant to the course. Information about each learner’s un-
derstanding is useful in (i) providing feedback to instructors
to assess whether the material is suitable for the class and
(ii) recommending remediation/enrichment for concepts a
learner has weak/strong knowledge of. In practice, accurate
estimates for each learner’s concept knowledge can be ex-
tracted automatically by analyzing the responses to a (typ-
ically large) set of questions about the concepts underlying
the given course (see, e.g., [8] for the details). In order to
minimize each learner’s workload, however, it is important
to reduce the number of questions, or—more colloquially—
the test-size, while still being able to retrieve accurate esti-
mates of each learner’s concept knowledge. In what follows,
we refer to this problem as test-size reduction (TeSR).

Contributions: We propose two novel algorithms for
test-size reduction (TeSR). Our algorithms build on the
SPARse Factor Analysis (SPARFA) framework proposed
in [8], which jointly estimates the question–concept relation-
ships, question intrinsic difficulties, and the latent concept
knowledge of each learner, based solely on binary-valued
graded response data obtained in an homework, test, or
exam. Given the SPARFA model, we leverage theory of

maximum likelihood (ML) estimators to formulate TeSR
as a combinatorial optimization problem of minimizing the
uncertainty in estimating the concept knowledge of each
learner. We then propose two algorithms, one nonadaptive
and one adaptive, that approximates the combinatorial op-
timization problem at low computational complexity using
a combination of convex optimization and greedy iterations.
The nonadaptive TeSR algorithm, referred to as NA-TeSR,
reduces the test size in a way that enables accurate concept
estimates for all learners in a course. The adaptive TeSR
algorithm, referred to as A-TeSR, adapts the test questions
to each individual learner, based on their previous responses
to questions. A range of experiments with synthetic data
and two real educational datasets demonstrates the efficacy
of both TeSR algorithms.

Prior Work: Prior results on test-size reduction build pri-
marily on the Rasch model [1–3, 6, 9], which characterizes a
learner using a single ability parameter [11]. In contrast, the
SPARFA model used in this paper characterizes a learner us-
ing their concept knowledge on multiple latent concepts. In
this way, SPARFA models educational scenarios of courses
consisting of multiple concepts more accurately. Moreover,
we show using experiments in Section 4 that the efficacy of
the Rasch model for TeSR is inferior to SPARFA combined
with our TeSR algorithms. The problem of selecting “good”
questions is related to the sensor selection problem [5, 7],
which finds use in environmental monitoring, for example.
However, measurements from sensor-networks are typically
real-valued, whereas, TeSR relies on discrete measurements.

2. PROBLEM FORMULATION
2.1 SPARFA in a nutshell
Suppose we have a total set of Q questions that test knowl-
edge from K concepts. For example, in a high school math-
ematics course, questions can test knowledge from concepts
like solving quadratic equations, evaluating trigonometric
identities, or plotting functions on a graph. For each ques-
tion i = 1, . . . , Q, let wi ∈ RK be a column vector that
represents the association of question i to all K concepts.
Note that each question can measure knowledge from multi-
ple concepts1. The jth entry in wi, which we denote by wij ,
measures the association of question i to concept j. In other
words, if question i does not test any knowledge from con-
cept j, then wij = 0. Let W = [w1, . . . ,wQ]T be a sparse,

1Solving x2 − x = sin2(x) + cos2(x) for x ∈ R, for example,
requires conceptual understanding of both solving quadratic
equations as well as trigonometric identities.
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non-negative Q × K matrix, assuming that each question
only tests a subset of all concepts. Let µi ∈ R be a scalar
that represents the intrinsic difficulty of a question. A larger
(smaller) µi corresponds to an easier (harder) question. Let
µ = [µ1, . . . , µQ]T be a Q× 1 column vector that represents
the difficulty of each question. Finally, let c∗ ∈ RK be a
column vector that represents the concept knowledge of a
particular learner. It is this parameter vector that we are
interested in estimating accurately.

To model the interplay between W, µ, and c∗, we use the
SPARFA framework proposed in [8]. Let Yi be a binary
random variable that indicates whether question i has been
answered correctly or not, indicated by 1 and 0, respec-
tively. More specifically, the SPARFA model assumes that
Yi ∈ {0, 1} admits the following distribution:

Pr(Yi = 1 |wi, µi, c
∗) = Φ(wT

i c
∗ + µi), (1)

where Φ(x) = 1/(1 + e−x) is the inverse logistic link func-
tion. In words, (1) says that the probability of answering
a question correctly depends on a sparse linear combina-
tion of the entries in the concept understanding vector c∗.
This sparsity arises because of the assumption that wi is
sparse, i.e., it only contains a few non-zero entries. Given
graded question responses from multiple learners, the factors
W and µ can be estimated using either the SPARFA-M or
SPARFA-B algorithms introduced in [8].

2.2 Test-size reduction (TeSR)
The problem we consider in this paper is the selection of an
appropriate subset of q < Q questions so that c∗, a learner’s
unknown concept understanding vector, can be estimated
accurately. We assume that a set of responses from N learn-

ers, i.e., a binary-valued matrix Ỹ, is known a-priori ; an

entry Ỹi,j of Ỹ refers to whether a learner j answered ques-
tion i correctly or incorrectly. In many educational settings,
such a data matrix can be obtained by looking at past of-
ferings of the same course. As mentioned in Section 2.1,

the matrix Ỹ can be used to estimate the question to con-
cept matrix W and the intrinsic difficulty vector µ using the
algorithms proposed in [8].

Suppose, hypothetically, that we choose a subset I of q < Q
questions, and we are given a response vector yI . Let ĉ be
an estimate of the unknown concept knowledge vector c∗

that can be computed using standard maximum likelihood
(ML) estimators. The test-size reduction (TeSR) problem is
to choose an appropriate set of questions I so that the error
ĉ − c∗ is as small possible. Although this problem seems
impossible since we do not have access to the response vector
yI , it turns out that the covariance of the error

√
q(ĉ− c∗)

can be approximated by the inverse of the Fisher information
matrix [4], which is defined as follows:

F(WI ,µI , c
∗)) =

∑
i∈I

exp(wT
i c
∗ + µi)

(1 + exp(wT c∗ + µi))2
wiw

T
i . (2)

The notation WI refers to the rows of W indexed by I. Sim-
ilarly, µI refers to the entries in µ indexed by I. Thus, a
natural strategy for choosing a “good” subset of questions I,
is to minimize the uncertainty (formally, the differential en-
tropy) of a multivariate normal random vector with mean
zero and covariance F(WI ,µI , c

∗))−1. Consequently, the

Algorithm 1: Nonadaptive test-size reduction (NA-TeSR)

Step 1) First choose K questions by solving

Î[K] = arg max
I⊂{1,...,Q},|I|=K

log det
(
WT
I V̂WI

)
(3)

using the convex optimization, see [7]. The entries of the

diagonal matrix V are defined as V̂kk = exp(v̂k), where

v̂i = 1
N

∑N
j=1 log

(
Ỹij − 1

N

∑N
j=1 Ỹij

)2
Step 2) Select questions K + 1, . . . , q in a greedy manner:

Îj+1 = arg max
i∈{1....,Q}\Î[j]

v̂iw
T
i

(
WT
I[j]V̂I[j]WI[j]

)−1

wi.

optimization problem considered in the remainder of the pa-
per, referred to as the test-size reduction (TeSR) problem,
corresponds to

(TeSR) Î = arg max
I⊂{1,...,Q},|I|=q

log det(F(WI ,µI , c
∗)) .

The main challenges in solving (TeSR) are (i) the TeSR
problem is a combinatorial optimization problem and (ii)
the concept knowledge vector c∗ is unknown, so the objec-
tive function cannot be evaluated exactly.

3. TESR ALGORITHMS
Our proposed algorithms, that are data driven and compu-
tationally efficient, for solving TeSR are summarized in Al-
gorithms 1 and 2. Due to space constraints, in what follows,
we only present a high level summary of the methods.

Nonadaptive TeSR: Algorithm 1 summarizes a nonadap-
tive method (NA-TeSR) for solving the TeSR problem. To
deal with the problem of the unknown c∗ in (2), we notice
that the coefficient of the term wiw

T
i in (2) is simply the

variance of a learner in answering a question i. This vari-
ance can easily be estimated using the prior student response

data Ỹ. The first step in NA-TeSR is to estimate K ques-
tions, where K is the number of concepts involved in the
question database. We are able to make use of properties
of the determinant to formulate TeSR as a convex optimiza-
tion problem, which we solve using low complexity methods
in [7]. The second step is to select the remaining q − K
questions using a greedy algorithm that selects the “best”
question iteratively until all q questions have been selected.

Remark 1: Note that when W is a Q × 1 vector of all
ones, the SPARFA model reduces to the Rasch model [11].
In this case, (TeSR) reduces to a problem of maximizing
the sum of the variance terms over the selected questions.
Thus, all the questions can be selected independently of the
others when using the Rasch model. On the other hand,
when using SPARFA, since we account for the statistical
dependencies among questions, the questions can no longer
be chosen independently as it is evident from Algorithm 1.

Adaptive TeSR: Our second algorithm, A-TeSR, is de-
signed for the situation where one can iteratively and in-
dividually ask questions to a learner and then use the re-
sponses to adaptively select the next “best” question based
on the previous responses. Such an approach is often re-
ferred to as computerized adaptive testing [12].
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Algorithm 2: Adaptive test-size reduction (A-TeSR)

Choose K questions I[K] as in Step 1 of Algorithm 1.
Acquire graded learner responses yI[K]

.

for j = K + 1, . . . , q do
Compute the ML estimate ĉ using yI[j−1]

if ĉ exists then
Find Ij using Step 2 of Algorithm 2 by replacing v̂k
with Var[Yi|ĉ].

else
Find Ij using Step 2 of Algorithm 2 by searching
only amongst questions so that ĉ will most likely
exist in subsequent iterations.

Acquire graded learner responses yIj .

The main idea behind A-TeSR is to use NA-TeSR until a
maximum likelihood estimate (MLE) ĉ of c∗ can be com-
puted. Then, we use ĉ to evaluate the objective function of
the TeSR problem and keep updating ĉ as the learner re-
sponds to adaptively chosen questions. The main challenge
of such an adaptive algorithm is the fact that a solution
may not exist for certain patterns of the graded response of
a given learner when computing the MLE. Thus, we would
like our proposed adaptive algorithm to select questions such
that the MLE can be computed using less number of ques-
tions than the nonadaptive algorithm. To this end, when-
ever the MLE does not exist, we choose the next question
(using a simple modification of Step 2 of NA-TeSR) in such
a way that the MLE may exist with higher probability in
each subsequent iteration.

Remark 2: Just as in the case of NA-TeSR, A-TeSR re-
duces to an adaptive Rasch model-based method when W is
aQ×1 vector of ones; see [3] for examples of such algorithms.
The main differences when using the SPARFA model for se-
lecting questions, as opposed to using the Rasch model, are
that the condition for the MLE to exist changes and in each
iteration we estimate a multidimensional concept vector as
opposed a scalar parameter.

4. EXPERIMENTAL RESULTS
Baseline algorithms: We compare NA-TeSR and A-TeSR
to four baseline algorithms.

• NA-Rasch and A-Rasch: Nonadaptive and adaptive
methods that use the Rasch model to select questions.
See Remark 1 and 2 for more details.
• Greedy: Iteratively selects a question from each concept

until the required number of q questions has been se-
lected. If all questions from a given concept have been ex-
hausted, then Greedy skips to the next concept to select a
question. Note that this approach completely ignores the
intrinsic difficulty of a question when performing TeSR.
• Oracle: Uses the true underlying (but in practice un-

known) vector c∗ to solve the TeSR problem. Note that
the oracle algorithm is not practical and is only used to
characterize the performance limits of TeSR.

Performance measure: We assess the performance of the
algorithms using the root mean-square error (RMSE), de-
fined as RMSE = ‖ĉ − c∗‖2. Although c∗ is known for
synthetic experiments, for real data, we assume that the
ground truth is the concept vector estimated when asking
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Figure 1: TeSR methods for synthetic data.

all Q available questions.

Methods: In the experiments shown next, we assume that
a matrix Y is given that contains graded responses of Q
questions from M students. As mentioned in Section 2, for
real data, we use SPARFA-M [8] to estimate W, µ, and
the ground truth concept values of each learner. For each
learner, we apply the baseline and our proposed TeSR al-

gorithms using W and a training data Ỹ obtained after
removing the responses of the learner from the matrix Y.
To show the performance of our TeSR algorithms, we report
the mean of the RMSE evaluated over all M learners.

MLE convergence: As mentioned in Section 3, the MLE
may not exist for certain patterns of the response vectors.
In the case of inexistent ML estimates, we make use of the
sign of the ML estimates (since each value in ĉ will either
be ∞ or −∞) to compute the RMSE. We then assign each
entry in ĉ to the worst (for −∞) or best (for +∞) value
obtained from a prior set of learners who have taken the
course. In our simulations, these worst and best concept

values are computed using the training data Ỹ.

Synthetic Data: We generated a sparse 50× 5 matrix W
that maps 50 questions to 5 concepts. There were roughly
30% non-zero entries in W with the non-zero entries cho-
sen from an exponential random variable with parameter
λ = 2/3. Each entry in the intrinsic difficulty vector µ was
generated from a standard normal distribution. We assumed
25 learners whose concept understanding vectors were again
generated from a standard normal distribution. For each Y,
we computed the reduced test-size with q = 5, 6, . . . , 44.

Figure 1(a) shows the mean value of the RMSE over 100 ran-
domly generated response vectors Y. Note that the mean
RMSE is taken over all 25 learners. We observe that NA-
TeSR and A-TeSR are superior to the baseline algorithms
A-Rasch, NA-Rasch, and Greedy. This observation suggests
that the Rasch model is not an appropriate model for select-
ing questions for the purpose of test-size reduction in courses
having more than one underlying concept.

Algebra test dataset: The first dataset was obtained by a
high school algebra test administered on Amazon’s Mechan-
ical Turk (see [8] for more details). This dataset contains no
missing data and consists of responses from 99 learners on
34 questions.

We used SPARFA-M assuming that there are K = 3 latent
concepts. The estimated concept–question matrix W con-
tains roughly 40% non-zero values. Figure 2(a) shows the
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Figure 2: Mechanical Turk algebra test with 3 con-
cepts; see Figure 1(a) for the legend.
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Figure 3: AssissMENT system data with 4 concepts;
see Figure 1(a) for the legend.

mean RMSE over 78 learners2. We see similar trends as in
the synthetic experiments. The main difference is that the
performance of Rasch-based algorithms is much worse when
compared to the synthetic data case. As we will explain
later, this behavior is mainly because the ML estimates for
the Rasch model did not converge for q < 17. Interestingly,
for q < 7, the mean RMSE of NA-TeSR is much lower when
compared to other algorithms. This behavior can be ad-
dressed to the fact that we deal with convergence failures
of the ML estimates. Furthermore, we note that the mean
performance of Greedy is better, in some regimes, than NA-
TeSR. However, this gain in performance, for some ques-
tions, comes at the cost of slightly higher variability in the
estimation of concept knowledge.

ASSISTment system dataset: The second real educa-
tional dataset corresponds to response data obtained from
the ASSISTment system that was studied in [10]. The origi-
nal data contained responses from 4354 learners on 240 ques-
tions. There are a large number of missing responses in this
dataset. In order to get a dataset with a sufficient number
of observed entries, we focused on a subset of 219 questions
answered by 403 learners. The resulting trimmed Y matrix
has roughly 75% missing values. Figures 3(a) shows the as-
sociated results and we observe trends that are similar to
the algebra test dataset.

How many questions are needed? Another interesting
measure to evaluate the performance of the TeSR algorithms
is the number of questions needed for the ML to converge.
Intuitively, this measure signifies the number of questions
needed to get accurate estimates of each learner’s concept
knowledge. Figures 1(b)–3(b) show box plots of the number
of questions needed for the ML estimates to converge for

2For some of the questions, the ML estimate did not exist
when using all the 34 questions; hence, the ground truth
could not be computed.

each algorithm and for each dataset considered here. Each
box corresponds to the 25th and 75th percentiles over all
learners in a class. We see that the A-TeSR algorithm is the
fastest to converge amongst all the practical algorithms (the
oracle algorithm is not practical since it utilizes information
about the unknown concept vector of interest c∗).
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ABSTRACT 
Boredom and disengagement have been found to negatively 

impact learning. Therefore, it is important for learning 

environments to be able to track when students disengage 

from a learning task. We investigated a method to track 

engagement during self-paced reading by analyzing reading 

times. We propose that a breakdown in the relationship 

between reading time and text complexity can reveal 

disengagement. A discrepancy (or decoupling) between 

attention resources and text complexity was computed via 

the absolute difference between reading times and the text’s 

Flesch-Kincaid Grade Level, a measure of text complexity. 

As expected, decoupling varied as a function of text 

complexity. We also found that text complexity differen-

tially impacted decoupling profiles for different types of 

participants (i.e., high vs. low comprehenders, fast vs. slow 

readers). These results suggest that decoupling scores may 

be a viable method to track disengagement during reading 

and could be used to trigger interventions to help students 

re-engage with the text and ultimately learn the material 

more effectively.   

Keywords 

Engagement, boredom, reading, text complexity 

1. INTRODUCTION 
It is widely acknowledged that engagement in a learning 

task is a necessary (but not sufficient) condition to achieve 

learning gains. There is also data to support this 

assumption. For example, student engagement was found to 

positively correlate with learning during interactions with 

an intelligent tutoring system (ITS) called AutoTutor, 

whereas boredom negatively correlated with learning [1]. 

Given this relationship, learning environments should seek 

to maximize engagement and minimize boredom and 

disengagement. 

A variety of methods have been used to track student 

engagement during learning. These include body move-

ments, facial expressions, aspects of language and 

discourse, self-reports, and observations by trained judges 

[2-4]. While these measures focus on the affective 

dimension of engagement, here we propose a method to 

track cognitive engagement during a reading task [5]. We 

posit that student engagement can be measured and tracked 

through a comparison of reading times and text complexity. 

The dance between reading times and text complexity can 

either align (e.g., the text becomes more difficult and 

reading times increase) or misalign (e.g., the text becomes 

more difficult but reading times do not reflect that). When 

discrepancies between reading times and text complexity 

occur, it may be indicative of students disengaging from the 

current learning task because they are not appropriately 

allocating resources to meet task demands. 

Our work is grounded in previous research that has shown 

that reading times are robustly predicted by such language 

and text characteristics as word length and frequency, 

sentence length, and other discourse characteristics [6-7]. 

However, there is a lack of research that uses reading time 

measures to assess engagement in reading at a fine grained 

level. In the present paper we investigate the relationship 

between reading times and text complexity as assessed via 

Flesch-Kincaid Grade Level scores [8]. The present study 

investigates the discrepancy (or decoupling) between 

reading times and text complexity as a new method to track 

student engagement during a self-paced reading task. 

2. METHOD 

2.1 Participants 
There were 64 participants in the present study who were 

recruited from Amazon’s Mechanical Turk™ (AMT). 

AMT acts as a mediator between researchers and 

individuals to allow people to complete psychological tasks 

online for monetary compensation. Participants were 

limited to native English speakers of at least 18 years of 

age. On average, it took participants 33 minutes to 

complete the study and they were compensated US $4 for 

their participation. Past research suggests AMT is a reliable 

and valid source for collecting experimental data [9].  

2.2 Materials 
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2.2.1 Texts 
The texts were adapted from the electronic textbook that 

accompanies the Operation ARA! ITS with conversational 

agents [10]. ARA helps students learn about research 

methodology through electronic texts, conversations with 

agents, and critiquing flawed science. Each text discussed 

one of four research methods topics: causal claims, 

dependent variable, experimenter bias, and replication. A 

text began with a real world situation to ground the 

research methods concept being discussed. The text then 

continued with explanations and examples that suggest 

more generalized uses for the concept. Each text was 

approximately 1500 words long. Order of texts was 

counterbalanced across participants with a Latin Square. 

2.2.2 Knowledge Assessment 
Assessment of research methods knowledge was conducted 

after participants read each of the four texts. Each 

assessment consisted of six multiple-choice questions 

pertaining to the research methods concept in the text. The 

questions were developed using the Graesser-Person 

question asking taxonomy [11] specifically targeting 

logical, causal, or goal-oriented reasoning.  

2.3 Procedure 
Participants signed an electronic consent form and read the 

instructions for the self-paced reading task. Self-paced 

reading was adopted for this task to eliminate any pressures 

from time constraints. Participants were then presented 

with the first of four texts. A sentence-by-sentence reading 

paradigm was used in which texts were presented one 

sentence at a time and participants pressed the space bar to 

move on to the next sentence. Reading times were collected 

for each individual sentence from each of the four texts. 

After participants read the first text, they were presented 

with the knowledge assessment for the research methods 

concept in that text. Participants then began the second text 

and repeated this pattern for all four texts. 

3. RESULTS & DISCUSSION 
The analyses are divided into two sections. First, we 

discuss how the decoupling score was computed. Second, 

we explore the relationship between the decoupling score 

and text complexity. 

3.1 Decoupling Score 
The decoupling score was computed as a measure of the 

degree to which participants were appropriately allocating 

their attention based on text characteristics. In other words, 

as the text became more difficult, did participants spend 

more time reading the text? To compute this score each text 

was divided into overlapping groups of three sentences 

(triplets) such that sentences 1, 2, and 3 were one triplet, 

sentences 2, 3, and 4 were a second triplet and so on.  

For each triplet, two values were used to compute the 

decoupling score. First, the total reading times for the three 

sentences in a triplet were summed and then standardized 

(i.e., converted to a z-score) on the subject level. Second, 

the Flesch-Kincaid Grade Level (FKGL) was computed for 

each triplet. The FKGL ranges from grades 1-12 and 

assesses the difficulty of a text based primarily on sentence 

length and the number of syllables. The FKGL was then 

also standardized (i.e., converted to a z-score) based on the 

TASA corpus, as computed by the Coh-Metrix text analysis 

tool [12]. 

The decoupling score was computed using the standardized 

reading time and FKGL scores for each triplet by taking the 

absolute difference between the two scores. Thus, in the 

present analysis, we are only focusing on the magnitude of 

decoupling and not the direction of decoupling (i.e., 

allocating too much or too little time based on text 

complexity).  

3.2 Decoupling & Text Complexity 
We investigated how decoupling scores varied as a function 

of text complexity, as assessed by FKGL. To investigate 

this relationship we plotted the decoupling score (y-axis) as 

a function of the standardized FKGL (x-axis) (see 

Empirical in Figure 1). FKGL scores were divided into ten 

equal partitions and the average is plotted in Figure 1. It is 

possible that the observed curve in Figure 1 is an artifact of 

the computations used to create the decoupling score. To 

address this issue, we constructed a randomly shuffled 

surrogate of the corpus. In this surrogate corpus, the FKGL 

score for each triplet was preserved, however, the ordering 

of the reading times was randomized. Ten surrogate 

corpora were constructed for each participant. Decoupling 

scores were then computed for each surrogate corpus and 

the average was used for the Shuffled curve in Figure 1.  

 
Figure 1. Decoupling scores as a function of text 

complexity 

As can be seen in Figure 1, the curvilinear shape does 

partially appear to be an artifact of the computations used 

in the present analyses. However, the two curves were not 

identical. We investigated the differences between the two 

curves by conducting a 2 (curve: empirical or shuffled) x 

10 (FKGL partition) repeated measures ANOVA. The 

ANOVA revealed that there were significant main effects 

comparing the two curves [F(1,63) = 4.55, p < .001, 2 = 

.343] and the 10 partitions [F(9,567 = 715, p < .001, 2 = 

.919] as well as a significant curve  partition interaction 

[F(9,567) = 3.03, p < .001, 2 = .639]. Post hoc analyses 

with Bonferroni correction showed that the empirical curve 

and shuffled curve significantly differed at all partitions, 

suggesting that the empirical curve does differ from 

chance.   
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A closer examination of the empirical curve shows that 

when text complexity is near the mean level of complexity, 

i.e. FKGL (standardized) = 0, decoupling is less than when 

compared to the extremes of text difficulty (i.e., very easy 

or very hard). One way of interpreting this pattern is that 

the participants read at a pace appropriate for sentences 

with average complexity, but failed to adjust their reading 

speed in accordance with the more extreme levels of text 

complexity. This would result in the participants either 

spending too much or too little time on the easier and the 

harder portions of the texts. 

It could be the case, however, that the relationship between 

text complexity and decoupling is obscured when all par-

ticipants are combined into one group. To investigate this 

potential issue, we divided participants based on reading 

speed (fast, slow) and comprehension (i.e., score on 

knowledge assessment; high, low). Participants were di-

vided via a median split for reading speed and comprehen-

sion, resulting in four groups: fast reader-high compre-

hender (FR-HC, N = 16), fast reader-low comprehender 

(FR-LC, N = 17), slow reader-high comprehender (SR-HC, 

N = 19), and slow reader-low comprehender (SR-LC, N = 

12). Scores for the 4 groups are plotted in Figures 2-5.  

ANOVAs showed that there were significant main effects 

and interaction terms for all four groups (p’s < .05), with 

the exception that the curve main effect for the FR-LC 

group was not significant (p = .973). These poor readers 

were essentially insensitive to text complexity, as would be 

expected. 

 
Figure 2. Decoupling scores as a function of text 

complexity for the SR-HC group 

The SR-HC group was most sensitive to the more complex 

portions of the text. That is when the text was more 

difficult, this group had less decoupling than chance (i.e., 

Shuffled curve in Figure 2). On the other hand, the FR-LC 

group did not vary their reading behavior based on the text 

complexity. This can be seen in the close proximity of the 

Empirical and Shuffled curves in Figure 3. 

 
Figure 3. Decoupling scores as a function of text 

complexity for the FR-LC group 

The FR-HC showed greater decoupling than chance (see 

Figure 4) at almost all levels of text complexity. This 

suggests that participants in this group could have been 

extremely vigilant to the text complexity, spending much 

less time on easy texts and much more time on difficult text 

segments. However, it is difficult from the present data to 

determine why this group of participants had these 

decoupling patterns.  

 
Figure 4. Decoupling scores as a function of text 

complexity for the FR-HC group 

The SR-LC group had less than expected decoupling at 

extreme levels (easy or difficult) (see Figure 5). In other 

words, the more the text complexity deviated from the 

mean in either direction the decoupling was less than 

expected. This pattern may indicate that participants in this 

group needed the complexity level of the text to be more 

explicit or obvious for them to adapt their reading behavior. 

However, the overall decoupling score for this group did 

increase at the extremes, although this was still less than 

chance (see Shuffled curve in Figure 5). Unfortunately, it is 

somewhat difficult to interpret these results without 

knowing the direction of decoupling. 
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Figure 5. Decoupling scores as a function of text 

complexity for the SR-LC group 

4. CONCLUSION 
This study investigated a new method of measuring and 

tracking cognitive engagement during reading. The 

decoupling score was derived from the absolute difference 

between reading times and text complexity. We propose 

that this measure assesses cognitive engagement because if 

readers are engaged with the text, then their reading times 

should be adjusted based on text complexity. In other 

words, as the text becomes easier, reading times should 

become relatively faster and, conversely, as the text 

becomes more difficult reading times should become 

relatively slower. We found evidence that the relationship 

between reading time and text complexity did seem to 

reveal patterns of disengagement. Moreover, we found that 

the relationship between decoupling and the complexity of 

the text varies based on individual differences in reading 

speed and comprehension.  

Despite these promising initial findings, we were not able 

to completely explain the patterns of decoupling for all 

types of participants. In particular, the relationship between 

decoupling pattern and comprehension scores was not 

clearly revealed in the differences between the empirical 

data and the shuffled surrogate corpus for participants clas-

sified as fast reader-high comprehenders. This highlights a 

limitation of using Flesch-Kincaid Grade Level to assess 

text complexity. Flesch-Kincaid assesses text complexity at 

a rather shallow level. It may be the case that more nuanced 

measures of text complexity will be able to shed more light 

on how decoupling impacts comprehension. Thus, in future 

work we plan to investigate more differentiated measures 

of text complexity, such as narrativity, syntactic simplicity, 

referential cohesion, word concreteness, and situation 

model cohesion using Coh-Metrix [12]. We are specifically 

targeting cohesion because past research has shown that 

cohesion and breakdowns in cohesion impact learning as 

well as interact with prior knowledge [13].  

Student engagement over the course of a learning 

experience is a vital issue. This paper provides insight on 

how text complexity can factor into cognitive engagement 

levels and a possible measure for it. More importantly, this 

measure may be capable of tracking students’ cognitive 

engagement across a span of text by simply using reading 

times and text characteristics (e.g., complexity). This 

measure of cognitive engagement could then be used to 

create texts that adapt in complexity level to increase 

cognitive engagement and maximize learning. 
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ABSTRACT
Computer science students starting their studies at our uni-
versity often fail their first mandatory mathematics course,
as they are not required to have a strong background in
mathematics. Failing can also be partly explained by the
need to adjust to a new environment and new working prac-
tices. Here, we are looking for indicators in students’ work-
ing practices that could be used to point out students that
are at risk of failing some of their courses, and could bene-
fit from an intervention. We present initial results on how
freshman students’ programming behavior in an introduc-
tory programming course can be used to predict their suc-
cess in a concurrently organized introductory mathematics
course. A plugin in students’ programming environment
gathers snapshots (time, code changes) from students actual
programming process. Gathered snapshots are transformed
to data items that contain features indicating e.g. deadline-
driven mentality or eagerness. Our results using Bayesian
networks indicate that we can identify students with a high
likelihood of failing their mathematics course already at a
very early phase of their studies using only data that repre-
sents their programming behavior.

Keywords
code snapshots, programming behavior, first-year challenges

1. INTRODUCTION
Students face a number of challenges during the first term
of their studies at a higher education institution [4]. They
need to find a place within a new community, and adjust
their learning strategies and styles to fit the requirements
of their chosen study. The multitude of challenges is often
unforeseen and surprising for the students, and many end
up failing some of their first courses. However, if a student
has good study habits, she is more likely to succeed in her
studies [12].

Computer science (CS) students typically start their studies
with introductory programming courses and mathematics.
Although mathematics is typically a minor subject, it is fre-
quently considered as the basis of CS. Especially algorithms-
related courses require a fair amount of mathematical ma-
turity. As such, it is important that students fare well in
their mathematics studies.

There are several systems that gather snapshots from stu-
dents’ programming process, e.g. [13, 15]. Currently, the
research that utilizes snapshots has focused on e.g. model-
ing how students solve a specific exercise (see e.g. [11, 8]),
and how e.g. compilation errors and successes can be used
to predict success in a programming course (see e.g. [9, 14]).
However, to our knowledge, there has not been much at-
tention on how the students’ study practices and behavior,
especially their use of time extracted from snapshots, reflect
on their results on current and parallel courses.

In our work, we are investigating students’ programming
process and seeking indicators of bad study habits that could
be used to highlight students at-risk of failing some of their
first term studies. In this article, we describe how we can
identify students that are at risk of failing a 14-week intro-
ductory mathematics course using only their programming
behavior from a parallel introductory programming course.
Our initial results are promising, and with a population of 52
students, we are able to accurately predict the mathematics
course success after only four weeks of programming.

This paper is organized as follows. In section 2, we briefly
describe our educational arrangements as well as the tool
that enables recording snapshots from students’ program-
ming process. Section 3 describes the data and the feature
generation process. Section 4 describes the methodology
used for analysing the data and presents our results, and
Section 5 outlines future work.

2. CONTEXT, PEDAGOGY
AND TOOLS

The academic year at the University of Helsinki is split into
four seven-week teaching periods. Each period starts and
ends simultaneously throughout the University, and each pe-
riod is followed by a one week intermission before the start
of the next period. The last week of each period is usually
devoted to course exams.
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The first two periods for CS majors are packed with manda-
tory courses: Introduction to Programming Part I (7 weeks,
period 1), Introduction to Programming Part II (7 weeks,
period 2), Software Modeling (7 weeks, period 2), that are
offered by the Department of CS. In addition, students are
expected to enroll into Introduction to University Mathe-
matics (14 weeks, periods 1 and 2) that is organized by the
Department of Mathematics and Statistics.

Both courses Introduction to University Mathematics and
the Introduction to Programming Part I are organized us-
ing the Extreme Apprenticeship method (XA) [16], which is
a modern interpretation of apprenticeship-based learning [5,
6]. XA values students’ personal effort and intensive inter-
action between the learner and the advisor, and emphasizes
deliberate practice [7] that aims towards mastering the craft.

As a craft can only be mastered by practising it, XA-based
courses contain lots of exercises. For example, during the
first week of their programming course, CS freshmen work
already on tens of programming tasks.

As XA stresses activity to be as genuine as possible, the stu-
dents start working with industry-strength tools from day
one. We use NetBeans, which is an open source IDE (in-
tegrated development environment), bundled with an auto-
mated assessment service called Test My Code (TMC) [15],
which is used to download and submit exercises; moreover,
TMC is used to run tests on the students’ code in order to
verify the correctness of an exercise.

In addition to the assessment capabilities, on student’s per-
mission, TMC gathers data from students’ programming
process. Currently, a snapshot is taken whenever a student
saves her code, compiles the code, or pastes code into the
IDE. Each snapshot contains student id, timestamp, source
code changes and possible configuration modifications.

3. DATA AND FEATURES
During the Fall 2012, we gathered over 48 000 snapshots
from 52 students that participated to both Introduction to
Programming Part I and Introduction to University Math-
ematics. The 52 students include only those that had more
than 100 snapshots, i.e. they had not disabled the snapshot
gathering mechanism at an early part of the course and had
put at least some effort to solving the exercises. Out of the
52 students, 28 passed the mathematics course, and 24 failed
it, while 43 passed the programming course. Although some
students passed the courses later in a separate exam, we
currently only consider their success in the actual course.

Students’ snapshots are aggregated to describe weekly me-
dian, average, minimum, maximum and standard deviation
of their working in the following dimensions:

1. hour of working
2. minutes to deadline
3. minutes between sequential snapshots
4. edit distance between sequential snapshots.

The first two aggregate statistics are generated by analysing
the snapshot time and its distance from the deadline of
the exercise that the student is currently working on. Ag-
gregate statistics three and four are generated by sorting

the snapshots based on their time and comparing the code
changes and snapshot timestamps between sequential snap-
shots. Due to the large number of snapshots and the rela-
tively small amount of code changes between each snapshot,
we calculate the edit distances using an extension of the
Ukkonen’s algorithm by Bergel and Roach [2].

In addition to the above statistics, we generate weekly:

• minutes spent programming

• % of programming done during night (22-07)

• number of compilation errors

• number of style- and programming-related issues.

The number of compilation errors is gathered by compiling
the program code for each snapshot, and gathering statis-
tics out of the code compilation results. For identifying the
style- and programming-related issues (e.g. wrong indenta-
tion, too long methods, copy-paste code, variables shadow-
ing variables, and infinite loops), we utilize Checkstyle [3]
and FindBugs [1].

If a student has not worked on the programming exercises
during a specific week, values are entered as empty values.
In our data, 21 of the students skipped at least one week
of programming, and 9 of them ended up failing the math-
ematics course. We have purposefully left out the number
of exercises each student has completed from the features,
as our focus is on analysing the students’ working behavior
during the course.

3.1 Features
Each of the aggregated value is considered as a feature, and
each week adds over 30 features that represent students’
behavior during the specific week. Let us consider some of
the features in more detail.

Figure 1 displays probability densities1 for the standard de-
viation of snapshot time distances to deadline. Students
that are more likely to fail the mathematics course have
been working on the exercises during a smaller time period,
e.g. during a single “crunch”, while the students that are
more likely to pass the mathematics course have worked on
the exercises during several days.

The same “crunch” effect is visible in Figure 2, which dis-
plays probability densities for the maximum minutes be-
tween snapshots during week 3. Here, the students that
take a larger pause (over 3.5 days) while working on the
exercises are more likely to pass the mathematics course.

Figure 3 displays the amount of programming done during
nights during week 6. The students that did not program
between 22-07 hrs are slightly more likely to fail the math-
ematics course, and in our data, all the students that pro-
grammed more than 70% of their time during night passed
the mathematics course.

1Note that the figures are plotted in R, and the used band-
width for the density function is the default “nrd0”. If a
value is missing, i.e. has a value NA, it is removed from the
dataset prior to plotting.
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Figure 1: “Minutes to Deadline (Deviation, Week
1)” displayed using probability densities for groups
that have passed and failed the course Introduction
to University Mathematics.
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Figure 2: “Minutes Between Snapshots (Maximum,
Week 3)” displayed using probability densities for
groups that have passed and failed the course Intro-
duction to University Mathematics.

4. METHODOLOGY AND RESULTS
We consider identifying the students’ that are likely to suc-
ceed or fail their introductory mathematics course a classifi-
cation problem. The course result (pass/fail) is used as the
class to predict, and each feature vector contains the aggre-
gated values from a student’s snapshots. In total there are
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Figure 3: “Percentage of Programming Done During
Night (Week 6)” displayed using probability densi-
ties for groups that have passed and failed the course
Introduction to University Mathematics.

52 feature vectors with class labels, one for each student.
We utilize a non-parametric Bayesian network tool called
B-Course [10] for both modeling the dependencies between
the features in the data, and for building the classifiers.

Validation is performed using student level leave-one-out
cross-validation, and if a feature value is missing, i.e. a stu-
dent has not programmed during a specific week, B-Course
ignores the value when calculating the class probabilities.

We have built 12 separate classifiers for our data. Half of the
classifiers are built using data from only the students’ behav-
ior, without results from static and dynamic code analysis,
i.e. compilation errors and style- and programming-related
issues, and the other half include static and dynamic code
analysis results. Each of the classifier represents students’
behavior up to a specific week in the programming course.
The features for separate weeks are currently the same; stu-
dents’ weekly behavior is aggregated to feature values.

The following results contain accuracy, precision, recall, and
the weighted harmonic mean of precision and recall (F-mea-
sure). Precision, recall, and F-measure are calculated as-
suming that we are predicting success in the mathematics
course.

Results for the classifiers that did not include code analysis
results are described in Table 1. Already after one week
of programming, we are able to identify students’ that are
likely to fail the mathematics course with an 84.6% accuracy.
After 5 weeks of programming, the accuracy is 98.1%.

Table 2 describes the results where dynamic and static code
analysis results are included in addition to the students’ be-
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Week Accuracy Precision Recall F-Measure
1 84.6 % 85.7 % 85.7 % 85.7 %
2 88.5 % 92.3 % 85.7 % 88.9 %
3 92.3 % 92.3 % 92.3 % 92.3 %
4 94.2 % 100 % 89.3 % 94.3 %

5–6 98.1 % 100 % 96.4 % 98.2 %

Table 1: Results for data that includes students’ pro-
gramming behavior, and excludes compilation errors
and style- and programming-related issues.

havior. After a single week of programming, the accuracy is
88.5%, and at the end of fourth week, we are able to identify
the students’ at risk with 100% accuracy.

Week Accuracy Precision Recall F-Measure
1 88.5 % 92.3 % 85.7 % 88.9 %
2 94.2 % 96.3 % 92.9 % 94.5 %
3 96.2 % 96.4 % 96.4 % 96.4 %

4–6 100 % 100 % 100 % 100 %

Table 2: Results for data that includes students’
programming behavior as well as compilation errors
and style- and programming-related issues.

5. DISCUSSION AND FUTURE WORK
With our current dataset, we are able to predict the stu-
dents’ success and failure in a 14-week introductory math-
ematics course already after a few weeks of their studies
based on their programming behavior. Our current data
indicates that computer science freshman that have a ten-
dency to “crunch” their exercises and start working close to
the deadline are at a higher risk of failing their introductory
mathematics course than the students that work during a
longer time interval.

There is a need for intervention at an early part of the at-risk
students’ studies, which would direct the students towards
more successful learning styles. However, we do not know
if there is a direct causality between the working habits,
and cannot tell if our subjects would really perform better
by e.g. simply starting to work on their assignments earlier.
Our current number of samples (52) is relatively small, and
we need more data from future students.

Our current plan is to evaluate the students’ working process
during Fall 2013, and perform intervention(s) to a subset
of the population that our current classifier indicates being
at risk. We are also seeking more descriptive behavioral
indicators from the programming data in addition to our
current features. Overall, we are not only interested in a
single course or a single semester, but the students’ success
in their whole studies.
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ABSTRACT
The field of educational data mining has been paying 
attention to Knowledge Tracing (KT) for a long time. 
Corbett and Anderson assumed the amount of learning that 
students do does not depend on whether students get items 
right or wrong.  Ohlsson and others argued that the student 
should learn more from a previous incorrect performance. 
We decided to investigate a Bayes Network similar to KT 
but that allows us to have learning rates that are different 
according to whether students get items correct or not. While 
the idea of allowing learning rates from previous incorrect 
performances to be higher seems intuitive, our experiments 
showed that this way does not always lead to better 
predictions. Of course reasoning from a null result is 
dangerous, our contribution is that this intuitive idea is not 
one that other researchers should waste time in working on, 
unless they come up with a different model from the model 
we used (which is the naïve way of modifying KT).  
 
Keywords:  
Knowledge Tracing, Bayesian Networks, Learn from 
performance, Tutoring Strategies 
 

1. INTRODUCTION 
The field of Education Data mining has depended to a large 
extent on the model that was developed by Corbett and 
Anderson [2] and enhanced by a number of authors for 
predicting student performance. Over the years many new 
models have been built to improve upon the prediction 
accuracy of KT.  
 
Wang and Heffernan have also shown that better predictions 
are achieved with the inclusion of additional parameters 
relating to the skills and groups to which a student belongs. 
[4]  
Standard KT makes a number of assumptions, including the 
fact that the rate of learning is constant and that the transition 
from one knowledge state to the other is not dependent of 
previous performance. [2] Other researchers have introduced 
different models that seem to deal with this anomaly with the 
KT model [7], whiles some have compared these different 
models to determine which best predicts student 

performances considering prior performance. [6] Ohlsson 
theorized that humans in general are able to learn from their 
previous error performance, especially in situations where 
there is an explanation for the cause of the error. [1] Ohlsson 
further reiterated that in order to avoid repeating an incorrect 
action the knowledge behind the action must be changed. It 
is therefore intuitive that the student will learn from the 
previous performance. In this paper we present yet another 
modification of the KT model which considers the previous 
performance of a student on a particular item. 

2. LP Model 
We considered a new assumption for the KT model as 
follows: “Students can learn from their previous observed 
performance once there is some tutoring associated with the 
wrong performance.” This resulted in a new model which we 
call “Learn from Performance” (LP) model and present in 
Fig.1b). 

 

    
Figure.1 Student Performance Models (a) KT (b) LP    

To account for learning after performance, our new model, 
LP, introduces one link from performance at time t-1 (Qt-1) to 
knowledge at time t (Kt). This modification therefore 
introduces two (2) additional parameters to the model. These 
parameters are learn_from_correct (LC), and 
learn_from_incorrect (LinC). LC is the probability that the 
student gained some additional knowledge from having 
answered the most previous question in the skill correct. This 
is especially so in the case where the student sees a different 
variation of questions relating to a given skill. LinC is the 
probability that the student has learnt something new from 
performing poorly from the most previous question. There is 
also the probability that the student had the knowledge prior 
to the previous performance but answered the previous 
question wrong and hence he lost it. In other words this is the 
probability of shallow learning or confusion.  
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3. METHODOLOGY AND RESULTS 
To evaluate our model we used both real data from the 
ASSISTments Tutoring System [3] and simulated data. The 
Bayes Net Toolbox for Matlab [5] was used to implement the 
standard KT as well as the proposed LP model.  
 
3.1 Simulated Data 
In order to evaluate the LP model and to ensure that we were 
not over-fitting the model, we decided to test the model’s 
strength using simulated data from both KT and LP. The 
networks’ parameter values were set to ground truth values.   
 
To evaluate the ability of the LP model to see if it is effective 
and can learn back its parameters, we generated data for 200 
typical students from the LP Bayesian Network and used 
both models to predict the performance of students. In the 
simulated experiment we performed a 5-fold cross validation 
on both models and computed the performance metrics 
(MAE, RMSE and AUC). 
 
The results indicated that LP learned most of its parameters: 
prior, lean_from_incorrect (LinC), guess and slip back to an 
appreciable degree. The learn_from_correct (LC) parameter, 
however, does not seem to get close to the ground truth 
values that were used in generating the simulation data for 
LP. Table 1 shows that LP outperformed KT reliably using 
LP generated data. However there were mixed results when 
KT generated data was used. 

 
Table 1. Simulation Performance Comparison Results 

with LP Generated Data (1000 samples) 

 MAE RMSE AUC 

Fold KT LP KT LP KT LP 

1 0.326 0.270 0.399 0.380 0.707 0.832 

2 0.335 0.271 0.409 0.382 0.779 0.820 

3 0.336 0.284 0.409 0.391 0.798 0.816 

4 0.351 0.285 0.426 0.391 0.798 0.827 

5 0.334 0.275 0.405 0.381 0.762 0.834 

Mean 0.336 0.277 0.410 0.385 0.794 0.826 

P-
value <0.05 <0.05	   <0.05	  

 

3.2 Real Data Experiments 
Given mixed results in simulation experiments, we further 
tested the model using real data to confirm our observation. 
The data set we used is from the ASSISTments Tutoring 
System. We randomly chose twenty (20) skills that have a 
minimum of 1000 rows of problem logs. Each row 
represented the student’s performance of a given Skill 
Builder problem and the number of times the student has 
encountered problems of that nature including the current 
opportunity.  
 
We employed the Expectation Maximization function that 
comes with the Bayes Net Toolbox within Matlab. We split 
the data randomly into five equal folds for each skill. We 
then performed a five-fold cross validation of the predictions 
for each skill and for each model.  
 

Table 2 displays the MAE, RMSE and AUC values for each 
skill and for each model.  

Table 2. Skill Prediction Performance Comparsion 
Results 

SKILL MAE RMSE AUC 
(#)Name KT LP KT LP KT LP 

(1) Box and 
Whisker 0.349 0.268 0.423 0.487 0.681 0.500 

(9) Stem and 
Leaf Plot 0.394 0.321 0.447 0.490 0.599 0.583 

(10) Table 0.294 0.187 0.386 0.424 0.539 0.453 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

(58)Addition 
Whole 

Numbers 
0.195 0.116 0.313 0.330 0.557 0.500 

Mean 0.350 0.287 0.415 0.462 0.611 0.569 

p-values <0.05 <0.05 >0.05 

The results in Table 2 indicated that LP has better MAE 
values than KT. However, KT reliably outperformed LP with 
RMSE and not reliably so with AUC. These results show that 
the results do not indicate any better performances than  
4. CONCLUSION 
Ohlsson theorized that students do learn from their previous 
error performance, especially in the case where explanation 
of the reasons for the error is provided. On the basis of this, 
we developed a new naïve Bayes Network model that allows 
the amount of learning to increase when users get an item 
wrong. Our experiments with real and simulated data showed 
that we do not get better prediction of student performance 
with this proposed LP model than the standard KT model. 
Hence we conclude from our experiments that the 
assumption that Corbett and Anderson made was justifiable 
even though not intuitive according to Ohlsson.  Our 
contribution is that this intuitive idea is not one that other 
researchers should waste time in working on, unless they 
come up with a different model from the model we used. 
 
The code and data for these experiments are available at: 
http://users.wpi.edu/~saadjei/  
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ABSTRACT
This paper describes a proposal of relevant clustering fea-
tures and the results of experiments using them in the con-
text of determining students’ learning behaviours by min-
ing Moodle log data. Our clustering experiments tried to
show whether there is an overall ideal number of clusters
and whether the clusters show mostly qualitative or quan-
titative differences. They were carried out using real data
obtained from various courses dispensed by a partner insti-
tute using a Moodle platform. We have compared several
classic clustering algorithms on several group of students
using our defined features and analysed the meaning of the
clusters they produced.

Keywords
clustering, Moodle, analysis, prediction

1. INTRODUCTION
1.1 Context of the project
Our project aims to monitor students by storing educational
data during their e-learning curriculum and then mining it.
The reasons for this monitoring are that we want to keep
students from falling behind their peers and giving up.

This project is a research partnership between a firm and
an university. The partner firm connects our research with
its past and current e-learning courses, hence providing us
with real data from varied trainings.

All available data comes from a Moodle [5] platform where
the courses are located. Moodle’s logging system keeps track
of what materials students have accessed and when. We then
mine through such logs.

1.2 Clustering as a means of analysis
Clustering is the unsupervised grouping of objects into classes
of similar objects. In e-learning, clustering can be used for
finding clusters of students with similar behaviour patterns.
In the example of forums, a student can be active or a lurker
[1, 7]. These patterns may in turn reflect a difference in
learning characteristics, which may be used to give them
differentiated guiding [2] or to predict a student’s chance of
success [3]. They may also reflect a degree of involvement
with the course, which, if too low, can hinder learning. The
data contained in Moodle logs lends itself readily to cluster-
ing, after a first collecting and pre-processing step [6].

Our aim with this analysis will be to determine if there is
an overall ideal number of clusters and whether the clus-
ters show mostly qualitative or quantitative differences. We
chose clustering, which is unsupervised, in order to better
reflect the natural structure of our data. Because of this
choice, the outcome of our experiments will not be directly
relevant to the success of the students, but will rather reflect
the differences in their usage of the LMS.

2. FEATURES CHOSEN TO AGGREGATE
THE DATA

We have tried to aggregate the Moodle log data into a list
of features that could capture most aspects of a student’s
online activity. The features we have selected are: the login
frequency, the date of last login, the time spent online, the
number of lessons read, the number of lessons downloaded
as a PDF to read later, the number of resources attached
to a lesson consulted, the number of quizzes, crosswords, as-
signments, etc. done, the average grade obtained in graded
activities, the average last grade obtained, the average best
grade obtained, the number of forum topics read, the num-
ber of forum topics created, and the number of answers to
existing forum topics. For every ”number of x” feature, we
actually used a formula that would reflect both the distinct
and total number of times that this action had been done.
All of our features are normalized, with the best student
for each grade obtaining the grade of 10, and others being
proportionally rescaled.

3. EXPERIMENTAL METHOD
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Figure 1: Sample clustering result with X-Means

All our experiments were performed using Weka [4], and con-
verting the data first into the previously described features,
then transforming these features into Weka attributes and
instances. We can then view the feature data for each of
these clusters or students in order to analyse the grouping.

In order to test the accuracy of the obtained clusters, we
used the 10-fold cross-validation method, which directly out-
puts a mean error, which we show in figure 1. We have
averaged over a few runs with different randomizing seeds.
We executed the following clustering algorithms provided by
Weka: Expectation Maximisation, Hierarchical Clustering,
Simple K-Means, and X-Means. X-Means chooses a best
number of clusters, which we show. The other algorithms
take as an input parameter the required number of clusters.
These numbers will be comprised between 2 and 5, based on
the X-Means result.

We have selected 3 different trainings: two classes of a same
training, which we will call Training A1 and A2, and a to-
tally different training B. Training A1 has 56 students, A2
has 15 and B has 30. Both A1 and A2 last about a year
while B lasts three months.

4. CLUSTERING RESULTS
4.1 Best number of clusters
The following figure shows the results of the four algorithms
used on each of our three datasets. The first shows the
frequency at which the X-Means algorithm proposed a given
number of clusters. The other three graphs show the error
for a given number of clusters for K-Means, Hierarchical
clustering and Expectation Maximisation. We can see that
all algorithms generally agree on at most 2 or 3 clusters.

4.2 Meaning of the clusters
To our surprise, the clusters observed for all three trainings
did not show anything more relevant than a simple distinc-
tion between active and less active students, with variations
according to the chosen number of clusters. We did not, for
instance, notice any group that would differ from another
simply by their activity on the forum.

To explain this, we offer the following possible reasons. Firstly,
we have a relatively small number of students in each train-
ing (between 15 and 56), which may mean less variety in

behaviour. Secondly, this training may be targeted towards
a relatively homogeneous audience in terms of age, profes-
sional training, and habitual use of IT. Thirdly, a vicious
circle effect can happen of the forum, because if few people
use it, other students have less incentive for using it.

Hence, in about all observed clusters, the students were only
quantitatively differentiated by a global activity level. It is
also to be noticed that when the number of clusters was too
large, clusters containing only one student, the most or least
active of his training, tended to form. This phenomenon
might be a good indicator that the number of clusters is too
high without the help of a comprehensive study.

However, the fact that all differences were proportional also
means that the student’s activity level was also correlated
to the grades they obtained in graded activities (which were
not evaluative). This seems to indicate that in our train-
ings, using a quantity of activity is sufficient to help identify
students in trouble, which is our global aim.

5. CONCLUSIONS AND FUTURE WORK
This paper proposes comprehensive and generic features that
can be used for mining data obtained from Moodle courses.
These features are then used to conduct a clustering of the
data, using several algorithms, followed by an analysis, which
seems to show very little qualitative difference in behaviour
between students. It seems that a single feature, a kind of
index of their global activity, would be almost sufficient to
describe our data. This is also shown by the very little (2
to 3) number of clusters that is sufficient for describing our
data. We propose several explanations for this surprising
result, such as the small dataset, the homogeneity of our
students and a vicious circle effect. However, the results
mean that using our features or computing a quantity of ac-
tivity could be enough to monitor students and notice which
ones run a risk of failure.
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ABSTRACT 

Educational model for higher education has shown a drift from 

traditional classroom to technology-driven models that merge 

classroom teaching with web-based learning management systems 

(LMS) such as Moodle and CLEW. Every teaching model has a 

set of supervised (e.g. quizzes) and/or unsupervised (e.g. 

assignments) instruments that are used to evaluate the 

effectiveness of learning. The challenge is in preserving student 

motivation in the unsupervised instruments such as assignments as 

they are less structured compared to quizzes and tests. The 

research applies association rule mining to specifically find the 

impact of unsupervised course work (e.g. assignments) on overall 

performance (e.g. exam and total marks).  

 

1. INTRODUCTION 
Research has shown that society is gradually drifting from the 

most common teacher-centered classroom teaching model to a 

hybrid educational model that combines classroom teaching and 

technology such as internet [2]. Some of the recent technology-

based systems are web-based courses, learning content 

management systems (LMS), adaptive and intelligent web-based 

educational systems (Intelligent tutoring systems (ITS)) [2] and 

more recent online systems such MOOC (Massive open online 

course).Such web-based courses gather student data using 

activities such as quizzes, exams and assignments to measure their 

cognitive ability and additional data to measure other factors that 

could influence learning such as number of times a student has 

visited a webpage. The objective of this paper is to study the 

direct and indirect impact that unsupervised tasks (e.g. 

assignments) have on final marks and grades using association 

rule mining (ARM). ARM is an unsupervised learning method 

that looks for hidden patterns in data. An impact on the overall 

mark is considered to be direct (if the student achieves a score x in 

the assignment, a 10% of x contributes to the overall mark).An 

impact on final exam is considered to be indirect – student 

performing well in the assignments understands the course 

concepts well and hence performs proportionately well in the final 

exam. The motivation behind this research is to offer constructive 

suggestions to educators to help them effectively decide the 

optimal number of course assignments and the amount of weight 

that should be given to them (e.g. giving 15% weight to the 

assignments as opposed to 10%).  

 

2. RELATED WORK 
Data mining techniques such as classification, clustering and 

association rule mining have been used to provide guidance to 

students and teachers in activities such as predicting student’s 

performance and failure rate, discovering interesting patterns 

among student attributes and finding students who have a low 

participation in collaborative work [1,2]. Even though a lot of 

work exists on mining educational data, no one so far has 

attempted to analyze the impact that assignments have on student 

performance in a course. In this paper, we mine student data from 

courses offered in the University of Windsor, Canada to study this 

impact.  

 

3. THE PROPOSED SYSTEM FOR MINING 

STUDENT LEARNING  

 

3.1Learning Management System Overview 
CLEW (Collaboration and Learning Environment Windsor) is an 

LMS developed by University of Windsor and is used to support 

teaching and learning in face-to-face, distance and blended 

courses (www.uwindsor.ca/clew). Each course has a set of 

objectives and a set of supervised (e.g. tests) and unsupervised 

(e.g. assignments) instruments. Students can use discussion board 

and chat rooms to collaborate with peers or post concerns. 

 
Figure 2: Assessment instruments in courses on CLEW 

 

3.2 Proposed algorithm Mine_Learning (ML): 
This section first presents a formal algorithm (Mine_Learning 

(ML) for mining impact of assignments on student performance 

before providing more detailed description of each step. 

Algorithm Mine_Learning (ML) 

Input: an excel file with student marks (individual assignments, 

average assignment, final, total), number of visits to CLEW 

Output: association rules generated for the input dataset, a model 

predicting if a student can pass a course given assignment and 

final marks 

1. Prepare and clean the student marks. 

2. Transform input data into sets of items to get marks_items. 

3. Call the Apriori algorithm with marks_items to get marks 

Frequent patterns and Marks association rules. 

4. Interpret the importance of generated mark association 

rules using confidence and support. 

5. Apply SVM to define the Pass/Fail classification model 

Figure 3 : Proposed Mine_Learning algorithm 
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Step 1: Data Cleaning, preparation and preprocessing of marks: 

Missing marks were replaced by zeroes. A row with 0 as the final 

exam mark (possibly because the student did not write the final 

exam) was deleted.  Attributes such as ID that were of no 

significance to this study were removed. All marks were 

converted to percentages (out of 100) to be consistent.   

Step2: Data transformation: Each row of input data is transformed 

into a set of items as a preparatory step for the Apriori algorithm. 

For example, let’s assume that a student achieves {85, 80, 78} 

respectively as average assignment, final exam and overall marks. 

These marks are converted into items {R1, R5, R10} based on the 

rules defined in table 1. Table 1 defines rules R1 – R4 for 

assignment marks, R5 – R8 for final exam, R9 – R12 for overall 

marks and R13 – R15 for number of visits made to CLEW. Rules 

16 onwards for individual assignments use the same categories as 

assignment_average and are not shown here. The transformed 

data as shown in table 2 has attributes TID (transaction Id), 

Num_att (number of attributes), RuleAA (Assignment_average 

transformed as 1 - 4), RuleFM (Final_exam transformed as 5 - 8), 

RuleTM (Overall_mark transformed as 9 -12) and RuleV 

(Number of visits as 13 - 15). ‘R’ has been removed from the 

transformed items for convenience.  

 

Table 1: Rules used to transform marks to items 
Rule  Identifier           Rule___________________ 

R1   Assignment_average> 85 

R2   70 <Assignment_average<= 85 

R3   50 <= Assignment_average<= 70 

R4   Assignment_average< 50 

R5   Final_exam_mark> 85 

R6   70 <Final_exam_mark<= 85 

R7   50 <= Final_exam_mark<= 70 

R8   Final_exam_mark< 50 

R9   Overall_mark> 85 

R10   70 <Overall_mark<= 85 

R11   50 <= Overall_mark<= 70 

R12   Overall_mark< 50 

R13   1 <Number_of_visits<=100 

R14   100 <Number_of_visits<=200 

R15   Number_of_visits> 200 

 

Table 2: Output of step 2 

 
Step3: Apply Apriori algorithm to the dataset obtained as output 

of step 2 to generate rules such as R4 =>R 8, R4 =>R12, R6 =>R1 

and so on, as shown in table 3. 

Step4: The rules generated in step 3 are then manually interpreted 

using the rules’ confidence and support values to answer 

questions such as ‘Does average assignment mark have a 

favorable impact on Final / Overall marks?’ or ‘How important is 

it for students to visit the CLEW site frequently?’.  

Step 5: An SVM model is created to classify student data (from 

step 1) as Pass / Fail based on total marks. A total mark of >=50 is 

labeled as Pass; < 50 is labeled as Fail. 

 

Table 3:Sample rules generated 

 

 

4. RESULTS  
Experiments were conducted on student data of two semesters in 

two Computer Science courses: ‘Programming in C for 

Beginners’(code 106F and  106W) and ‘Key concepts for end-

users’ (code 104F). A relative weight of 30% was assigned to 

assignments in 106F, 10% in 106W and 50% in 104F.Threshold 

used for support were 15 and 20 and for confidence was 50 since 

experiments indicated that lowering minimum support and 

confidence values increased the number of rules generated 

substantially. An analysis of all rules generated asserts our 

hypothesis that assignment marks have an impact on the student’s 

overall and final marks. The confidence of such rules for course 

106F is much higher compared to 106W, which implies that 

allocating a 30% weight to the assignments (as in 106F) has a 

higher impact than 10 % (106W). Similarly, rules generated for 

the last 5 assignments in 106F had 100% confidence in depicting 

that a student who scores > 85 in assignment also scores > 85 in 

final exam and in the overall mark, and a similar trend was 

observed with assignment marks <50. Some rare rules such as one 

found in the dataset 106W (Assignment1 > 85 => Final <50) can 

be attributed to the fact that assignment1, being the first one, was 

either too simple or marking was too lenient. Rules generated for 

all assignments of 104S are uniformly indicative of the fact that 

achieving a score of > 85 in the assignment and final exam 

ascertains a total mark in the range of >=70 and < 85. SVM model 

for all the three courses using average assignment marks predicted 

a student’s chance of passing the course with more than 95% 

accuracy. However, accuracy using individual assignment marks 

was 81%, 87% and 97% for 106W, 106F and 104S respectively.  

 

5. CONCLUSIONS 
This research presents how useful the association rules mined 

using Apriori algorithm on student data are in extracting hidden 

patterns about course assessment instruments such as assignments 

and final exam. Teachers can take informed decisions using such 

patterns and use them in improving their curriculum and strategy 

of teaching a class. The assertion that assignment marks have a 

direct correlation with final exam and overall marks can be a 

motivating factor for them to perform well in the assignments.  

 

6. FUTURE WORK Moving forward, we propose to 

mine more student attributes that could impact their learning such 

as their personalities and meta-cognitive skills. Other instruments 

such as social aspects using chat rooms, discussions and forums 

that are prevalent in today’s web-based courses can also be mined 

to study their impact on learning.  
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Mining Users’ Behaviors in Intelligent Educational Games  

Prime Climb a Case Study 

   

ABSTRACT 

This paper presents work on applying clustering and association 
rule mining techniques to mine users’ behavior in interacting with 
an intelligent educational game, Prime Climb. Through such 
behavior discovery, frequent patterns of interactions which 
characterize different groups of students with similar interaction 
styles are identified. The relation between the extracted patterns 
and the average domain knowledge of students in each group is 
investigated. The results show that the students with significantly 
higher prior knowledge about the domain behave differently from 
those with lower prior knowledge as they play the game and that 
pattern could be identified early during the interactions. 

 

Keywords 

Intelligent Educational Games, Behavior Discovery, Association 

Rule Mining 

1. INTRODUCTION 
Many Adaptive educational systems apply data mining techniques 
to answer the need for understanding and supporting varying 
learning styles, capabilities and preferences in students[1, 2, 3]. 
Along this line of research, we concentrate on understanding how 
students interact with Prime Climb (PC) as an adaptive 
educational game and whether there is a connection between 
behavioral patterns and attributes (for instance higher 
knowledgeable vs. lower knowledgeable students) in the students. 
Developing an interactive environment in which more number of 
students can learn the desired skills requires a pedagogical agent 
which maintains more accurate understanding of individual 
differences between users and provides more tailored 
interventions. For instance, if a pedagogical agent is capable of 
identifying whether a group of students have higher domain 
knowledge than the other group, it can be possible to leverage 
such information to construct a more accurate user model and 
intervention mechanism.  

Behavioral discovery has been vastly used in educational systems 
but there is limited application in educational games like PC in 
which educational concepts are embedded in the game with 
minimum technical notation to maximize game aspects (i.e. 
engagement) of the system. In PC, students follow an exploratory 
mechanism to explore and understand the methods and practice 
them. This paper describes the first step toward leveraging 
students’ behavioral patterns into building more effective adaptive 
edu-game. The ultimate goal is devising mechanisms for making 
abstract high level meaning from raw interaction data and 
leveraging such understanding for real-time identification of 
characterizing interaction styles to enhance user modeling and 
intervention mechanism in an edu-game like Prime Climb. 

2. Prime Climb Intelligent Edu-game  
Prime Climb (PC) is an intelligent educational game for students 
in grades 5 and 6 to practice number factorization skills. In PC, 
the player and his/her partner climb a series of 11 mountains of 
numbers by pairing up the numbers which do not share a common 
factor [4]. There are two main interactions of a player with PC: 
Making Movements: A player makes one or more movements at 
each time, by clicking on numbered hexagons on the mountains.  
Using Magnifying Glass Tool: The magnifying glass (MG) tool 
is always available for the user to benefit from. The MG is used to 
show the factor tree of a number on the mountains; it is located in 
the top right corner of the game. 

3. Data Collection/User Representation 
For behavior discovery, we used the student’s interaction data 
with the first 9 mountains of 43 students who completed at least 9 
levels (mountains) of Prime Climb. Each user is represented by a 
vector of features. Some of the features are shown in Table 1. 
Each feature is a measure computed based on user’s interactions 
with one or more mountains. In this paper we provide the results 
for two feature sets. 

Mountains-Generic-Movement(1-9) features: Contains features 
calculated based on the users’ movements behavior on mountains 
1 to 9. A “mountain-generic” feature is a feature which is 
calculated across all mountains not individual mountains. 

Mountains-Generic+Specific-MG+Movement(1-4) features: 
Contains features calculated base on user’s movement and MG-
usage behaviors on mountains 1 to 4. A “mountains-specific” 
feature is measured based on data from an individual mountain.  

Table 1: Some Features used for behavior discovery 

Movement Features 
Sum/Mean/STD number of correct/wrong moves across mountains 

Sum/Mean/STD of time on [correct/wrong] moves across mountains 

Mean/STD length of sequence of correct/wrong moves 

Mean/STD time spend per sequence of correct/wrong moves 

Magnifying Glass (MG) Features 
Sum/Mean/STD of MG Usage 

Mean/STD number of [correct/wrong] movements per each MG usage 

4. Clustering and Association Rule Mining 
Prior to performing clustering, feature selection mechanism is 
applied to filter out irrelevant features [5]. Then, the optimal 
number of clusters is determined as the lowest number suggested 
by C-index, Calinski and Harabasz[4] and Silhouette [6] measures 
of clustering validity. Next, the GA K-means (K-means for short) 
clustering algorithm [1], which is a modified version of GA K-
means [7], is applied to cluster the users into an optimal number 
of clusters. 
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Table 2: Extracted Rules for Mountains-Generic-Movement(1-9) 

Rules for Cluster 1[HPK]: (Size: 10/43 = 23.26%)  

Mean-Time-on-Movements(1-9) = Higher, [6/6=100%] 
Mean-Time-Spent-On-Correct-Movements-On-Mountains(1-9) = 
Higher, ([5/5=100%]) 

Rules for Cluster 2[LPK]: (Size: 33/43 = 76.74%) 

Mean-Time-On-Movements(1-9) = Lower,  [33/37=89.19%] 
o STD-Time-On-Wrong-Correct-Moves(1-9) = Lower, 

[33/35=94.29%] 
Mean-Time-On-Consecutive-Wrong-Movements(1-9) = Lower, 
[31/35=88.57%] 
o STD-Time-On-Movements(1-9) = Lower, [31/33=93.94%] 
o STD-Time-On-Correct-Movements(1-9) = Lower,  [31/33=93.94] 

The Hotspot algorithm is used to extract the rules for each 
discovered cluster. The clusters are then compared for statistical 
difference on a measure called cluster’s prior knowledge:  

                          
                                  

              
 

                  is the student’s score on a pre-test taken 
before playing PC. The max, average and standard deviation of 
the scores across the students are 15, 11.7 and 3.29 respectively. 

Behavior Discovery on Mountains-Generic-Movement(1-9) 
Set: Feature selection mechanism selected 18 features out of 
original 30 features. The optimal number of clusters was found to 
be 2. The result of a t-test showed that there is a statistically 
significant difference between the prior knowledge of cluster 1 of 
students (higher prior knowledge (HPK) group) (M=13.0 , 
SD=2.0) and cluster 2 of students (lower prior knowledge (LPK) 
group) (M=11.3 ,  SD=3.45), p=.03 and cohen-d=.53. Table 2 
shows the rules extracted for each cluster using the Hotspot 
algorithm. Each bulleted item in Tables 2 and 3 shows an 
extracted rule. “Higher” and “Lower” are the bins. We considered 
two bins in this study. The bin shows whether the value of the 
feature is located in the higher or lower portion of the feature 
values across students. The cut-off point for splitting a range of 
feature’s values to 2 ranges of lower and upper ranges is 
calculated specifically for the feature in each extracted rule by the 
Hotspot algorithm. In front of each rule is a fraction whose 
numerator and denominator respectively shows the number of 
students in the cluster and total students on which the rule applies.  

The extracted rules show that the students belonging to the HPK 
cluster, spent more time on movements and correct movements 
across 9 mountains. This could indicate that the HPK students 
were more involved in the game and spent more time before 
making a movement. In contrast, the group of LPK students spent 
lower time on making movements as well as wrong movements. 
This could be an indication of less involvement in the game by the 
LPK group. The other patterns show a lower standard deviation 
on time spent on making movements and correct movements for 
LPK group. This indicates that this group of students showed a 

consistent pattern of lack of engagement in the game. 

Behavior Discovery on Mountains-Generic+Specific-
MG+Movements(1-4) Set: This feature set only employs 
interaction data from the first 4 mountains. Such feature set is 
mainly valuable for constructing an online classifier to classify 
students to different classes based on their interaction with the 
game during the gameplay. Table 3 shows the discovered clusters 
and extracted rules. The result of the t-test shows a statistically 
significant difference between cluster1’s prior knowledge 
(M=13.28, SD=1.58) and cluster2’s prior knowledge (M=11.39 , 
SD=3.4), p=.02, cohen-d=.60. Also, around 16% of students 
belong to HPK cluster and 84% belong to the LPK group. 

Table 3: Extracted Rules for Mountains-Generic+Specific-

MG+Movements(1-4) 

Cluster 1[HPK]: (Size: 7/43 = 16.28)  

Mean-Time-On-Movements(4) = Higher, (100% [5/5]) 
Mean-Time-On-Correct-Movements(3) = Higher, (100% [3/3]) 

Cluster 2[LPK]: (Size: 36/43 = 83.72%) 

Mean-Time-On-Correct-Movements(1-4) = Lower, (100% 
[35/35]) 
Mean-Time-On-Movements(1-4)=Lower, (100% [34/34]) 

This result is very similar to the results when data from all 9 
mountains is included. Similar patterns can be seen when more 
interaction data from upper mountains is included in patterns 
analysis. 

5. CONCLUSION/FUTURE WORK 
This paper discusses behavior discovery in PC. To this end, 
different sets of features were defined. The features were 
extracted from interaction of students with PC in the form of 
making movements from one numbered hexagon to another 
numbered hexagon and usages of the MG tool. In order to identify 
frequent patterns of interaction in groups of students, firstly a 
feature selection mechanism was applied to select more relevant 
features from set of all features. Then a K-Means clustering was 
applied to cluster the students into optimal number of clusters. 
Once clusters were built, the Hotspot algorithm of Association 
Rule Mining is applied on the clusters to extract frequent 
interaction patterns. Finally the clusters were compared to each 
other on their cluster’s prior knowledge. When interaction data 
from all 9 mountains is included in behavior discovery, it was 
found that the students with higher prior knowledge were more 
engaged in the game and spent more time on making movements. 
On the contrary, the students with lower prior knowledge, spent 
less time on making movements, indicating that they were less 
involved in the game. Behavior discovery also was conducted on 
truncated sets of features in which only a fraction of interaction 
data was included. The results showed that using the interaction 
data from the first four mountains resulted in groups of students 
that are statistically different on their prior knowledge. 

 As for future work, an online classifier will be built which 
identifies frequent patterns of interaction in the students and 
classify them into different groups in real time and leverages such 
information to build a more personalized user model and adaptive 
intervention mechanism in PC. 
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ABSTRACT 
MOOCs gather a rich array of click-stream information from 
students who interact with the platform. However, without student 
background information, inferences do not take advantage of a 
deeper understanding of students’ prior experiences, motivation, 
and home environment. In this poster, we investigate the 
predictive power of student background factors as well as student 
experiences with learning materials provided in the first MITx 
course, “Circuits and Electronics.” We focus on a group of survey 
completers who were given background questions, and we use 
multiple regression methods to investigate the relationship 
between achievement, online resource use, and student 
background.  Online course providers may be able to better tailor 
online experiences to students when they know how background 
characteristics mediate the online experience.  
Keywords 
MOOCs, social capital, regression, online learning 

1. RATIONALE 
Massive Open Online Courses (MOOCs) enroll thousands of 
students through numerous learning platforms. edX, which 
offered its first class “Circuits and Electronics” (6.002x), in the 
spring of 2012, drew students from nearly every country in the 
world [5].  The courses’ free, open-enrollment structure appeals to 
a diverse set of students who can use learning resources as they 
please.  But while on-campus instructors have the opportunity to 
learn about their students—their experience growing up, their 
educational background, etc.—as they interact with them in the 
classroom, MOOC instructors do not have that luxury.  

MOOC students, however, are unique individuals. They are 
motivated by different incentives to sign up for the course, they 
come from different home environments, and they speak different 
languages. As part of a study on 6.002x, we gathered additional 
background information on students in the first edX class in order 
to understand the simultaneous impact of time spent on different 
course components and a student’s background characteristics. 

2. RESEARCH QUESTION 
To provide a more complete picture of the student factors that 
relate to achievement, we ask, “What student factors predict 
higher achievement, all else equal?”  In other work, we have 
explored the impact of resource use (e.g., watching videos, 
reading the textbook) on achievement in our analyses, but here we 
investigate whether the inclusion of demographic background 
factors as covariates changes the relationship between resource 
use and achievement. 

3. CONCEPTUAL FRAMEWORK 
We apply a social capital lens to our work. While the inputs of 
formal schooling are important, education researchers have also 
noted the importance of the acculturation and social preparation to 
which students are differentially exposed prior to entering school 

[see, for example, 3, 6].  Once students enroll, the norms and 
behaviors they understand as beneficial may be differentially 
rewarded within the school system [1, 8]. The tools that serve 
more privileged groups of students in traditional settings (e.g., 
linguistic capital, knowledge of cultural references, highly 
educated role models) may also be relevant for online learning.  

Distance learning classes have largely been characterized by 
learners looking for flexibility, cost-savings, and a familiar 
electronic platform [9, 5]. A larger portion of these students has 
been female, and many of them have been “non-traditional” 
students.  While this suggests the online context may better 
support students who are underserved in traditional STEM 
classrooms, initial results from more recent online learning 
programs suggest there are no differential gains for underserved 
subgroups [2].  In fact, another study notes that the “achievement 
gap” between traditionally higher- and lower-performing students 
may actually be widened due to an online course experience [10]. 

4. DATA 
Data come from the students in 6.002x who completed the exit 
survey. While the survey was announced specifically for course 
completers, the link to the survey was open on the website. We 
find ~800 completers did not receive a certificate in the course.    
It is important to note these data were gathered using matrix 
sampling to mitigate non-response due to survey fatigue.  We 
impute missing responses using chained equations [7]. 
Missingness ranges from 59% to 85% of the over 7,000 students 
who completed the survey.  

Figure 1 illustrates the spread of total points awarded to survey 
completers using a “partial credit” model.  In this model, the 
number of points students received for a right answer was 
dependent upon the number of attempts they made.  (Students 
were allowed unlimited attempts to answer homework and lab 
questions, but only three attempts on the midterm or final.) The 
bimodal distribution illustrates the “two-population” nature of our 
sampling frame: some students who earned a certificate, and 
others who followed the course but did not earn a certificate. 

 
Number of points awarded, partial credit 

Figure 1.Survey completer numbers across performance levels 
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5. RESULTS 
For the subset of students completing surveys, once we control for 
key student background information, we immediately find the 
impact of certain resources on students’ total score to be 
diminished.  In addition, when we add controls such as score on 
the first homework (proxy for prior ability), and when we control 
for the students’ country, we find that we remove more bias. This 
may result, for example, from correlation between initial score 
and subsequent study strategies such as referencing previous 
homeworks or viewing relevant questions on the discussion 
forum. 

Table 1. Additive models predicting partial credit score, OLS1 

Covariate “Naïve” 
estimate 

Control for 
first HW 

Controls for 
country (not listed) 

Homework 4.41  
(0.28) *** 

3.70 
(0.26) *** 

3.71 
(0.27) *** 

Labs 0.61 (0.34)  0.45 (0.32) 0.52 (0.32) 
Lecture 

problems 
0.26 
(0.10) ** 

0.09 
(0.09) 

0.10 
(0.09) 

Lecture 
videos 

0.38 
(0.13) ** 

0.17 
(0.13) 

0.09 
(0.13) 

Tutorials 0.11 (0.06) 0.09 (0.06) 0.07 (0.06) 
Book -0.26 

(0.07) *** 
-0.23 
(0.07) ** 

-0.24 
(0.07) *** 

Wiki -0.64 
(0.07) *** 

-0.60 
(0.07) *** 

-0.58 
(0.07) *** 

Discussion 
board 

0.30 
(0.12) ** 

0.39 
(0.11) *** 

0.33 
(0.11) ** 

Female -1.11(1.80) -1.20 (1.88) -1.12 (1.88) 
Parent 

engineer 
2.16 
(0.81) ** 

1.86 
(0.79) ** 

1.91 
(0.79) ** 

Worked with 
other offline 

2.05 
(0.66) ** 

1.96 
(0.65) ** 

2.11 
(0.71) ** 

Teach EE  -0.01(0.56) 0.08 (0.58) 0.26 (0.58) 
Took diff. 
equations 

4.72 
(0.56) *** 

4.44 
(0.48) *** 

4.56 
(0.55) *** 

First HW   0.57  
(0.03) *** 

0.55 
(0.03) *** 

5.1 Course resources 
For survey completers, time spent on homework was a consistent 
significant predictor of a higher overall score.  Even controlling 
for initial performance, spending more time on the homework was 
related to gains of approximately 1/3 of a standard deviation on 
the total points for the class (a small-to-medium effect size in 
educational research). More time spent on the discussion board 
was also related to a higher score. However, more time spent on 
the book or the course wiki was related to lower achievement.  

5.2 Initial score 
We construct a control covariate of “firstpoints,” a rough proxy 
for initial proficiency with material relevant to the course.  In the 
second and third models given above (additive), the inclusion of 
this control alters the significance of the covariates for time spent 

                                                                    
1Note: resource use covariates given in log-seconds. As noted 
above, partial credit is given for multiple attempts at a question, 
though results are consistent when full points were awarded 
regardless of the number of attempts.  This was the policy used by 
the instructors in determining grades. 
* p <0.05, ** p<0.01, ***, p<0.001 

on lecture problems and time spent on lecture videos.  This may 
indicate that students who come into the course with different 
abilities use these resources in different ways. However, including 
this control does not change which demographics are significant. 

5.3 Demographics 
The impact of key demographic background factors is consistent 
across models, including the fully specified model with all 
covariates, which allows for a fixed-effect for the student’s 
country of access. Individual factors such as gender and whether 
the student teaches electrical engineering are not related to 
achievement.  On the other hand, some background factors are 
strongly related to performance. Specifically, having taken 
differential equations predicted a higher score, even controlling 
for the first assignment.  Similarly, students who reported offline 
collaboration also scored higher. This might reflect the same 
positive role of collaboration as participation in the discussion 
forum. 

6. DISCUSSION AND IMPLICATIONS 
The inclusion of demographic variables for MOOC users adds 
significant, practically important covariates to predictions of 
achievement based on individual information. While online course 
creators may already have a wealth of student data from click-
stream information, solely predicting performance based on 
observed behaviors misses important explanatory factors and a 
deeper understanding of why students may behave in different 
ways or experience differential utility of online resources. As 
MOOC offerings grow, course designers may further study how to 
tailor the online experience and support the diverse backgrounds 
of a world of students. 
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ABSTRACT 
In this paper we describe the development of a detector of 
seriousness of pursuit of a particular goal in a digital game. As 
gaming researchers attempt to make inferences about player 
characteristics from their actions in open-ended gaming 
environments, understanding game players’ goals can help 
provide an interpretive lens for those actions. This research uses 
Classification and Regression Tree methodology to develop and 
then cross-validate features of game play and related rules 
through which player behavior about pursuing a goal of 
completing a quest can be classified as serious or not serious. 

Keywords 

Detector, goal, stealth assessment, games, educational data 
mining. 

1. INTRODUCTION 
Many recently-developed online learning environments provide 
open spaces for students to explore. At the same time, there is 
growing interest in stealth assessment [5], or the use of data 
resulting from students’ every day interactions in a digital 
environment to make inferences about player characteristics.  

This use of data from natural activity in open-ended environments 
presents a challenge for interpretation. Much of the evidence we 
wish to use to assess skill proficiency and player attributes 
assumes that individuals are working towards the goal of 
completion of sub-tasks or levels within a game. However, game 
players often appear to be pursuing differing goals [2], which 
provide different lenses for interpreting player behavior based on 
data in log files for games. For example, behavior might be 
categorized as “off-task” if a player is pursuing a quest but “on-
task” if a player has a goal of exploring the environment. If we 
are interested in using evidence contained in game log files to 
assess constructs such as persistence, we have to be careful not to 
identify a player as lacking persistence when in fact they were 
very persistently pursuing a different goal.  

This paper describes the creation of a detector for a specific 
goal—serious pursuit of completion of quests in a game. The 
approach taken in this paper builds on research regarding 
detectors for gaming the system [1], which use machine learning 
to identify features and rules to classify behavior into discrete 
categories. In this paper, the focus was on whether a player in the 
online game Poptropica® is seriously pursuing the goal of 
completing quests in the game. The ability to successfully 
categorize players based on whether or not they are pursuing the 
goal of quest completion is likely to help with interpretation of 
other actions players pursue in the game. This paper discusses the 
selection of possible features or indicators of goal seriousness, the 
process of detector creation, and the analysis of the effectiveness 
of the detector in correctly classifying play.     

2. DESCRIPTION OF THE 
ENVIRONMENT 
Poptropica® is a virtual world in which players explore “islands” 
with various themes and overarching quests that players can 
choose to pursue. Players choose which islands to visit and the 
quests generally involve completion of 25 or more steps (for 
example, collecting and using assets) that are usually completed 
in a particular order. Apart from the quests, players can talk to 
other players in highly scripted chats (players can only select 
from a pre-determined set of statements to make in the chat 
sessions), play arcade-style games head-to-head, and spend time 
creating and modifying their avatar.  

Like with most online gaming environments, the Poptropica® 
gaming engine captures time-stamped event data for each player. 
On an average day actions of over 350,000 Poptropica® players 
generate 80 million event lines.  

3. DETECTOR DEVELOPMENT 
Prior to building a machine detector of goal-seriousness, it was 
necessary to establish a human-coded standard from which the 
computer could learn and verify rules. A total of 527 clips were 
coded by two raters as being either “serious” or “not serious” 
about the goal of completing a quest. Cohen’s Kappa [3] between 
the two raters for the full set of non-training clips was .72; all 
disagreements were discussed until accord was reached.  

Elements of the log files hypothesized to be indicative of goal 
directedness were identified as features including: (1) total 
number of events completed on the island, (2) total amount of 
time spent on the island, (3) total number of events related to 
quest-completion, (4) number of locations (scenes) visited on the 
island, (5) number of costumes tried on, and (6) number of 
inventory checks. The number of costumes and number of 
inventory checks were hypothesized to be negatively correlated to 
completing quests.  

Researchers employed a Classification and Regression Tree 
(CART) methodology to create the detector. The process of the 
creation of decision trees begins with the attempt to create 
classification rules until the data has been categorized as close to 
perfectly as possible, however, this can result in overfit to the 
training data. The software then tries to “relax” these rules, in a 
process called “pruning” to balance accuracy and flexibility to 
new data. This research employed the J48 algorithm [4] for 
pruning. The results of the analyses were evaluated using (1) 
precision, (2) recall, (3) Cohen’s kappa, and (4) A’. 

4. RESULTS 
The final decision tree is displayed in Figure 1. Each branch 
provides classification rules and an ultimate classification 
decision at the end. The red boxes end paths that indicate 
individuals non-serious about the goal of quest completion while 
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the green boxes indicate serious goal directed behavior. So, for 
example, following the left-most path, we find that people who 
visit 4 or fewer scenes and complete 2 or fewer quest events were 
classified as not seriously goal-directed. This rule correctly 
classified 335 clips and misclassified 18 of the 353 total clips that 
followed this pattern. Following other branches reveals different 
rules, all leading to classifications of seriously or not seriously 
goal-directed. 

 
Figure 1. Final Decision Tree 

Cross-validation was completed by having half the sample serve 
as the training sample and the other half as the test sample, and 
then switching the halves. The detector achieved good 
performance under cross-validation. Human raters identified 167 
of the 527 clips as indicating serious goal-directed behavior. The 
detector identified 151 clips as serious, out of which 119 agreed 
with the human raters and 32 did not (see Table 1). This resulted 
in a precision score of .79 and a recall score of .71. The Kappa 
value was .63, indicating that the accuracy of the detector was 
63% better than chance. The A’ was .93, indicating that the 
detector could correctly classify whether a clip contained serious 
goal-directed behavior 93% of the time.  

Table 1. Correctness of Detector Classification 

  Detector 
  Not Serious Serious 

H
um

an
 Not Serious 328 32 

Serious 48 119 

 

In order to further investigate where the detector had difficulty 
with accuracy, we compared places where the detector disagreed 
with the raters to places where the raters had initially disagreed 
with each other. Although the human raters eventually came to an 
agreement about the classification of the clip, their initial 
disagreement was likely an indication of an ambiguous clip. As 
displayed in Table 2, when the human raters agreed, the detector 
also agreed with them 89% of the time. However, when the 
human raters disagreed, the detector disagreed with their final 
rating 49% of the time.  

Table 2. Cross-tabulation of computer and human agreement 

 Humans Disagree Humans Agree 

Computer/ 
Humans Disagree 

49.15%  
(N=29) 

10.90% 
(N=51) 

Computer/ 
Humans Agree 

50.85% 
(N=30) 

89.10% 
(N=417) 

 

5. DISCUSSION AND CONCLUSIONS 
The purpose of this paper was to describe the creation of a 
detector of seriousness of goal pursuit in an online game. The 
goal a player is pursuing in a game or other open-ended online 
environment can help provide context and important 
interpretation of player actions within the system. The results here 
suggest that an automated detector can be created that can reliably 
identify whether a participant is seriously pursuing a goal of 
completing a game quest. The methodology discussed in this 
paper opens up the possibility of gaming engines detecting and 
prompting players to adjust their approach (for example, 
becoming more goal directed) in real time.  

We suggest that this type of analysis of player goals may have 
advantages over other attempts to measure and assess constructs 
based on player behavior captured in log files. Algorithms such as 
the one discussed in this paper allow for efficient categorization 
of thousands of players and millions of actions that would not be 
humanly feasible. In other games, a similar process could be 
followed by 1) identifying potential goals, 2) identifying potential 
indicators of those goals, 3) hand coding a small set of log files as 
pursuing on of those goals or not, and 4) carrying out the 
Classification and Regression Tree analysis. The identification of 
player goals can help us understand player actions in games and 
extend our ability to make inferences about player characteristics. 
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ABSTRACT 

Intelligent Tutoring Systems (ITS) have been proven to be 

efficient in providing students assistance and assessing their 

performance when they do their homework. Many research 

projects have been done to analyze how students’ knowledge 

grows and to predict their performance from within intelligent 

tutoring system.  Most of them focus on using correctness of the 

previous question or the number of hints and attempts students 

need to predict their future performance, but ignore how they ask 

for hints and make attempts. In this paper, we build a Sequence of 

Actions (SOA) model taking advantage of the sequence of hints 

and attempts a student needed for previous question to predict 

students’ performance. We used an ASSISTments dataset of 66 

students answering a total of 34,973 problems generated from 

5010 questions over the course of two years. The experimental 

results showed that the Sequence of Action model has reliable 

predictive accuracy than Knowledge Tracing. 

Keywords 

Knowledge Tracing, Educational Data Mining, Student Modeling, 

Sequence of Action model. 

1. INTRODUCTION 
Understanding student behavior is crucial for Intelligent Tutoring 

Systems (ITS) to improve and to provide better tutoring for 

students. For decades, researchers in ITS have been developing 

various methods of modeling student behavior using their 

performance as observations. One example is the Knowledge 

Tracing (KT) model (Corbett and Anderson, 1995), which uses a 

dynamic Bayesian network to model student learning. But KT 

focuses attention on students’ performance of correctness, 

ignoring the process a student used to solve a problem. Many 

papers have shown the value of using the raw number of attempts 

and hints (Feng, Heffernan and Koedinger, 2009, Wang, 

Heffernan 2011). However, most EDM models we are aware of 

(with one notable exception of Ben Shih, et al. (2012)) have 

ignored the sequencing of action. 

Consider a thought experiment. Suppose you know that Bob 

Smith asked for one of the three hints and makes one wrong 

answer before eventually getting the question correct. What if 

someone told you that Bob first made an attempt then had to ask 

for a hint compared to him first asking for a hint and then make a 

wrong attempt? Would this information add value to your ability 

to predict whether Bob will get the next question correct? We 

suspected that a student who first makes an attempt might be a 

better student.  

In this work, we define a Sequence of Action (SOA) model that 

uses the information about the action sequence of attempts and 

hints for a student in previous question to better predict the 

correctness of next question. In SOA, students’ sequences of 

actions are divided into five categories: One Attempt, All 

Attempts, All Hints, Alternative Attempt First and Alternative 

Hint First. The results of tabling methods indicate that it is better 

to attempt the problem first rather than ask for a hint. Another 

highlight of this paper is that we used the next question’s percent 

correct from the tabling method as a continuous variable to fit a 

binary logistic regression model for SOA. The experimental 

results show that the SOA outperforms KT in all three metrics 

(MAE, RMSE, AUC).    

2. Sequence of Action Model 

2.1 Tabling Method 
There are many different sequences of actions. Some students 

answered correctly only after one attempt and some students kept 

trying many times. Some students asked for hints and made 

attempts alternatively, which we believe that they were trying to 

learn by themselves. In the data, there are 217 different sequences 

of actions. We divided them into five bins: (1) One Attempt: the 

student correctly answered the question after one attempt; (2) All 

Attempts: the student made many attempts before finally get the 

question correct; (3) All Hints: the student only asked for hints 

without any attempts at all; (4) Alternative, Attempt First: the 

students asked for hints and made attempts alternatively and made 

an attempt at first; (5) Alternative, Hint First: the students asked 

for hint and made attempts alternatively and asked for a hint first.  

We used 34,973 problem logs of sixty-six 12-14 year-old, 8th 

grade students participated in one class from ASSISTments, 

which is an online tutoring system giving tutorial assistance if a 
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student makes a wrong attempt or asks for help. Questions in each 

problem set are generated randomly from several templates and 

there is no problem-selection algorithm used to choose the next 

question. Table 1 shows the sequence of action division and some 

examples in each category, and the correct percent of next 

question from tabling method (Wang, Pardos and Heffernan2011). 

Notice that each sequence ends with an attempt because in 

ASSISTments, a student cannot continue to next question unless 

he or she fills in the right answer of the current problem. In Table 

1, ‘a’ stands for answer and ‘h’ stands for hint. For example, ‘aha’ 

indicates a student makes an attempt and then asks for a hint 

before finally types the right the answer. 

Table 1. Sequence of Action Category and Examples  

Sequence of Action 

Bin 

Examples Next Question 

Correct Percent 

One Attempt (a) a 0.8339 

All Attempts (a+) aa, aaa, …, 

aaaaaaaaaaaa 

0.7655 

All Hints ( h+) ha, hha,…, 

hhhhhhha 

0.4723 

Alternative, Attempt 

First (a-mix) 

aha, aahaaha,…, 

aahhhhaaa 

0.6343 

Alternative, Hint First  

(h-mix) 

haa, haha,…, 

hhhhaha 

0.4615 

 

From the tabling results, shown in Table 1, we can see that the 

percent of next-question-correct is highest among students only 

using one attempt since they master the skill the best. They can 

correctly answer the next question with the same skill. For 

students in All Attempts category, they are more self-learning 

oriented, they try to learn the skill by making attempts over and 

over again. So they get the second highest next-question-correct 

percent. But for students in the All Hints category, they do the 

homework only relying on the hints. It is reasonable that they 

don’t master the skill well or they don’t even want to learn, so 

their next-question-correct percent is very low. The alternative 

sequence of action reflects students’ learning process. Intuitively, 

these students have positive attitude for study. They want to get 

some information from the hint based on which they try to solve 

the problem. But the results for the two alternative categories are 

very interesting. Though students in these two categories 

alternatively ask for hints and make attempts, the first action 

somewhat decided their learning altitude and final results. For 

students who make an attempt first, if they get the question 

wrong, they try to learn it by asking for hints. But for students 

who ask for a hint first, they seem to have less confidence in their 

knowledge. Although they also make some attempts, from the 

statistics of action sequence, they tend to ask for more hints than 

making attempts. The shortage of knowledge or the negative study 

attitude makes their performance as bad as the students asking 

exclusively for hints first. 

2.2 SOA Binary Logistic Regression Model 
In this section we build a logistic regression model based on 

sequence of action to better predict students’ performance. In this 

model, we want to use students’ current sequence of action to 

predict their performance on next question in same skill. The 

dependent variable is students’ actual performance on a question, 

correct or incorrect, and the independent variables are categorical 

factor Skill_ID and continuous factor Next_Question_Correct_ 

Percent from Table 1, which indicates the sequence of action of 

current question. For example, if sequence of action of current 

problem is “hhhhaha”, we use 0.4615 its value. We equally split 

66 students into six groups, 11 students in each, to run 6-fold 

cross validation. The SOA and KT model are trained on the data 

from every five groups and are tested on the sixth group.  

Table2 shows experimental result of three metrics: Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE) and Area Under 

ROC Curve (AUC). Lower values for MAE and RMSE indicate 

better model fit while higher values for AUC reflect a better fit. 

The values are calculated by averaging corresponding numbers 

obtained in each experiment of the 6-fold cross validation.  The 

raw data and results for the six groups is available at this website: 

(http://users.wpi.edu/~lzhu/SOA/DataSet_and_Results.rar). 

Table 2. Prediction accuracy of KT, SOA and Ensemble 

 MAE RMSE AUC 

KT 0.3032 0.3921 0.6817 

SOA 0.2900 0.3813 0.6841 

t-test p value 0.0000 0.0000 0.5286 

 

Although most numbers seem very close, SOA outperforms KT in 

all three metrics. To examine whether the difference were 

statistically reliable, we did a 2-tailed paired t-test based on the 

result from the cross validation. The last row in Table 2 shows 

that the differences are significant in both MAE and RMSE. 

3. CONTRIBUTIONS 
In this work, we presented a Sequence of Actions (SOA) model, 

in which students’ action of asking for hints and making attempts 

are divided into five categories shown in Table 1. The result of a 

tabling method shows that students who make an attempt first did 

better on next question with the same skill than those who ask for 

a hint first. The result from logistic regression shows that paying 

attention to the sequence of action increases prediction accuracy 

of students’ performance. 
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ABSTRACT
Choosing a suitable classifier for a given data set is an im-
portant part of a data mining process. Since a large variety
of classification algorithms are proposed in literature, non-
experts, as teachers, do not know which method should be
used in order to achieve a good pattern. Hence, a recom-
mender service which guide on the process or automatize it
is welcome. In this paper, we rely on meta-learning in order
to predict the best algorithm for a data set given. More
specifically, our work analyses what meta-features are more
suitable for the problem of predicting student performance
and also evaluates the viability of the recommender.

1. INTRODUCTION
One of the most important tasks in the process of knowledge
discovery (KDD) is the selection of the algorithm that gets
the best performance to solve a given problem. An approach
based on meta-learning, able to automatically provide guid-
ance on the best alternative from a set of meta-data, can be
followed to achieve this goal.

We consider that this approach is suitable for educational
context in which most teachers are not experts in data min-
ing, but they do need to have objective information that
allows them to enhance the teaching-learning process. Our
ultimate goal is to automate the whole KDD process so that
teachers should only be concerned to define the data set
and a software service, supported by a recommender of al-
gorithms, which generates the most accurate classification
model based on the more relevant features of the data set.

In our work, we understand meta-learning as the automatic
process of generating knowledge that relates the performance
of machine learning algorithms to the characteristics of the
data sets. We propose a number of features and discard
others for their use in educational field. In our case study
we generated 81 data sets from 2 virtual courses taught in
the University of Cantabria and build over 700 classifiers us-
ing twelve different classification algorithms. Then we cre-
ated three meta-data sets with the intrinsic characteristics
extracted from each original data sets and define the algo-
rithm with higher accuracy as class attribute. One of these
data sets was used to generate our recommender.

There are different approaches about what features can be
used as meta-data. In most cases measurable properties of

data sets and algorithms are chosen. For instance, some au-
thors [3] utilize general, statistical and information-theoretical
measuresextracted from data sets whereas others as use land-
markers as in [4].

This paper is not intended to design a database to store data
mining processes as there is already one available [1], but
its main aim is to assess the feasibility of our proposal and
propose a set of measurable features on educational data sets
which can help us to choose automatically the classification
algorithm with certain reliability.

We must also mention several research projects have tar-
geted meta-learning in recent years, as e-LICO project [2].

2. EXPERIMENTATION
In our experiments, we used data from 2 virtual courses:
a multimedia course taught during three academic years
(2008-2010) hosted in Blackboard and a programming course
taught in 2009 hosted in Moodle. All data sets gather the
activity performed by learners in each course with their cor-
responding numeric mark.

In order to have enough data sets for our experimentation,
we generated 81 data sets from them. First we created 3
data sets with data from multimedia course establishing the
class attribute with values pass or fail, and another one as
the union of these three. The same process was carried
out with the programming course. Next, we generated 4
discretized data sets from the previous bi-class data sets
using PKIDiscretize from Weka, and 4 data sets more but
these partially discretized. Besides, we created two data
sets with 4 classes (fail, pass, good, excellent) and one with
5 classes (drop-out, fail, pass, good, and excellent).

Next, we generated 60 data sets by adding to all original
data sets a 10, 20, 30 and 40% of missing values. And finally,
we created 4 data sets more by applying SMOTE algorithm
on 2 of our original data sets with the following proportion
of balancing class: 80-20%, 85-15%, 70-10% and 90-10%.

Models generation was performed by applying 12 classifi-
cation algorithms on 63 data sets. The algorithms cho-
sen were: NaiveBayes, BayesNet, NearestNeighbours, Ad-
aBoost, OneR, Jrip, Ridor, NNge, J48, RandomForest, OneR
and SimpleCart. We selected as features the number of at-
tributes and instances in the data set, the number of cate-
gorical and numerical attributes, the type of data in the data
set (numeric, nominal or mixed) and the number of classes.
Regarding quality, we chosen completeness (percentage of
null values) and finally, we used class entropy in order to

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 318



www.manaraa.com

establish if the class was balanced or not.

Next, we generated three data sets with the mentioned meta-
features as attributes and the algorithm which achieved bet-
ter performance as class value. The ”md1” meta-data set
contains an instance per data set, we only considered the
best algorithm. If two or more algorithms achieved the same
accuracy, all of them were included (84 instances). The
”md2” meta-data set follows the same criteria as ”md1”
but in this case, we only used the models obtained by J48,
JRIP, NäıveBayes and BayesNet. Finally, ”md3” meta-data
set contains as many instances as models achieved an accu-
racy whose statistical difference assessed by t-test was lower
than 5%, with OneR as base algorithm.

In order to evaluate what meta-features are more useful to
build the recommender, we applied a filtering algorithm of-
fered byWeka, ClassifierSubSetEval. This algorithm returns
how important the features are to perform a prediction task.
It requires a base classifier as parameter, so it focuses on
what attributes are more useful for a single classifier. Since
we are focused on offering a recommender to non-experts in
data mining, the base classifier used by ClassifierSubSetE-
val should be a prediction model easy to understand. We
chosen two algorithms, J48 and NäıveBayes with the aim of
testing two different approaches. The results when Classi-
fierSubSetEval was run are shown in Table 1, using as search
algorithm LinearForwardSelection . The importance of the
features is measured by means of an scale from 0 (useless)
to 10 (very useful).

Analysing the results we can say that the degree of class
imbalance, the number of instances and the completeness
have a high significance. The other feature that seems to be
important is the number of attributes. The rest of features
are significant depending on the classification algorithm. For
instance, the type of data is quite important for J48, but
meaningless for NäıveBayes.

Table 1: Recommended features by ClassifierSubSetEval
md1 md2 md3
NB J48 NB J48 NB J48

#N Instances 9 5 8 10 8 8
#N Attributes 7 9 9 2 6 8

#N Numeric att. 1 3 0 4 5 5
#N Nominal att. 9 3 0 0 1 6
Completeness 10 10 8 10 7 9
#Type att. 7 3 6 4 5 4
#N Classes. 6 2 1 9 3 5
Is balanced? 9 8 9 7 3 3

Next, we built models using the three meta-data sets gener-
ated for this experimentation. The more accurate model was
achieved with ”md2”. This is due to the class attribute has
4 possible values in a data set with 80 instances, whereas, in
”md1” and ”md3”, it has 12 different values with a slightly
higher number of instances. Moreover, most models built
from ”md1” and ”md3” were over-fitted.

Figure 1 depicts a model built with ”md2” using J48. As
expected, according to previous features analysis, it uses
the type of data, the number of instances, the number of
attributes and the completeness to build the model. From
81 data sets, 63 were used for building our recommender
and the rest for testing. It achieved an accuracy of 68.75%
which is a little lower than those obtained by classifiers built

Figure 1: J48 Recommender

for this experimentation (range from 55% to 76%).

3. CONCLUSIONS
We have analysed which features are more suitable for de-
scribing educational data sets aimed at predicting student
performance. We have also shown that construction of a
recommender system following a meta-learning approach is
feasible.

In a near future we will work with other kind of meta-
characteristics such as the mentioned landmarkers and set-
ting parameters of the algorithms. Of course, other quality
measures of model, in addition to accuracy, will be consid-
ered.
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ABSTRACT
As an educational institute grows an increase in the number
of programs each with individual modules and learning ob-
jects can be seen. Learning environments provide a struc-
tured environment that can provide an additional level of
insight into the relationship between content.

This paper outlines the identification of similarities at a
Learning Object, Module and Program Level utilizing these
inherent structures. Once generated, these results are then
visualized in graph form providing an insight into the over-
lap between course material.

Keywords
Similarity Detection, Visualization, Data Structures, Moo-
dle

1. INTRODUCTION
As institutions grow the replication of course material across
departments also grows. This can be seen on a module level
where subjects taught are quite similar but also on a cross
department level whereby courses may not be directly linked
but can have some unseen commonalities.

As a solution to this a tool was developed to extract the hi-
erarchy and structures of the learning environment created
by educators during their daily use. Similarity measures be-
tween documents are then calculated and can be used along
with the gathered structural information to aid the process
of narrowing and selecting applicable learning objects with
similar content. These results are then visualized in graph
from to aid the process of similarity detection.

2. BACKGROUND
Over the last number of years various different search tools
[1] have been created that utilize the tagging of learning

objects [2] through the use of metadata [3] and simple string
matching. These approaches, however useful, do not take
into consideration any of the prior knowledge that can be
extracted from the environment to aid this search process.
Each of these search queries is also limited to the relevancy
and accuracy of the search terms entered by the user which
often may not be as specific and relevant as required [4].

3. SYSTEM OVERVIEW
The Tree Generator creates a tree based structure of Moo-
dle including meta data. A second tool titled the Moodle
Crawler downloads each file from the Moodle instance lo-
cally and associates the Tree record ID to each file. Each
file then converted into their HTML counter part and added
to the local tree. Similarities between the data are then
generated using the free and open source data mining tool
RapidMiner [5]. A graph is then generated using a custom
operator and viewed using Gephi [6].

Figure 1 below provides an overview of the generation pro-
cess from start to finish.

Figure 1: System Process Overview

3.1 Dataset
A live Moodle installation was used consisting of 30 modules
with over 300 individual learning objects in 2 departments.
These modules were in the fields of Information Technology
and Business Administration. A number learning objects
contained in these modules contain similar themes and could
provide a strong baseline for similarity assessment.

4. VISUALIZATION
During the visualization process a number of different rela-
tionships between nodes were created by the Tree Builder.
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Although used, these relationships were filtered out from the
generated graphs to create a clearer visualization.

Graph 1: Single Program Similarity
Figure 2 shows the result of the graph generation process af-
ter a single program was selected. This single program con-
tained three different modules, each with N number of differ-
ent learning objects. In this graph, three different modules
can be seen. Each modules learning objects were grouped
close together to aid readability. Each different edge thick-
ness outlines the higher the similarity to each different learn-
ing object.

Figure 2: All learning objects inside each module
(outlined by different colors)

Graph 2: Single Program Similarity - Filtered
Figure 3 identifies the similarity between programs. A filter
was used to remove a number of different connections from
the graphic. Each node represents individual learning ob-
jects in a program (identified by colour). Clear connections
between content can be identified.

Figure 3: Learning objects in modules with empha-
sis on interesting edges

Graph 3: Full Moodle
To provide an overall view of the system a graph was cre-
ated showing all of the modules inside the moodle instance.
Each module is identified by different colors. Each of these
modules consist of N number of different learning objects.
Figure 4 shows a detailed graph was produced showing a
number of different connections between modules.

Figure 4: Similarities between all modules in a Moo-
dle instance

5. CONCLUSIONS
This paper outlined the process of visualizing the similarities
between content in a Moodle installation on a learning ob-
ject, module and program level using custom tools to utilize
the hierarchal structures of Moodle.

Once visualized, clear connections can be identified between
learning objects and modules. The inherent tree based struc-
tures behind each node proved to help provide an additional
level of context during the similarity generation process, al-
lowing for a natural narrowing of the data set.
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ABSTRACT 
This study suggests that the data generated by intelligent tutoring 
systems can be used to accurately predict end-of-year 
standardized state test scores. A traditional model including only 
past performance on the test yielded an R2 of 0.38 and an 
enhanced traditional model that added current class average 
improved predictions (R2=0.50). These models served as baseline 
measures for comparing an ITS model. Logistic regression models 
that include features such as hint percentage, average number of 
attempts and percent correct overall improved the R2 to 0.57. The 
predictive power of the data is as effective with only a few months 
of use. This lends support for the increased use of the systems in 
the classroom and for nightly homework. 

Keywords 
Intelligent tutoring system, homework, standardized test, 
prediction, regression, classification, decision tree 

1. INTRODUCTION 
With the introduction of the No Child Left Behind Act in 2001, 
assessing student performance became a significant focus of 
schools. With the high-stake nature of these tests, it is imperative 
to identify at-risk students accurately and as early in the year as 
possible to provide time for interventions. Intelligent tutoring 
systems (ITS) allow teachers to evaluate student performance 
while students are learning. Furthermore, the ITS provides data to 
teachers which can be used to predict standardized-state-test 
scores (Feng, et al. 2006, Feng, et al. 2008).  Specifically, help 
request behavior is effective at predicting student proficiency 
(Beck et al. 2003).  

While the above studies are promising, the content used to 
generate the data was very narrow, consisting of previously 
released state test questions. Therefore the material mapped 
directly to the test that was being predicted. The present study 
uses ASSISTments (www.assistments.org), a web-based 
intelligent tutoring system, which allows teachers to enter their 
own content in addition to using certified problem sets.  This 
content can include in-class warm ups, challenge problems, and 
questions from the textbook. Some of the problem sets may 
include tutoring in the form of hints or scaffolding while others 
include correctness only feedback with varying numbers of 
attempts allowed. What impact does this diverse data have on the 
previously established usefulness of ITS in predicting end-of-year 
test scores? The present research attempts to determine if the data 
collected from student use of an ITS over an entire school year 
accurately predicts student performance on a standardized-state-
test.  

2. APPROACH 
For the 2010-1011 school year, 129 students in a suburban middle 
school used ASSISTments as part of their 7th grade math class. 
The different types of assignments completed during the course of 
the year include classwork, homework and assessments. Student 
data from August through May was used to predict MCAS 
(Massachusetts Comprehensive Assessment System) scaled score 
and to classify performance. A smaller date range (August 
through October) was also considered to determine if the model is 
equally effective with less data, earlier in the school year.  

2.1 Modeling 
The traditional model most schools use to predict 7th grade 
MCAS scaled scores is a student’s 6th grade MCAS score. An 
enhanced traditional model added student’s average. These 
models serve as a baseline to compare the ITS models for the 
different date ranges. Based on the previous literature that 
successfully predicted state test scores from an ITS, many 
variables were constructed to be included in the model (number of 
questions answered, percent correct on first attempt, percentage of 
hints used, and average number of attempts per question).  

For predicting a student’s 7th grade MCAS scaled score, linear 
regression was used for both the traditional and enhanced 
traditional models. Whereas step-wise linear regression models 
were generated for both date ranges. The models were compared 
using R2 and accuracy. To measure the accuracy of each model, 
the predicted score was used to classify each student (advanced, 
proficient, needs improvement, warning) and this classification 
was compared to the actual classification on the 7th grade MCAS. 

For classifying purposes, decision trees were generated to predict 
specific performance level for each time frame as well. Cross 
validation was used to assess the accuracy of the models.  

3. RESULTS 
Students who were not enrolled in the course for the entire time 
period considered in this study were not included in the analysis 
(n=8). Finally, students whose 6th or 7th grade MCAS scores were 
not available were not included (n=4).  

3.1 Prediction 
Traditionally, prior performance on a standardized test is used to 
predict future performance on the same test. A linear regression 
using only 6th grade MCAS score to predict 7th grade MCAS 
scaled score serves as a comparison model for the more complex 
models. These scores are highly correlated (r(115)=0.617, 
p<0.001) and was 75% accurate in categorizing students.   

The enhanced traditional model included 6th grade MCAS score 
(β = 0.341, t(115) = 4.03, p < .001) as well as 
Percent_Correct_First_Attempt (β = 0.448, t(115) = 5.30, p < 
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.001). This model was more successful (F(2,114)=57.10, p<0.001) 
and accounted for 51% of the variance. This model also yielded 
75% accuracy in categorizing students.  

A step-wise linear regression was used to generate a model that 
incorporates data collected from student use of ASSISTments. 
The regression model using the data from August through May 
yielded a model that included percent correct overall (β = 0.479, 
t(115) = 6.80, p < .001) and class (β = 0.399, t(115) = 5.67, p < 
.001). This model was 82% accurate. A step-wise regression 
generated an identical model using only the data from August 
through October and resulted in 81% accuracy. This confirms that 
the data collected during the first quarter is equally sufficient 
when predicting end-of-year test results. Furthermore, the 
inclusion of a measure only available through the use of the 
intelligent tutoring system supports its use in the classroom. The 
results of these models can be found in Table 1.  

3.2 Classification 
A J48 Decision tree with cross validation predicted MCAS 
classification with 68.4% accuracy for the full year. The attributes 
included in the tree were prior MCAS performance, total number 
of questions answered, and percentage of hints used. While the 
tree does well with predicting the classification of Advanced and 
Proficient, it was unable to identify the students who fell in the 
Needs Improvement category. This is a significant limitation of 
this model. However, it is important to note that with only 2 
students falling in the Needs Improvement category, it will be 
very challenging to identify them.  
A separate decision tree was constructed based on the data from 
August through October. This model predicted MCAS 
classification better with 76% accuracy. See Figure 1 for the tree. 
The attributes that were included were average number of 
attempts and percentage of hints used. 

 
Figure 1. J48 Decision Tree for predicting MCAS classification 
using data from August through October. 
 

4. Contribution and Discussion 
Being able to predict how students will perform on end-of-year 
standardized tests allows teachers to identify at risk students and 
offer interventions. Traditionally, teachers had only the previous 
year’s performance. While this is highly correlated with current 
performance, the current study shows that ITS provide additional 
data that allow teachers to better predict performance, and earlier 

in the year. Using this data to offer remediation and interventions 
should be considered by educators who use ITS regularly. 

This study is unique in that the ITS was used throughout the year 
for nightly homework, often with correctness only feedback and 
diverse content that is not closely mapped to the final 
measurement of performance. The ability to still accurately 
predict performance provides evidence of yet another use of ITS 
within schools.  
Table 1. Predictive and classification model performance. 

Model R2 Accuracy Kappa 

Traditional 0.381 75% 0.44 

Enhanced Traditional 0.505 75% 0.46 

ITS (First Quarter) 0.566 81% 0.61 

ITS (Full Year) 0.566 82% 0.63 

Classification (First Quarter) N/A 76% 0.39 

Classification (Full Year) N/A 68% 0.36 

Both prediction and classification required data that could only be 
generated by the use of ITS, and not through traditional classroom 
measures. Specifically, percent correct overall was a useful 
predictor. This can only be generated by allowing students to 
learn while doing their homework and measuring their success 
beyond just their first response. Similarly, average number of 
attempts on each problem and hint percentage add to the model 
when trying to classify student performance. This lends more 
support for the use of ITS for nightly homework. 
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ABSTRACT
Modern machine learning methods are critical to the de-
velopment of large-scale personalized learning systems that
cater directly to the needs of individual learners. The re-
cently developed SPARse Factor Analysis (SPARFA) frame-
work jointly estimates learner’s knowledge of the latent con-
cepts underlying a domain and the relationships among a
collection of questions and the latent concepts, solely from
the graded responses to a collection of questions. To better
interpret the estimated latent concepts, SPARFA relies on
a post-processing step that utilizes user-defined tags (e.g.,
topics or keywords) available for each question. In this pa-
per, we relax the need for user-defined tags by extending
SPARFA to jointly process both graded learner responses
and the text of each question and its associated answer(s)
or other feedback. Our purely data-driven approach (i) en-
hances the interpretability of the estimated latent concepts
without the need of explicitly generating a set of tags or
performing a post-processing step, (ii) improves the pre-
diction performance of SPARFA, and (iii) scales to large
test/assessments where human annotation would prove bur-
densome. We demonstrate the efficacy of the proposed ap-
proach on two real educational datasets.

1. INTRODUCTION
Traditional education typically provides a “one-size-fits-all”
learning experience, regardless of the different backgrounds,
abilities, and interests of individual learners. Recent ad-
vances in machine learning enable the design of computer-
based systems that analyze learning data and provide feed-
back to the individual learner. Such an approach has the
potential to revolutionize today’s education by offering a
high-quality, personalized learning experience to learners.

Several efforts have been devoted into building statistical
models and algorithms for learner data analysis. In [4], we
proposed a personalized learning system (PLS) architecture
based on the SPARse Factor Analysis (SPARFA) framework
for learning and content analytics, which decomposes as-
sessments into different knowledge components that we call
concepts. SPARFA automatically extracts (i) a question–
concept association graph, (ii) learner concept knowledge
profiles, and (iii) the intrinsic difficulty of each question,
solely from graded binary learner responses to a set of ques-
tions. This framework enables a PLS to provide personal-
ized feedback to learners on their concept knowledge, while
also estimating the question–concept relationships that re-
veal the structure of a course.

The original SPARFA framework [4] relies on a post-processing
step to associate instructor-provided question tags to each
estimated concept. Inspired by the recent success of modern
text processing algorithms, such as latent Dirichlet alloca-
tion (LDA) [2], we posit that the text associated with each
question can potentially reveal the meaning of the estimated
latent concepts without the need of instructor-provided ques-
tion tags. Such an data-driven approach is advantageous as
it easily scales to domains with thousands of questions.

In this paper, we propose SPARFA-Top, which extends the
original SPARFA framework [4] to jointly analyze graded
learner responses to questions and the text of the questions,
responses, or feedback. To this end, we augment SPARFA
by a Poisson model for the word occurrences associated with
each question. We develop a computationally efficient block-
coordinate descent algorithm that, given only binary-valued
graded response data and associated text, estimates (i) the
question–concept associations, (ii) learner concept knowl-
edge profiles, (iii) the intrinsic difficulty of each question,
and (iv) a list of most important keywords associated with
each estimated concept. We show that SPARFA-Top is able
to automatically generate a human readable interpretation
for each estimated concept in a purely data-driven fash-
ion. This capability enables a PLS to automatically rec-
ommend remedial or enrichment material to learners that
have low/high knowledge level on a given concept.

2. THE SPARFA-TOP MODEL
SPARFA [4] assumes that graded learner response data con-
sist of N learners answering a subset of Q questions that
involve K � Q,N underlying (latent) concepts. Let the
column vector cj ∈ RK , j ∈ {1, . . . , N}, represent the la-
tent concept knowledge of the jth learner, let wi ∈ RK ,
i ∈ {1, . . . , Q}, represent the associations of question i to
each concept, and let the scalar µi ∈ R represent the intrin-
sic difficulty of question i. The student–response relation-
ship is modeled as

Zi,j = wT
i cj + µi, ∀i, j, and

Yi,j ∼ Ber(Φ(τZi,j)), (i, j) ∈ Ωobs, (1)

where Yi,j ∈ {0, 1} corresponds to the observed binary-
valued graded response variable of the jth learner to the
ith question, where 1 and 0 indicate correct and incorrect
responses, respectively. Ber(z) designates a Bernoulli dis-
tribution with success probability z, and Φ(x) = 1

1+e−x de-
notes the inverse logit link function. The set Ωobs contains
the indices of the observed entries (i.e., the observed data
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Figure 1: Average predicted likelihood using
SPARFA-Top with different precision parameters τ .

may be incomplete). The precision parameter τ models the
reliability of the observed binary graded response Yi,j . In
order to account for real-world educational scenarios, wi is
assumed to be sparse and non-negative [4].

We now introduce a novel approach to jointly consider graded
learner response and associated textual information, to di-
rectly associate keywords with the estimated concepts. As-
sume that we observe the word–question occurrence matrix
B ∈ NQ×V , where V corresponds to the size of the vocab-
ulary, i.e., the number of unique words that have occurred
among the Q questions. Each entry Bi,v represents how
many times the vth word occurs in the associated text of
the ith question. Inspired by the topic model proposed in [6],
the entries of the word-occurrence matrix Bi,v in (2) are as-
sumed to be Poisson distributed as follows:

Ai,v = wT
i tv and Bi,v ∼ Pois(Ai,v), ∀i, v, (2)

where tv ∈ RK
+ is a non-negative column vector that char-

acterizes the expression of the vth word in every concept.
The latent factors wi, cj , tv and µi are estimated through a
block coordinate descent algorithm, which is detailed in [3].

3. EXPERIMENTS
We now demonstrate the efficacy of SPARFA-Top on two
real-world educational datasets: an 8th grade Earth science
course dataset provided by STEMscopes [5] and a high-
school algebra test dataset administered on Amazon’s Me-
chanical Turk [1], a crowdsourcing marketplace.

In Figure 1, we show the prediction likelihood defined by
p(Yi,j |wT

i cj + µi, τ), (i, j) ∈ Ω̄obs for SPARFA-Top on 20%
holdout entries in Y and for varying precision values τ . We
see that textual information can slightly improve the pre-
diction performance of SPARFA-Top over SPARFA (which
corresponds to τ → ∞), for both datasets. The reason
for (albeit slightly) improving the prediction performance is
the fact that textual information actually reveals additional
structure underlying a given test/assessment.

Figure 2 shows the question–concept association graph along
with the recovered intrinsic difficulties, as well as the top
three words characterizing each concept, for the STEM-
scopes dataset. Compared to SPARFA (cf. [4, Fig. 2]), we
observe that SPARFA-Top is able to relate all questions to
concepts, including those questions that were found to be
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Figure 2: Question–concept association graph and
most important keywords recovered by SPARFA-
Top for the STEMscopes dataset; boxes represent
questions, circles represent concepts, and thick lines
represent strong question–concept associations.

unrelated to any concept. Furthermore, the table in Figure 2
demonstrates that SPARFA-Top is capable of automatically
generating an interpretable meaning of each concept.

4. CONCLUSIONS
We have introduced the SPARFA-Top framework, which ex-
tends SPARFA by jointly analyzing both the binary-valued
graded learner responses to a set of questions and the text
associated with each question via a Poisson topic model.
Our purely data-driven approach avoids the manual assign-
ment of tags to each question and significantly improves the
interpretability of the estimated concepts by automatically
associating keywords extracted from question text to each
estimated concept. For additional details, please refer to the
full version of this paper on arXiv [3].
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ABSTRACT 

Automated text analysis tools such as Coh-Metrix and Linguistic 

Inquiry and Word Count (LIWC) provides overwhelming indices 

for text analysis, so fewer underlying dimensions are required. 

This paper developed an underlying component model for text 

analysis. The component model was developed from large English 

and Chinese corpora in terms of results from Coh-Metrix, and 

English and Chinese Linguistic Inquiry and Word Count (LIWC). 

Keywords 

Component model, Coh-Metrix, LIWC, principal component 

analysis 

1. INTRODUCTION 
With the development of the computational linguistics, automated 

text analysis tools like Coh-Metrix and Linguistic Inquiry and 

Word Count (LIWC) have been developed to analyze enormous 

amounts of data efficiently. 

Coh-Metrix provides 53 language and discourse measures at 

multilevels related to conceptual knowledge, cohesion, lexical 

difficulty, syntactic complexity, and simple incidence scores 

(http://cohmetrix.memphis.edu) [1]. Meanwhile, a principle 

components analysis performed on 37,520 texts of TASA corpus 

extracts five factors (Coh-Metrix-Text Easability Assessor, TEA, 

http://tea.cohmetrix.com), including Narrativity (word familiarity 

and oral language), Referential cohesion (content word overlap), 

Deep cohesion (causal, intentional, and temporal connectives), 

Syntactic simplicity (familiar syntactic structures), and Word 

concreteness (concrete words) [1].  

Even though the Coh-Metrix provides the normed five 

dimensions, no articles describe the details of this model. This 

paper not only gives a thorough description of this model, but also 

uses this method to build up the normed dimensions with the text 

analysis tools of English and Chinese LIWC. 

LIWC is a text analysis software program with a text processing 

module and an internal default dictionary [2]. LIWC classifies 

words into 64 linguistic and psychological categories. The 2007 

English LIWC dictionary contains 4,500 words and word stems.  

The Chinese LIWC dictionary was developed by National Taiwan 

University of Science and Technology based on the LIWC 2007 

English dictionary, but some word categories unique to the 

Chinese language were added to the Chinese LIWC dictionary 

[3]. The Chinese LIWC dictionary included 6,800 words across 

71 categories. The Memphis group converted the traditional 

Chinese characters in LIWC dictionary to the simplified Chinese 

characters, which was used in our study. 

With the overwhelming features for text analysis, researchers 

prefer fewer underlying dimensions. The most prevalent method 

to reduce the dimensionality is the principal component analysis 

(PCA) in text analysis [4, 5]. However, PCA assumes the ratio of 

cases to variables, so the corpus with smaller amount of cases is 

inappropriate to perform PCA [6]. Therefore, the standardized 

and normed component scores from the large reference corpus are 

needed.  

This paper aims to develop a component model of text analysis 

with the automated tools of Coh-Metrix and LIWC; thus, the 

component scores of any coming data set computed with this 

model will be standardized and comparable. 

2. METHOD 
Two reference corpora were used in this study. The English 

corpus used TASA (Touchstone Applied Science Associates, 

Inc.), randomly-collected excerpts of 37,520 samples, 10,829,757 

words with nine genres, including language arts, science, and 

social studies/history, business, health, home economics and 

industrial arts.  

The Chinese reference corpus was collected according to similar 

genres in TASA such as classic fiction, modern fiction, history, 

science. Texts in the Chinese corpus included complete 4,679 

documents with 25,184,754 words rather than segmented. 

Six factors extracted from LIWC in these two independent 

corpora showed significantly high correlation on dimensions of 

cognitive complexity, narrativity, emotions and embodiment [7]. 

Therefore, these two corpora are able to reflect some common 

linguistic and psychological features. 

The procedure of the component model is described below. First, 

TASA was analyzed by Coh-Metrix, English LIWC; Chinese 

corpus was analyzed by Chinese LIWC. Thus, three data sets were 

generated. Second, PCA was performed to reduce a range of 

indices from Coh-Metrix (53) and LIWC (English 64; Chinese 

71) to fewer potential constructs. The fixed number of dimensions 
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was decided by the eigenvalue greater than 2. Finally, the mean, 

standard deviation and coefficient for each category in each 

dimension were extracted to develop component model.  

3. RESULTS AND DISCUSSION 
The factorability of the items for the appropriateness of the 

performance of PCA used such criteria as the ratio of cases to 

variables, correlations, Kaiser-Meyer-Olkin measure, and 

Bartlett’s sphericity.  

First, the ratio of cases to variables at least 521:1 was satisfied. 

Then the majority of correlations among indices were above .50. 

Secondly, the overall Kaiser-Meyer-Olkin (KMO) measure of 

sampling adequacy of Coh-Metrix sets was higher than .50 and 

the Bartlett test of sphericity was statistically significant across 

three data sets. All indices were included in the analyses. The 

varimx rotation was used in the analysis. 

The initial eigen values greater than 2 indicated the appropriate 

fixed number of components. One reason why we used eigen 

values greater than 2 rather than 1 was that too many components 

were extracted with eigen values greater than 1. In TASA Coh-

Metrix, 6 components were extracted explaining 58% of the total 

variance. In TASA LIWC, 6 components were extracted and 

explained 40% of the total variance. In Chinese LIWC, 7 

components were extracted and explained 53% of the total 

variance.  

The components were labeled based on the linguistic or 

psychological features of the highly loaded categories in the 

component. For the English Coh-Metrix data set, the components 

were labeled from the first to the fifth in order as Narrativity; 

Referential Cohesion; Syntactic Simplicity, Word Concreteness, 

and Deep Cohesion. The last component only had 3 variables, so 

we removed that component from the model. For the English 

LIWC data set, the components were labeled from the first to the 

sixth in order as Narrativity; Processes, Procedures, Planning; 

Social Relations; Negative Emotion; Embodiment; Collection. 

For the Chinese LIWC data set, the components were labeled in 

the order from the first to the seventh as Processes, Procedure, 

Planning; Narrativity; Space and Time; Embodiment; Positive 

Emotion, Negative Emotion; and Personal Concerns.  

The component composite score for the coming data set will be 

computed through an automated tool developed according to the 

formula of Component Model. Component Model will be 

obtained by the following formula,  

 

among which y is a component score for a coming corpus (CC); x 

is the value of each category on a document of CC; µ is the mean 

of each category from reference corpus (RC) which includes 

TASA Coh-Metrix, TASA LIWC or Chinese LIWC; s is the 

standard deviation of each category from RC; γ is coefficient of 

each category from RC. 1 to n means the number of categories in 

each component. ∑ means the sum of all the scores of the 

categories on each component.  

For example, a teacher would like to look at the composite 

component score of Negative Emotion from the students’ writings 

in English with LIWC. The teacher only has 15 subjects, so this 

data set is inappropriate to perform PCA. Therefore, the English 

LIWC Component Model should be used. First, the teacher 

should analyze the writing with English LIWC to obtain the score 

of all the indices (64). Then the mean and standard deviation of 

indices in all the categories, the corresponding coefficients of 

Negative Emotion component in the Component Model should be 

obtained from the reference corpus.  

For instance, the “verb” score for one subject is 1.5. According to 

the model, the mean of the “verb” is 1.37, standard deviation 

1.29, and the coefficient -0.06. Thus, the value of the “verb” in 

the component score is [(1.5-1.37)/1.29](-0.06) = 0.01 for this 

subject. We need compute the value of all the other categories in 

this way, then sum them, and finally obtain the value of the 

Negative Emotion composite score for this subject.  

Thus, each component composite score from any coming corpus 

will be computed and standardized based on this component 

model from these three component models. 

4. CONCLUSION 
This study developed three component models for text analysis 

with Coh-Metrix component model, English LIWC component 

model and the Chinese LIWC component model. The component 

model can be used to generate the composite component scores 

when the data set has a small sample size and PCA is 

inappropriately performed. The results are comparable across 

different data sets. 

The limitation of this study is that we didn’t evaluate the model 

with human judgment. In the future, the evaluation of the model 

will be carried out. 
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ABSTRACT 

Student modeling has been widely used in the prediction of 

student correctness behavior on the immediate next action. Some 

researchers have been working on student modeling to predict 

delayed performance, that is, retention.  Prior work has found that 

the factors influencing retention differ from those that influence 

short-term performance.  However, this prior research did not use 

data which were specially targeted to measure retention. In this 

study, we describe our experiments of using dedicated retention 

performance data to test the students’ ability to retain, and 

experiment with a new feature called mastery speed, indicates 

how many problems the students need to attain initial mastery. 

We found that this new feature is the most useful of our features. 

It’s not only a helpful predictor for 7-day retention tests, but also a 

long-term factor that influences students’ later retention tests even 

after 105 days. We also found that, although statistically reliable, 

most features are not useful predictors, such as the number of 

students’ previous correct and incorrect responses which are not 

as helpful in predicting students’ retention performance as in PFA.    

Keywords 

Educational data mining, Knowledge retention, Robust learning, 

Feature selection, Intelligent tutoring system. 

1. INTRODUCTION 
Automatic Reassessment and Relearning System (ARRS) is an 

extension of the mastery learning problem sets in the 

ASSISTments system (www.assistments.org), a non-profit web-

based tutoring system for 4th through 10th grade mathematics. 

Mastery Learning is a pedagogical strategy which, in most ITS, 

indicates that a student is presented with problems to solve until 

he masters the skill. The exact definition of “mastery” varies from 

tutor to tutor: some tutors consider a student to have mastered the 

skill if his estimated knowledge is very high, for example over 

0.95 (e.g., [3]), while ASSISTments uses a heuristic of three 

correct responses in a row. The idea of ARRS is if a student 

masters a problem set, such mastery is not necessarily an 

indication of long-term retention.  Therefore, ARRS will present 

the student with a reassessment test on the same skill at expanding 

intervals: first 7 days after the initial mastery is due, then 14 days 

after the prior test, than 28 days later, and finally 56 days later.  

Thus, the retention tests are spread over an interval of at least 105 

(7+14+28+56) days. In this study, we defined retention 

performance as the reassessment test performance one week after 

a student was assigned a skill (i.e., the first reassessment test). 

Note, that if a student fails the reassessment test, ASSISTments 

will give him an opportunity to relearn the skill. Once a student 

relearns (demonstrates mastery) a skill, he will receive another 

reassessment test at the same delay at which he previously 

responded incorrectly.  In other words, if the student failed the 

second reassessment test, he would have to relearn the skill and 

achieve 3 correct answers in a row, before receiving another 

reassessment test 14 days later.  

In our previous study, we identified mastery speed as a useful 

construct in prediction of retention performance. Mastery speed 

refers to the number of attempted problems during the process of 

achieving mastery. Mastery speed represents a combination of 

how well the student knew this skill initially, and how quickly he 

can learn the skill.  

2. MODELS AND RESULTS 

2.1 Data set 
For this study, we used data from the ARRS system, specifically 

students’ 7-day test performance and other features about their 

previous learning on that particular skill. We had 48,873 questions 

answered by 4054 students, from 91 different skills. Then we 

calculated the following features which were used in our 

regression models: 

 mastery_speed: the number of problems needed to 

master a certain skill. We binned this feature into 6 

categories (‘<3 attempts’, ‘3-4 attempts’, ‘5-8 attempts’, 

‘>8 attempts’, ‘not mastered’, ‘skipped initial mastery’).  

Students could master a skill in less than 3 attempts if 

their teachers overrode ASSISTments mastery criterion.   

 n_correct (n_incorrect): the number of students’ prior 

correct (incorrect) responses on that skill before the 

retention test. 

 n_day_seen: the number of distinct days that the 

students have practiced this skill. 

 g_mean_performance: the exponential moving average 

of students’ performance before the reassessment test. 

We used the same formula as in Wang and Beck’s 

previous work [2]: g_mean_performance (opp) = 

g_mean_performance (opp-1) * 0.7 + correctness (opp) 

* 0.3 using opp to represent the opportunity count and a 

decay of 0.7. 

 g_mean_time: the exponential moving average of 

students’ response time on that skill before the 

reassessment test [2]. The formula is: g_mean_time 

(opp) = g_mean_time (opp-1) * 0.7 + response_time 

(opp) * 0.3. 

 problem_easiness: percentage correct for this problem. 

2.2 Separate Model with each Feature 
In our binary logistic regression models, we used correctness as 

the dependent variable. We first tested a base model with just 

three features: user_id, skill_id, and problem_easiness, which 

showed as reliable predictors in a model we created with all 
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features in our feature set. The base model provided an R2 of 

0.373. The next step we took was to test each feature one at a time 

added to the base model. Table 1 shows the Beta coefficient, p-

values and R2 gain for each regression model. 

Each row in the table represents one regression model, with the 

feature listed and other three features in the basic model. The last 

column, R2 gain, shows the increase in R2 from adding that 

feature to the base model. Given even the modest (by EDM 

standards) data set we have for this study, circa 50,000 rows, even 

trivially small effects can show up as statistically “significant.” 

Therefore, we compute how much improvement the feature 

actually provides us with. From the table, it’s clear that 

mastery_speed is the most powerful predictor for students’ 

retention performance. And also the students’ previous 

performance on that skill (g_mean_performance) has a clear 

influence on prediction.  The other variables have a trivial impact 

on performance.  Note that even the best two features have a small 

impact on retention. 

Compared with prior work [2], we found that n_day_seen did not 

replicate as being a useful feature.  Strangely, a student’s raw 

number of correct and incorrect response has little impact on 

retention. But g_mean_performance which measures students’ 

previous performance on correctness has a clear influence on 

students’ retention, which indicates that simply counting the raw 

number of correct or incorrect responses does not seem that 

helpful. Using exponential moving average which weights recent 

attempts more heavily as we did to compute 

g_mean_performance, is a helpful way to use students’ previous 

correctness information. 

Table 1. Parameters table for separate Models 

Feature R2 Β p-value R2 gain 

mastery_speed 0.379 --- 0.000 0.006 

n_correct 0.374 0.010 0.000 0.001 

n_incorrect 0.373 -0.007 0.004 0.000 

n_day_seen 0.373 0.026 0.002 0.000 

g_mean_performance 0.378 1.130 0.000 0.005 

g_mean_time 0.373 0.000 0.649 0.000 

2.3 Impact of Mastery Speed 
From the previous models we presented, we found that mastery 

speed has a clear influence on students’ 7-day reassessment tests. 

However, what about the 14 day test, 28 day test, and even the 56 

day tests? We collected all student performances on all four 

reassessment tests.  As shown in Figure 1, we calculated the 

percentage of correct answers on each retention test, 

disaggregated by initial mastery speed.   

Students get better as they move to the later retention tests. This is 

expected since they must get the previous tests correct in order to 

move on, and some weaker students are forced to repeat and so 

are systematically oversampled on the left side of the graph.  On 

the 7-day retention test, students who mastered a skill quickly 

with 3 or 4 attempts (blue line) have a 24% higher chance of 

responding correctly than those students who required more than 

8 attempts to master a skill (green line). Such a difference is 

perhaps not surprising.  More interesting is the persistence of this 

differential performance: the 56 day level tests, the group who 

mastered quickly are still performing about 15% better than the 

students who mastered slowly.  This difference persists in spite of 

weaker students being screened out on earlier retention tests.  This 

result tells us that the initial mastery speed is of importance in 

terms of students’ retention performance even after 105 days. 

 

Figure 1. Impact of mastery speed on retention tests   

3. CONCLUSIONS AND FUTURE WORK  
This paper represents our attempt to model student retention 

performance in the context of a computer tutor.  The two most 

interesting results were mastery speed being the best predictor, 

and the effects of performance on initial mastery persisting across 

such a lengthy interval.  We did not anticipate this effect, and 

were therefore surprised by it.   

There are several interesting open questions that might be further 

explored in the future. First, we have noticed anecdotally and 

through preliminary analysis that students sometimes get confused 

among similar skills during problem solving, an example of 

proactive interference [1]. Computer tutors would seem to be a 

strong research vehicle for better understanding of such effects in 

an authentic learning context, and over longer time than typical 

psychology lab studies. Another question is that we have found 

that slow mastery speed results in poor performance on delayed 

tests. An open question is whether a stronger mastery criterion, 

such as 4 or 5 correct in a row, would be helpful. 
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ABSTRACT 
This paper presents a model for integrating student activity traces 
in a collaborative programming project using SVN, and relates 
different attributes of the SVN activities to student and team 
performance. We show how student participation patterns can be 
related to the grades of their group programming projects. Graph 
theory, entropy analysis and statistical techniques are applied to 
process and analyze data.   

Keywords 

Collaborative project, group project, SVN, data mining, entropy 
analysis, graph theory 

1. INTRODUCTION 
The goal of this case study is to make progress towards 
understanding the impact of collaboration on individual and group 
performance in programming courses that use a collaborative code 
management system, such as SVN (Subversion), which supports 
team-based programming projects by providing a complete 
history of individual programming activities. Past studies of group 
work have analyzed how the characteristics of team members 
affect group outcomes [1] and whether certain members or leaders 
influence performance [2]. Related work by the authors has shown 
that team pacing is highly correlated to group project performance 
[3]. Building on these results, we explore the following questions: 

• Does individual coursework performance affect the group 
project performance?  

• Does the most interactive (or influential) student affect the 
group project performance?   

• Does even work pacing affect the group work performance?  

Results indicate that when integrating components from different 
members, teamwork skills and usage of teamwork tools may 
improve the group performance; however, for implementing 
difficult programs, individual members’ programming skills 
become more important. The performance of leaders or central 
students can affect the group performance greatly, and work 
pacing and management of the work throughout the project period 
can be an important fact for a successful team programming. 

2. STUDY CONTEXT 
To better prepare students for professional employment, two 
undergraduate computer science teachers at the University of 
Southern California combined a first and second year course so 
that students could work on an authentic project. This case study 
of that experiment spans a seven-week period of collaboration 
among students in the two classes.  

 

 

2.1 Group Project Description 
Students from the two courses formed 19 groups, each of which 
had 3 to 11 members from cs200 (freshmen) and 4 to 6 members 
from cs201 (sophomore). Each group designed and built a 
manufacturing assembly cell. The freshmen implemented the 
front-end and sophomores implemented the back end code. The 
students cooperated in designing the API between the two. The 
project had four subtasks: To design the project; to implement the 
components of the program (V0); to integrate the components 
(V1); and to implement non-normative case handling (V2). For 
teamwork planning and documenting, students made use of co-
authoring tools. To manage code development, they used Apache 
Subversion (SVN). This work focuses on the SVN activities. 

2.2 Data Description 
SVN data from two semesters, 2011 spring and 2011 fall, was 
used for the analysis. Table 1 gives an overview of the data 
including students per team, number of files and number of file 
modifications made by each team.  

Table 1. Summary of SVN data used for analysis. 
 Group N of Students N of Files N of File Mods 

20
11

 
FA

L
L

 

M1    16 (5,11) 4007 5333 
M2 14 (5,9) 4007 6142 
T1 13 (4,9) 474 1433 
T2 13(4,9) 1740 3173 
W1 13 (5,8) 1603 2856 
W2 13 (5,8) 1412 3288 
W3 14 (6,8) 1994 3845 
W4 14 (6,8) 2082 3357 
W5 13 (5,8) 2156 3873 

20
11

 
SP

R
IN

G
 

M1 11 (6,5) 2919 5885 
M2 10 (5,5) 3332 5276 
M3 11 (5,6) 1737 3243 
M4 9 (6,3) 2992 4279 
T1 10 (5,5) 1770 3370 
T2 12 (5,7) 1301 2871 
T3 10 (4,6) 1096 1842 
W1 12 (7,5) 5711 7287 
W2 9 (5,4) 1186 2184 
W3 11 (6,5) 2444 4137 

Group project grades, other student performance (student exam 
and coursework grades), and SVN activity was used to analyze 
collaboration. The project grades of a group were computed by 
averaging the grades of its group members. CS200 had three 
assignments and two exams while CS201 had no assignments and 
two exams. SVN activity was measured by three variables that 
represent the degree of participation and collaboration in file co-
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editing: 1) The number of files she/he modified or added each 
day, 2) The number of lines of code she/he modified or added 
each day, and 3) The number of interactions she/he made with 
each of the other group members in her/his group (if two students 
modify the same file, there is one interaction between them.   If 
two students modify more than one file, then each “co-modified” 
file counts as an interaction.  

3. DATA ANALYSIS AND RESULTS 
This section uses graph theory and entropy analysis to explore 
participation patterns and their relation to project performance. 

3.1 Relationship between influential student 
performance and group performance 
Next we looked at the relationship between influential students 
and group performance to determine whether the performance of 
some members has an impact on group performance. Social 
Network Analysis (SNA) [4] has for decades been analyzing 
social networks to identify and categorize important people and 
has defined a variety of “centrality” metrics to identify different 
types of importance.   We used three of  these metrics for analysis: 
degree centrality, closeness centrality and betweenness centrality. 

Degree centrality: The degree centrality metric counts the 
number of relations a person has (figure 1a).  The more relations, 
the more important that person is because she/he talks to more 
people.  A student who co-modifies code with many others might 
positively impact the project grade and is assigned a high degree. 

 
Figure 1. High/low (a) degree, (b) closeness & (c) betweenness 
Closeness centrality: This metric identifies people based on how 
close they are, on average, to everybody else (figure 1b). To 
compute closeness, we define the shortest distance, d(v,t) to be 
the fewest number of edges needed to traverse from node v to 
node t. A student who is closest to everyone might have a lot of 
influence in the group. 

Betweenness centrality: The last metric we consider in this study 
is the betweenness centrality (figure 1c).  People with high 
betweenness are also known as “bridges” or “brokers” in that they 
sit between groups that otherwise do not have a lot of interaction.   
Such a student might be the one to help integrate the front- and 
back-ends and might positively impact the success of the project.   

To compute this metric, we must first compute to what extent a 
students is a bridge.  This is done by computing a shortest path for 
each pair of vertices. The betweenness centrality of node v is the 
number of shortest paths that go through a particular node. We 
generated one graph per group. Each vertex is a student and an 
edge indicates one or more interactions between them. Almost 
every pair of group members had a few interactions, so we only 
drew an edge between students with more than 10 interactions. 
After generating the graph, we computed the three metrics 
described above for each student. If stronger students are more 
central then we expect their projects to do better. 

Two group graphs are shown in figure 2. The larger a vertex is, 
the larger the corresponding degree centrality.  Nodes in red are 
cs200 students.  Nodes in green (with an extra circle), yellow 
(square) and blue (diamond) are cs201 students.   The yellow node 
(square) is the cs201 student with the best exam1 score.   The blue 
node (diamond) is the cs201 student with the best exam2 score. 

The left group was one of the better performers (project grades 
were 92.31 for cs200 and 94.75 for cs201).  We have color-coded 
the nodes based on cs200/cs201 breakdown as well as the two 
best cs201 students (best exam scores).  We find that cs201 
students are more central than cs200 students and see closer 
interaction between the cs201 students.  Finally, note that the two 
best cs201 performers are also the two most central nodes. 

      
Figure 2. High (left) and low (right) performing groups. 

In comparison, consider the graph on the right, which represents a 
group that performed less well (project scores were 88.63 for 
cs200 and 87.6 for cs201).  We see a dramatic difference in the 
graph.   First, although 3 of 4 cs201 students are quite central, the 
best cs201 student is not at all engaged (blue node to the far right).    
All cs200 students are engaged quite well. The blue node to the 
far right is the cs201 student with the best scores for both exams. 
These two group graphs seem to indicate that group structure, and 
in particular, the location of the better students, might 
significantly impact project grades.    

3.2 Relationship between SVN activity and 
group performance 
Finally, we look at the relationship between SVN coding activity 
and group project grades. We hypothesized that groups that work 
consistently will have a better grade than groups that do most of 
their work right before a deadline. To test this hypothesis, we 
turned to the information theoretic function of entropy.  Entropy 
measures the amount of uncertainty in a system, or in our case, 
how much the activity of a group is spread throughout the project 
timeline Groups that are consistently active throughout their 
project will have high entropy, whereas groups that have a spike 
in activity towards the deadline will have low entropy.  The 
entropy of a group’s activity was based on the number of 
modifications. For each submission, the correlation and p-values 
between entropy and project grade (cs200+cs201) were computed. 
The correlations (p-values) between entropy and project grades 
were v0: 0.24 (0.33), v1: 0.59 (0.007), and v2: -0.37 (0.12). For 
v1, there is a significant positive correlation between entropy 
(working continuously) and group project grade; however, for v0 
and v2, the p-values are large, which means that entropy and 
group performance are likely to be independent.  
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ABSTRACT
As technology continues to disrupt education at nearly all
levels from K–12 to college and beyond, the challenges of un-
derstanding the impact technology has on teaching continue
to mount. One critical area that yet remains open, is exam-
ining teachers’ usage of technology by specifically collecting
detailed data of their technology use, developing techniques
to analyze that data and then finding meaningful connec-
tions that may show the value of that technology. In this
research, we will present a model for predicting test score
gains using data points drawn from typical educational data
sources such as teacher experience, student demographics
and classroom dynamics, as well as from the online usage
behaviors of teachers. Building upon prior work in devel-
oping a usage typology of teachers using an online curricu-
lum planning system, the Curriculum Customization Service
(CCS), to assist in the development of their instruction and
planning for an Earth systems curriculum, we apply the re-
sults of this typology to add new information to a model for
predicting test score gains on a district-level Earth systems
subject area exam. Using both multinomial logistic regres-
sion and Näıve Bayes algorithms on the proposed model, we
show that even with a simplification of the highly complex
tapestry of variables that go into teacher and student per-
formance, teacher usage of the CCS proved valuable to the
predictive capability in average and above average test score
gains cases.

Keywords
online user behavior, teaching, pedagogy, learner gain pre-
diction, instructional planning support

1. BACKGROUND
Within the past 20 years, the use of technology in the class-
room has grown at an unimaginable pace. From K–12, to
college and lifelong learning, students and teachers alike are
now using a vast array of tools in their educational endeav-
ors. Teachers, especially, are using tools in many interesting

ways with the hope that these tools improve their teaching
productivity, better engage their learners, and ultimately
provide optimizations that make their jobs less difficult so
that they can maximize their value and skill in teaching.
Tools that educators once relied on to enter grades and or-
ganize lesson plans, have transformed into the now-diverse
online ecosystem of intra-, extra- and Inter-net based plat-
forms that allow them to do a multitude of activities like col-
laborate with like-minded educators located anywhere in the
world, find digital resources relevant to their curricular ob-
jectives, find out how state and national standards are tied
to specific resources prepared for use in their classroom, ex-
amine the progress their students are making through those
lessons and even manage all these things in a single portal.
These technologies are affecting everyone in education – ad-
ministrators, educators, learners, parents, etc. – and as the
state of the art pushes policy and pedagogy forward, in its
wake a mounting number of challenges must be sorted out,
including whether or not these technology tools are facili-
tating educational productivity or hindering it.

It is widely recognized that teachers matter a great deal in
the learning process of students, and many studies suggest
that teacher skill is one of the key predictive forces in learner
success. Even with large efforts such as The Gate’s Founda-
tion $45 million dollar, multi-year study to understand the
factors that might accurately predict teacher effectiveness,
it still remains unclear from these and many other stud-
ies, what impact technology and specifically online tools
designed to impact pedagogy, are having on the toolkits,
skillsets and patterns of productivity employed by effective
teachers, where effectiveness in this context is measured by
learner gains. This research aims to explore the mechanisms
and models of understanding how teacher utilization of on-
line tools might be linked with learner gains. By studying
the usage of the Curriculum Customization Service (CCS),
we will try to bridge the gaps between the online behaviors
of teachers and learner gains, while at the same time utiliz-
ing common educational data, such as teacher experience,
class demographics and class dynamics variables.

2. RESEARCH CONTEXT
The research presented here examines the online usage be-
haviors of teachers within the context of the learning gains
observed over the course of a single year of data. Earth
systems teachers within a large urban public school dis-
trict within the U.S. were trained and given the Curricu-
lum Customization Service (CCS) to use for their planning
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and instructional tasks during the 2009-2010 school year.
The CCS has been described elsewhere in detail [2], but
summarily, the CCS is an online instructional and curricu-
lum planning tool designed to provide teachers access to an
array of materials to support them throughout the school
year. It contains publisher materials (e.g. digital versions of
publisher books, student handouts), including instructional
supports for classroom activities, as well as digital library
resources that have been vetted and aligned to the curric-
ular goals and objectives of the district. The content and
structure of the CCS closely match the goals of objectives
of the district-designed curriculum, and for this research the
curricular focus of the CCS materials was the grade 9 Earth
systems curriculum.

As previously reported in [1], the usage patterns of the CCS
users have been automatically explored using unsupervised
clustering techniques yielding a user typology representing
different kinds of aggregate use of the CCS over the span
of a single year of use. It was found that five categories
of usage emerged from the data, briefly described in Ta-
ble 1. These usage categories form the basis for the online
component of this research, and these automatically gener-
ated categories do not in any way represent fixed, or even
definitive categories in all instances and users of the CCS
(or any other system). The usage types discovered by these
methods, however, were studied further through qualitative
analysis of teacher surveys, interview and in-class observa-
tions, and have been given additional support and validation
through other research [2].

Typology Label User Characteristics
Limited Use Lower overall use of the sys-

tem.
Interactive Resources
specialist

Heavier relative use of the
Interactive Resources compo-
nents of the system.

Power user Heavy robust use of the CCS.
Moderate generalist Overall moderate use of the

system.
Community-seeker Heavier relative use of the

community and sharing fea-
tures of the CCS.

Table 1: User typology for CCS users in this re-
search.

The impetus of this research is therefore to explore whether
the CCS can be shown to have a predictive association with
classroom learner gains through the user typology give above.
In particular, this research examines how the typology desig-
nations along with three crucial inputs (1) the demographic
composition of the learners within each teacher’s classroom,
(2) the dynamics of each classroom in this research, and (3)
the skill level of the teachers, might be used to build a model
to predict learner gains.

3. METHOD
By using the pre- and post-test scores of the district-wide
Earth science Benchmark exam administered to students
at the beginning and end of the school year, this research
aims to build and apply a model (see section 4) that ex-

amines the linkages between CCS usage and the other vari-
ables collected in this research. Two years (2008–09 and
2009–10) of standardized test and Benchmark exam score
data, teacher experience and class data (class size and demo-
graphic makeup) were examined to determine if there were
any significant differences in the population characteristics
and student test score performance. For the first year data of
data (2008–09) the CCS was not used, yet in the successive
year (2009–10) the CCS was used. Though there were signif-
icant differences between the Benchmark exam score gains
(α < .001; df = 2; χ2 = 1039; p = 2.2e−16), where the mean
letter grade gain in 2008–09 Benchmark exam was 0.29 and
the mean letter gain in 2009–10 was 1.04, the other vari-
ables such as demographic makeup, class size and teacher
experience, show no significant differences.

4. DATA & MODEL
Classroom and teacher data were segmented and binned for
27 teachers for which there was complete, comparable data
sets as well as CCS usage data in the 2009–10 school year.
These data represented 81 total class sections of students
for that year. To explore the role the CCS may have played
in the Benchmark exam gains of the 2009–10 school year,
a model was created to predict learner gains with demo-
graphic, class size and teacher skill variables, in addition to
the CCS usage typology category previously discovered in
section 2. This model for predicting gain Gs,t is given by
Gs,t ∼ E+D+N+U , where E is the teacher experience cat-
egory, D is the demographic category, N the class size cat-
egory and U the CCS usage category. The output variable
Gs,t was predicted along three outcomes : below average,
average and above average gains. Data sets and outcomes
were further grouped into the gains for all sections and gains
for individual sections.

5. INVESTIGATION & RESULTS
Two classifiers were compared, Näıve Bayes and multino-
mial logistic regression, in several different configurations to
study the predictive capability of model with and without
CCS usage. The best model sensitivity (true positive rate)
achieved by all models examined was 0.67 for the average
and above average gains, corresponding to G(s, t) ∼ U +N
and G(s, t) ∼ U + D – CCS usage category + class size
and CCS usage + demographic category, respectively. The
model performed poorly at predicting below average gains
for the individual section gain grouping.
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ABSTRACT
Intelligent tutoring systems (ITSs) typically analyze student
solutions to provide feedback to students for a given learning
task. Machine learning (ML) tools can help to reduce the
necessary effort of tailoring ITSs to a specific task or domain.
For example, training a classification model can facilitate
feedback provision by revealing discriminative characteris-
tics in the solutions. In many ML methods, the notion of
proximity in the investigated data plays an important role,
e.g. to evaluate classification boundaries. For this purpose,
solutions need to be represented in an appropriate form, so
their (dis-)similarity can be calculated. We discuss options
for domain- and task-independent proximity measures in the
context of ITSs, which are based on the ample premise that
solutions can be represented as formal graphs. We propose
to identify and match meaningful contextual components in
the solutions, and present first evaluation results for artifi-
cial as well as real student solutions.

1. INTRODUCTION
Intelligent tutoring usually relies on knowledge about the
domain being taught and adaptation of pedagogical strate-
gies regarding learners’ individual needs. Therefore, ITSs
typically use formalized domain knowledge to provide intelli-
gent one-on-one computer-based support to students. Often,
even the specific learning task must be modeled explicitly,
which requires significant effort by human experts. Hence,
among several directions of research, one major idea regards
ITSs which are adaptive, based on examples and using ML
or data mining techniques, rather than an explicit modeling
of the background information. This direction also opens
a way towards the application of ITSs in domains where
a formalization of the underlying knowledge is hardly pos-
sible, such as ill-defined domains in which there may ex-
ist a wide variety of strategies for solving a given task [4].
Example-based learning has shown to be an effective tutor-
ing approach in supporting learning, see [1], which can also
be applied without formalizing domain knowledge. In [2],
the authors propose ways how feedback provision can be
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realized in example-based learning environments.

Assuming that effective feedback-strategies can be estab-
lished based on appropriate examples, let us restrict to a

scenario where a set X̃ of examples x̃j is explicitly given, and

a student solution x̂i from the set X̂ needs to be associated
to the most suited example. We further assume that exam-
ples are themselves solutions (or are represented in the same
form) and we can process them in the same manner. Let
d(xi,xj) be a meaningful proximity measure which indicates

the dissimilarity of any two solutions xi,xj ∈ X = X̂∪X̃ by

a positive value. Then, a student solution x̂i ∈ X̂ can sim-
ply be associated to the most similar (and thus most suited)

example by choosing: argminj d(x̂i, x̃j), j ∈ {1, . . . , |X̃|} .
In the following, we will present general approaches to calcu-
late this dissimilarity, if solutions are represented as formal
graphs with annotations. The overall calculation is not tai-
lored to a specific learning task or domain, if general data
representations are used. To explain the details of the ap-
proach, and show first experimental results, we will refer to
our example application scenario: an ITS to support pro-
gramming courses for the Java language.

2. THE PROXIMITY OF SOLUTIONS
The basic requirement is that solutions can be represented as
graphs, with different kinds of meta information annotated
on the nodes and edges. Each node represents a (syntactic
or semantic) element of the solution, and edges establish re-
lationships between them. Solutions xi ∈ X are thus graphs
Gi = (Vi, Ei). Considering a very simple annotation, we re-
quire that all vertices are attributed to a certain node type,
a symbol from the finite alphabet Σ = {l1, . . . , lT }. In our
application scenario, we consider syntax trees of Java pro-
grams, where the nodes represent syntactic elements and the
corresponding node types indicate their functionality, e.g.
the declaration of a variable, a logical expression, a variable
assignment, etc. Additionally, a parser adds edges denoting
relationships between the syntactic elements, like the call to
a function, the usage of a variable, etc.

Using classical data mining approaches, there are several
ways to define a proximity measure for these annotated
graphs. For example, to represent a solution by a feature

vector, one can extract frequencies of syntax elements within
a solution vs. all solutions to gain a representation analogous
to popular tf-idf weights [5]. By dtfidf(x

i,xj) we refer to the
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Euclidean distance between the tf-idf weight vectors of two
Java syntax graphs. This kind of feature encoding captures
statistics about the symbols, however their relations are not
considered. Measures for symbolic sequences respect the or-
dering of symbols, e.g. alignment measures [3]. For this pur-
pose, we can encode the syntax trees as sequences si ∈ Σ∗

by visiting vertices in a depth-first-search order, concate-
nating their node types. This ordering corresponds to the
original sequence of statements in the Java source code. Let
dalign(x

i,xj) be the dissimilarity score of a Smith-Waterman
local alignment of the respective sequences si and sj , with
fixed costs for edit operations, see [3].

Both, tf-idf weights and alignment do not explicitly con-
sider contextual relationships within the syntax. To take
these structural characteristics into account, we propose to
identify densely connected subgraphs and calculate a piece-
wise proximity between parts of the solutions. Our basic
assumption is that solutions consist of semantic building
blocks, in which the elements are in close relation to each
other, and are less related to other elements. For exam-
ple, in a computer program the variables and expressions
within a for-loop are likely to be connected to each other,
but would be less connected to elements outside the loop. In
the following, we call these dense subgraphs fragments. To
identify such fragments, we use the graph clustering algo-
rithm Spectral Clustering (SC) [6]. SC separates the graph
into a fixed number of subgraphs, and as a result, we get
an assignment of every node to one out of m identified frag-
ments {F i

1 , . . . , F
i
m} of the graph Gi for solution xi, where⋃m

s=1
F i
s = Gi and F i

s ∩ F i
t = ∅ ∀s, t ∈ {1, . . . ,m}, s 6= t.

The goal of fragmenting the graph is to compare distinctive
parts of the solutions independently. To evaluate the dis-
similarity of a single pair of fragments (F i

s , F
j
t ) with i 6= j

and s, t ∈ {1, . . . ,m}, one can rely on established proxim-
ity measures from the literature, as exemplified by dtfidf or
dalign. This requires only that each fragment can be repre-
sented individually to apply the respective measure, e.g. as
a string, a numeric vector, etc. We call this the signature

of the fragment. Let d(F i
s , F

j
t ) be the dissimilarity of the

fragment pair. To compare the two underlying solutions xi

and xj as a whole, m suitable pairs of fragments (F i
s , F

j
t ),

(s, t) ∈ M ⊂ {1, . . . ,m}2 have to be established for com-
parison. Since we want those pairs to yield the best overall
match, i.e. the minimum sum of dissimilarities, we arrive at
an optimal matching problem. For now, we use a simple
greedy heuristic to gain an approximate matching M of all
fragments. We then compute the overall dissimilarity as the
mean δ(F i, F j) = 1

m

∑
(s,t)∈M

d(F i
s , F

j
t ) .

3. EVALUATION AND CONCLUSION
We use three datasets consisting of Java programs, where
a semantically meaningful class separation is given in each
set. To quantify the discriminative quality of the different
proximity measures, we report the results of a simple k-

nearest-neighbor (k-NN) classifier w.r.t. this class structure,
see Tab. 1. The Artificial dataset consists of 48 programs
created by a human expert and serves as a basic testbed.
The 48 programs all solve the simple task to decide whether
all words in a given input sentence are palindromes. The
programs are deliberately designed to form 8 groups of 6
solutions each. Each group represents a distinct approach
to solve the task, resulting from a combination of 3 simple
(binary) design choices: using Java utility functions or not,

using String objects or arrays of characters, splitting the sen-
tence into words or iterating over the whole input sequence.
Within each group, the 6 programs are only slightly differ-
ent, with altered syntactic details like variable names and
the sequence of operations. The ‘Tasks’ dataset consists of
438 real student solutions, collected during 3 different pro-
gramming exams for business students. Each solution was
provided by an individual student, and the data is class-
labeled according to the 3 different tasks assigned in the
respective exam: [I] implementing Newton’s method to find
zeros in 2nd order polynomials (144 solutions); [II] calcu-
lating income tax for a given income profile (155); and [III]
checking if a given sentence contains a palindrome, and if the
sentence is a pangram (139). The ‘TextCheck’ dataset con-
sists of 68 student solutions which solve the above-mentioned
task [III]. Here, class labels were provided by tutoring ex-
perts who were asked to determine meaningful groups in
the solution set. The experts distinguished them accord-
ing to 3 design choices very similar to the ones used in the
Artificial set (which was subsequently created). This re-
sulted in 8 classes corresponding to distinct strategies to
solve the task. In general, solutions are very heterogeneous
and classes are highly imbalanced. Therefore, this dataset
represents a state-of-the-art challenge for a real ITS.

After preprocessing as described, we applied four variants of
proximity measures, evaluating the accuracy of a 3-NN clas-
sifier, see Tab. 1. The results show that with all measures
the solutions from the Artificial and Tasks dataset are clas-
sified rather reliably, which indicates that the measures are
semantically meaningful. Accuracies for the TextCheck data
are generally low, as expected from the challenging scenario.
However, the measures based on fragmentation, δtfidf and
δalign, showed a performance increase as compared to their
simpler counterparts dtfidf and dalign. A rigorous evaluation
of the approach is the subject of ongoing work.

Dataset #fragments dtfidf δtfidf dalign δalign

Artificial m = 4 0.94 0.92 0.94 0.94
Tasks m = 6 0.98 0.83 0.98 0.98

TextCheck m = 6 0.34 0.32 0.41 0.54

Table 1: Classification accuracies of a 3-NN classi-
fier with different proximity measures on the exper-
imental datasets. The number of fragments m in the
measures δtfidf and δalign was chosen with regard to
the average size of graphs in the respective dataset.
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ABSTRACT 
Complex Problem Solving (CPS) is a prominent representative of 
transversal, domain-general skills, empirically connected to a 
broad range of outcomes and recently included in large-scale 
assessments such as PISA 2012. Advancements in the assessment 
of CPS are now calling for a) broader assessment vehicles 
allowing the whole breadth of the concept to unfold and b) 
additional efforts with regard to the exploitation of log-file data 
available. Our Paper explores the consequences of heterogeneous 
tasks with regard to the applicability of an established measure of 
strategic behavior (VOTAT) featured currently in assessment 
instruments. We present a modified conception of this strategy 
suitable for a broader range of tasks and test its utility on an 
empirical basis. Additional value is investigated along the line of 
theory driven educational data mining of process data.   

Keywords 

Complex Problem Solving, Theory Driven Data Mining, 
Exploration Behavior. 

1. INTRODUCTION 
Targeting human behavior in problem situations characterized by 
dynamic and interactive features [1], widespread application of 
Complex Problem Solving (CPS) assessment only began after the 
introduction of formal frameworks and the restriction to so-called 
minimal complex systems [3]. Recent inclusions of CPS as a 
representative of domain-general skills in large-scale studies such 
as the Programme for International Student Assessment (PISA) in 
2012 can be seen as a direct result of these advancements. 

1.1 CPS assessment with finite-state automata 
Initially allowing for the reliable assessment of CPS, thereby 
building towards the foundation of the success of the concept, the 
restriction to tasks based on the formal framework of Linear 
Structural Equations (LSE) is at the same time restrictive with 
regard to the kind of problems that can be modeled: Only 
quantitative relations between variables can be simulated in 
assessment. This restriction can be hindering in several ways as it 
is limiting the necessary behavior for successful handling of the 
problem. Therefore, current work in the domain [3, 4] is targeting 

the inclusion of tasks based on a second formal framework: Finite 
State Automata (FSA), thereby (re-)introducing a whole range of 
problem features to task construction and assessment [2]. 

1.2 Strategies in CPS assessment 
The availability of process data documenting participant’s 
behavior while working on a CPS task presents an ideal point of 
departure for educational data mining along the line of Sao Pedro 
et al. [5]. The problem lies with defining meaningful patterns, that 
can subsequently be used in text replay tagging [5]: Basic analysis 
based on behavioral measures like the number of interactions or 
time working on a task has been rather disappointing from the 
view of explaining variations in CPS performance. Fortunately 
enough, a strategy called vary-one-thing-at-a-time (VOTAT, also 
called control-of-variables-strategy, CVS) can be considered 
optimal for exploring LSE-based tasks [3]. Process analysis built 
on this strategy has been widely employed in CPS assessment. 

1.3 Adapting VOTAT to FSA-based tasks 
The introduction of FSA-based tasks, however, is making the 
analysis and scoring of VOTAT-behavior insufficient. In some 
cases, a participant solely applying VOTAT will not even reach 
essential states for the task’s understanding. To account for this 
change in optimal strategic behavior, we adapted the search for 
adequate behavior to the possibilities of FSA-based tasks. 

Tasks based on LSE show underlying relations that stay the same 
during the whole course of working on them: The effects of 
increasing variable A will always result in a reduction of the value 
in variable Y, making VOTAT the optimal exploration strategy. 
In FSA-based tasks on the other hand, the effect of increasing an 
input variable might not only depend on that variable, but also on 
the input values of other variables, specific arrangements of inputs 
(e.g., one high, one low), or prior output variable values. 

As a result, adequate explorative behavior has to take the state 
into account the task is currently in: A resulting behavioral 
pattern, we call nested-VOTAT, is referring to different ‘areas’ of 
the system in which input variations are showing qualitatively 
comparable effects. Nested-VOTAT is shown, when isolated 
input variations (i.e., a VOTAT-like behavior) are used in these 
areas: Systematically exploring the effects of input variation in 
isolation and for all input variables within an area of similar task 
functioning. This scoring can subsequently be used in procedures 
like text replay tagging [5].  

1.4 Research question  
We are interested in the applicability and empirical usefulness of 
this extension of VOTAT for FSA-based tasks, especially when 
empirically related to classical tasks based on LSE. The approach 
is mixing exploratory elements of data analysis with theoretically 
driven assumptions. 
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2. METHOD 
Participants and procedure: Participants provided data in the 
context of a broader assessment at a German school in November 
2012. There were 565 students who completed the relevant 
assessment of CPS, 54% of participants were female, mean age 
was 14.95 years (SD = 1.30). 

Measures: FSA: Five LSA-based tasks were included in the 
assessment. The test is called MicroFIN [4], ‘Micro’ standing for 
the minimal complex systems approach and ‘FIN’ for the 
framework of finite state automata. Separate phases of MicroFIN 
are targeting knowledge acquisition and knowledge application. 
Empirically, we expect a three-dimensional measurement model 
for MicroFIN, separating the application of nested-VOTAT, 
knowledge acquisition, and knowledge application. 
Scoring of nested-VOTAT: Credit for nested-VOTAT is given per 
task for the isolated variation of all input variables in one of the 
qualitatively different areas of the task. The number of these areas 
varies with the number of states the problem shows different 
relations to input variations for. 

LSE: To get a comparable measure of CPS based on LSE, eight 
MicroDYN tasks were included in testing. MicroDYN [3] 
includes a scoring of VOTAT in the exploration phase, which is 
typically strongly connected to knowledge acquisition. A two-
dimensional measurement model is expected, conflating strategy 
application (i.e., VOTAT) and knowledge acquisition [3]. 

3. RESULTS 
Manifest Correlations: Manifest correlations between nested-
VOTAT indicators and knowledge acquisition and knowledge 
application in MicroFIN were of rather low size per task. This 
result is in line with previous findings with regard to single task 
indicators of MicroFIN and MicroDYN. 

Dimensionality and internal consistency: Exploratory factor 
analysis for nested-VOTAT indicated a single latent factor. 
Internal consistency was poor with Cronbach’s alpha α = .53. 

Latent modeling: Measurement models: Measurement models 
for MicroFIN indicated the separability of nested-VOTAT 
application and knowledge acquisition, as well as a third 
dimension for knowledge application. The three dimensional 
model fitted well, conflating any of the two dimensions resulted in 
significantly worse model fit (χ2 (167) = 230.246, p < .001, 
RMSEA = 0.026, CFI = 0.981, TLI = 0.978; latent factors 
correlated r = .71 to .81, all p < .001). Measurement models for 
MicroDYN indicated the expected two-dimensional model fitting 
well (χ2 (251) = 588.234, p < 0.001, RMSEA = 0.049, CFI = 
0.994, TLI = 0.993, latent correlation of factors r = .79, p < .001). 
Separating the use of VOTAT from knowledge acquisition in 
MicroDYN resulted in estimation problems due to very highly 
correlated factors. 

Structural models: Relations between latent indicators for 
MicroFIN and MicroDYN can be found in Table 1. 

Latent correlations between MicroFIN and MicroDYN (r = .56 to 
.68) were slightly lower than the internal correlations between 
facets within each instrument (r = .71 to .81). No major difference 
with regard to the facets could be found: Knowledge acquisition 
facets were not stronger related to each other, than to the 
knowledge application facet of the other instrument. The facet 
indicating the application of nested-VOTAT in MicroFIN did 
show a stronger connection to knowledge acquisition, than 
knowledge application in MicroFIN (p < .001). 

Table 1: Latent correlations of MicroFIN and MicroDYN 
  MicroFIN MicroDYN 

Test Facet (1) (2) (3) (4) 

MicroFIN 
(2) 0.81    

(3) 0.80 0.71   

MicroDYN 
(4) 0.66 0.64 0.61  

(5) 0.68 0.56 0.62 0.78 

Note: (1) Knowledge acquisition in MicroFIN, (2) Knowledge 
application in MicroFIN, (3) Use of nested-VOTAT in MicroFIN, 
(4) Knowledge acquisition in MicroDYN (incl. use of VOTAT), 
(5) Knowledge application in MicroDYN. All correlations are 
significant on a .01 level. 

4. DISCUSSION 
The present study represents a first advance into utilizing the 
potential of process data in FSA-based tasks. It shows the 
feasibility of including measures of exploration behavior into the 
assessment of CPS even when based on heterogeneous tasks. 

The notion of nested-VOTAT has been shown to be applicable to 
a range of tasks based on FSA with a varying degree of success: 
The low internal consistency of α = .53 could mean different 
optimal strategies being necessary in some of the tasks, as it could 
be related to measurement problems due to the high heterogeneity 
of tasks. A broader variation of item features and alternative 
strategy scorings is needed to clarify this aspect.  

The latent correlations point to the potential of including process-
related measures into FSA-based CPS assessment: Contrary to the 
case of LSE-based tests, the higher heterogeneity of FSA seems to 
result in a more probabilistic relation between strategies in 
exploration and knowledge acquisition.  

Future inquiries into the determinants of CPS performance should 
be built on broad assessment vehicles and careful examination of 
participant behavior. Based on the findings elaborated here, 
approaches of educational data mining like text replay tagging can 
be utilized even when targeting a heterogeneous set of tasks. 
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ABSTRACT 
Mastery learning in intelligent tutoring systems produces a 
differential attrition of students over time, based on their levels of 
knowledge and ability. This results in a systematic bias when 
student data are aggregated to produce learning curves. We 
outline a formal framework, based on Bayesian Knowledge 
Tracing, to evaluate the impact of differential student attrition in 
mastery learning systems, and use simulations to investigate the 
impact of this effect in both homogeneous and mixed populations 
of learners.	  
Keywords	  
Mastery learning, attrition bias, learning curves, aggregate 
learning, heterogeneous learner populations, knowledge tracing 

1. MASTERY ATTRITION BIAS 
Attrition bias occurs when some aspect of an experimental design 
has a significant and systematic effect on whether subjects 
complete all measures [6]. Although students working with an 
intelligent tutoring system (ITS) are not ipso facto in any 
experimental conditions, the mastery learning assessment built 
into many such systems creates an attrition bias. ITSs that 
implement mastery learning assess a student’s performance as she 
works through instructional material, and continually re-evaluate 
whether she has received sufficient practice on targeted skills or 
knowledge components (KCs). This is a commonly used method 
to allocate student time, but by selectively removing students who 
master material quickly from the sample, it differentially biases 
the resulting data in ways that may conceal the learning of 
individuals [4]. ITSs that re-visit previously mastered KCs may 
exhibit this same effect only within blocks of contiguous practice. 

In the Bayesian Knowledge Tracing (BKT)[2] model of student 
learning, the performance of an individual student can be 
described by the equation: 

𝑃! 𝑡 = 𝑃! 𝑡 1 − 𝜃! + (1 − 𝑃! 𝑡 )𝜃! 

where 𝑃! 𝑡  is the probability that the student will give a correct 
response at time t, given the probability of student knowledge, 
𝑃! 𝑡 , and the performance parameters 𝜃!, 𝜃! (slip and guess). 
Consider a homogenous population of learners, all with the same 
parameters. We describe the average correctness of responses as: 

𝐶 𝑡 =
𝐾 𝑡 − 𝑆(𝑡) + 𝐺(𝑡)

𝐾 𝑡 + 𝑈(𝑡)
 

where 𝐾 𝑡  and 𝑈 𝑡  are the numbers of students in the known 
and unknown states at time t, respectively. 𝑆 𝑡  and 𝐺 𝑡  are 
binomial random variables giving the numbers of slips and 
guesses:  

𝑆 𝑡 ~𝐵 𝐾 𝑡 , 𝜃! , 𝐺(𝑡)~𝐵 𝑈 𝑡 , 𝜃!  

It can be shown that the expected behavior of the aggregate 
learning curve: 

𝐸 𝐶 𝑡 = 𝐸[𝐾 𝑡 ] 1 − 𝜃! + (1 − 𝐸[𝐾 𝑡 ])𝜃! 

is controlled by the ratio of students in the known state: 

𝐾 𝑡 =
𝐾 𝑡

𝐾 𝑡 + 𝑈 𝑡
 

The aggregate learning curve may be described as a weighted 
average between the expected performance in the known and 
unknown states, weighted by the ratio of students in each. The 
known and unknown populations will change according to the 
following stochastic recurrence relations: 

𝐾 𝑡 = 𝐾 𝑡 − 1 + 𝐿 𝑡 −𝑀!(𝑡) 

𝑈 𝑡 = 𝑈 𝑡 − 1 − 𝐿 𝑡 −𝑀!(𝑡) 

where 𝐿 𝑡  is the number of students who learn the skill at time t, 
and so transition from the unknown into the known state. It is also 
binomially distributed: 𝐿(𝑡)~𝐵(𝑈 𝑡 − 1 , 𝜃!), where 𝜃! is the 
BKT learning (aka. transition) parameter. 𝑀! 𝑡  and 𝑀!(𝑡) give 
the numbers of students from the known and unknown states, 
respectively, that are judged to have mastered the material by the 
system, and so removed from the population. The initial share of 
students in the known and unknown states is controlled by 𝜃!, the 
initial knowledge parameter from BKT: 

𝐾 1 = 𝐼~𝐵(𝑁, 𝜃!).  

From this we can see that the learning curve begins from a 
theoretical initial value of:  

𝐸[𝐶 1 ] = 𝜃! 1 − 𝜃! + (1 − 𝜃!)𝜃! 

In the no-mastery attrition situation, where 𝑀! 𝑡  and 𝑀! 𝑡  are 
always 0, 𝐾 𝑡  will tend towards 1. Therefore the learning curve 
will converge to a theoretical maximum: 

lim
!→!

𝐸[𝐶 𝑡 ] = 1 − 𝜃!  

We see this behavior in the left-hand plot of Figure 1. 

 
Figure 1: simulated learning curves with (right) and without 

(left) mastery learning 
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However, when mastery learning is involved, we must consider a 
balance of factors. We can expand the 𝐾 𝑡  ratio in terms of its 
recurrence relations: 

𝐾 𝑡 =
𝐾 𝑡 − 1 + 𝐿 𝑡 −𝑀!(𝑡)

𝐾 𝑡 − 1 + 𝑈 𝑡 − 1 −𝑀!(𝑡) −𝑀!(𝑡)
 

Assuming 𝑀!(𝑡) is negligible, the changes in this ratio depend on 
the relative magnitudes of 𝐿 𝑡  and 𝑀!(𝑡). Except for when the 
unknown population has diminished to zero, the denominator of 
the ratio is larger than the numerator, so subtracting 𝑀!(𝑡) from 
both will lead to a reduction in 𝐾 𝑡 . Since a falling 𝐾 𝑡  ratio 
increases the weight that the unknown states play in the aggregate 
curve, mastery learning leads to lower aggregate performance, 
ceteris paribus.  

Although learning and mastery have opposite effects on the 
instantaneous change in the 𝐾 𝑡  ratio, they are not constant or 
independent over time. Learning has a negative-feedback 
relationship to itself: it reduces the size of the unknown student 
population, so the expected value of 𝐿 𝑡  will diminish over time. 
Mastery also has a negative-feedback relationship with the known 
population, but learning tends to counter-act that effect. Thus, 
learning has a positive-reinforcement relationship on mastery. In 
sum, there are many reasons why mastery learning leads to 
aggregate learning curves that do not take the shape we expect in 
their idealized form.  

2. HETEROGENEOUS POPULATIONS 
So far we have been considering idealized situations in which all 
students are instances of a BKT model with a common set of 
parameters. Naturally, we wish to investigate what can happen to 
aggregate learning curves when we have a heterogeneous 
population of different learners. There are very many different 
possible ways a heterogeneous population might be composed, 
and there could be very many perverse aggregate learning curves 
created by specially constructed mixed populations. We illustrate 
just a couple of examples that show interesting aggregate 
behavior. 

 
Figure 2: simulated heterogeneous populations. 

Figure 2 demonstrates a couple of examples representing the 
range of aggregate behavior possible in mixed populations. In the 
left-hand plot, we show a population with similar initial 
knowledge, but composed of both fast-learning and slow-learning 
students. In the right-hand plot, we have a mixed population of 
higher-performing and lower-performing students. In both cases, 
the initial opportunities are a balanced mix of both populations. 
However, as the better students are preferentially removed by the 
mastery-learning system, they represent a diminishing fraction of 
the total population, and eventually the aggregate curve converges 
to that of the lower-performing sub-population. In the one case, 
the aggregate curve demonstrates a rising and falling pattern, 
whereas in the other case, the curve appears to demonstrate 
“negative learning”. In a mixed population, the frequency of 

correct responses is the weighted average across the (j) sub-
populations: 

𝐶 𝑡 = !
!(!) 𝑁 ! (𝑡)

!

!!!
𝐾 ! 𝑡 − 𝑆 ! 𝑡 + 𝐺 ! (𝑡)  

We could easily extend this notation of sub-populations to distinct 
per-student learning profiles. In this situation, 𝐽 = 𝑁 𝑡  and 
𝑁 ! 𝑡  is either 1 or 0, depending on whether the jth student has 
“mastered-out” or not.  

3. CONCLUSIONS 
Aggregate learning curves are used to evaluate and improve 
instructional systems[3]. However, there are significant distortions 
to aggregate measures of student learning created by the 
differential attrition bias inherent to mastery learning systems. 
Aggregate performance on each step shown by learning curves 
need not be representative of the learning of individuals or groups 
of students [4]. Aggregate measures of such attrition-biased data 
will tend to under-represent the amount of learning occurring. 
Explicitly modeling the effect of this attrition bias may be a 
fruitful direction for future research. 
A mixed population with different learning characteristics can 
introduce additional distortions when mastery learning is 
involved. There has been much work already on identifying the 
learning characteristics of individuals and sub-populations[1][5]. 
Further developments in this direction would help build richer and 
more accurate models of learning robust to the attrition bias in 
mixed-population data.  
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ABSTRACT
Examination results are used to judge whether an exami-
nee possesses the desired latent skills. In order to grasp the
skills, it is important to find which skills a question item
contains. The relationship between items and skills may be
represented by what we call a Q-matrix. Recent studies have
been attempting to extract a Q-matrix with non-negative
matrix factorization (NMF) from a set of examinees’ test
scores. However, they did not consider the time-evloving
nature of latent skills. In order to comprehend the learning
effects in the educational process, it is significant to study
how the distribution of examinees’ latent skills changes over
time. In this paper, we propose novel methods for extract-
ing both a Q-matrix and time-evolving latent skills from
examination time series, simultaneously.

1. INTRODUCTION
The relationship between items and skills may be repre-
sented by what we call a Q-matrix [5]. Its original idea came
from the rule space method (RSM) developed by Tatsuoka
et al. [5]. The Q-matrix allows us to determine which skills
are necessary to solve each item. However, the process of de-
termining the skills involved in a given item is a boring and
heavy task. Recently, there exist several studies on how to
extract a Q-matrix from a set of examinees’ test scores [1, 2].
These studies applied the non-negative matrix factorization
(NMF) to the problem of establishing the skills from exam-
inee performance data. They were applied to only static
examination results provided at a certain time. However, in
order to comprehend the learning effects in the educational
process, it is significantly important to study how the distri-
bution of examinees’ latent skills changes over time. There
have been studied on cognitive modeling from student per-
formance over time [3, 4]. From another aspect, we propose
novel methods for extracting time-evolving latent skills. It
enables us to extract both a Q-matrix and time-evolving
latent skills from examination time series, simultaneously.

2. EXTRACTION OF Q-MATRIX WITH NMF
In the Q-matrix extraction with NMF [1, 2], R represents
an observed examination outcome data for m question items
and n examinees. We define Q as a Q-matrix with m items
and k skills, while we define S as an S-matrix with k skills
and the n examinees. We assume that R is factorized into
two matrices Q and S. If Q-matrix is a conjunctive model,
an examination result may be obtained according to the
equation: ¬R = Q ◦ (¬S) [1]. The operator ¬ denotes a
Boolean negation, which is defined as a function that maps
a value of 0 to 1 and any other value to 0. This equation
will yield 0 in R whenever an examinee is missing one or
more skills for a given item, and will yield 1 whenever all
the necessary skills are mastered by an examinee.

3. Q-MATRIX EXTRACTION FROM
EXAMINATION TIME SERIES

We propose an online NMF to extract a stable Q-matrix
from examination time series in an online fashion. The key
idea of the online NMF is that the initial values of matrix in-
herits those of the decomposed matrix at the previous data.
The online NMF runs sequentially every time an examina-
tion result is input. When applying the conventional NMF-
based method into such a sequential scenario, it must calcu-
late a Q-matrix of which the initial values are set to random
ones ignoring the lastest ones. Meanwhile, the online NMF
produces a Q-matix letting the initial values be those ob-
tained at the last time. This enables us to learn a Q-matrix
in an online fashion.

In order to make the obtained Q-matrix more stable, we
further propose an online NMF with regularization. In it we
add the regularization term to the squared error function in
the objective function to be minimized so that the Q-matrix
does not change so much. We introduce here a cost function
as follows:

min
Qt,St

{‖¬Rt − Qt¬St‖2
F + λ(t)(‖Qt−1 − Qt‖2

F )}, (1)

where λ(t) is a monotonous increasing function of time. It is
defined as λ(t) = αt/T , where t is a time in (1, . . . , T ), and α
is a constant parameter of the increasing rate. At each time
t, we find Qt and ¬St according to (1), so that the sum of
the factorization error and regularization term is minimized.
We can do this through an iterative procedure in which each
iteration involves two successive steps corresponding to suc-
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Figure 1: The conventional NMF
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Figure 2: The online NMF
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Figure 3: The online NMF with
Regularization

cessive optimizations with respect to Qt and ¬St. First, we
set Qt by inheriting Qt−1, and choose ¬St by giving random
non-negative values. Then, in the first phase, we minimize
the cost function (1) with respect to ¬St, keeping Qt fixed.
In the second phase, we minimize the same cost function
with respect to Qt, keeping ¬St fixed. This two-stage opti-
mization is then repeated until convergence.

4. EXPERIMENTAL RESULTS
In order to verify the effectiveness of our methods, we made
a synthetic examination time series. We generated a time-
varying S-matrix and a fixed Q-matrix to obtain ¬Rt ac-
cording to the equation ¬Rt = Q ◦ (¬St). A conjunctive
Q-matrix consisted of 31 items and 6 skills. We designed
a time series of ¬St as a process of acquiring skills, on the
basis of the item response theory (IRT) [6].

As a measure of the performance for Q-matrix extraction, we
introduce a Q-matrix error et between Q and an extracted

matrix bQt as follows:

et = ‖bQt − Q‖2
F . (2)

Figures 1 and 2 show the experimental results obtained us-
ing the coventional NMF and the online NMF. Note that
the factorized solutions obtained using the NMF may not be
unique due to the randomness of the initial matrices. Hence
we calculated the mean of Q-matrix errors from 10-fold sim-
ulations and indicated error bars indicating the standard de-
viations. The Q-matrix errors both in Figures 1 and 2 were
large at the initial and the final stages, while the ranks of
matrices were small at the same stages. We calculated the
rank of each matrix ¬Rt by means of QR decomposition.
As a result, there was a correlation between the Q-matrix
error and the rank of matrix. Note that in the conventional
NMF, the Q-matrix error did not become zero at any stage,
and the standard deviations were uniformly large. In the
online NMF, the Q-matrix errors became zero at the middle
stage of t = 7, · · · , 11. However, the Q-matrix error grad-
ually increased after t = 12. Figure 3 shows the result of
the online NMF with regularization. It overcame the prob-
lem as above. That is, the Q-matrix error became zero after
t = 12.

5. CONCLUSIONS
In this paper, we have introduced the online NMF with reg-
ularization for the purpose of extracting a Q-matrix and a
time-evolving S-matrix from time series of examination re-
sults. We have designed it in order to extract a stable Q-
matrix in an online fashion. We have employed a synthetic
data set to demonstrate that it performs more accurately
and in a more stable way than the conventional NMF in the
extraction of the Q-matrix.
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ABSTRACT
A popular type of problem in online homework involves a set
of several true/false statements and requires that students
submit their answers to all the statements at once. Such
problems can force a student to submit many responses to
the same true/false statement. It is possible to examine stu-
dent submission patterns to problems of this type with the
goal of determining which of the individual true/false state-
ments exhibit a large proportion of response switches and
which statements exhibit largely consistent responses. This
paper describes algorithms that allow an instructor to un-
cover those statements that exhibit class-wide randomness
and also those that exhibit a class-wide preference for an in-
correct response. The utility of the approach is suggested by
the fact that examining statements which emerge as outliers
according to these metrics uncovers several statements that
probe known student misconceptions.

1. INTRODUCTION
A popular type of problem in the LON-CAPA online home-
work network [1] consists of a situation or set of situations
followed by five related true/false statements [2] (an exam-
ple is shown in Fig. 1). The student is required to submit
answers to all the true/false statements at once and receives
only correct/incorrect feedback. A student who submits an
incorrect answer will not know which of the statements has
been answered incorrectly or even how many of the state-
ments are incorrect, and so may submit as many as 25 = 32
responses before arriving at the correct answer.

One goal of this work is to develop a means to detect state-
ments to which the class consistently responds incorrectly.
Such response patterns correlate with strong misconceptions.
The definition of “strong misconception” in the context of
this work is an intuitive belief that is in conflict with the
concepts taught in the course. An example is the first state-
ment in the problem shown in Fig. 1. Research has shown
that students in introductory physics courses have a strong
tendency to believe that there must be a net force in the di-

Figure 1: An example of the type of problem dis-
cussed in this paper.

rection of motion, even when this belief conflicts with New-
ton’s First Law [3, 4]. Thus, one might expect the class
to consistently answer “True” to this statement, even when
forced to answer multiple times.

Another complementary goal is to investigate whether sig-
nificant class-wide randomness in the answers to a given
statement can be an indicator of incomplete understanding.
Again, the problem of Fig. 1 provides a useful illustration.
If a significant portion of the class is indeed convinced that
a net force is necessary to produce constant velocity, this
could produce a conflict in the minds of the students about
the consequences of applying more force. Will the extra
force produce a steady acceleration in accordance with New-
ton’s Second Law, or will there be a transient acceleration
dropping to zero when the appropriate velocity is reached?
Because of these conflicting ideas, one might expect students
to exhibit a tendency to change their answer to the second
statement shown in Fig. 1.

2. ASSESSING CONSISTENCY
A class with an average near 100% correct submissions to a
certain statement is consistently giving the correct response.
However, because a true/false statement has only one in-
correct response, an average near 0% correct submissions
also implies consistent responses (the class is continuing to
respond with the one incorrect answer). If the class is an-
swering randomly, the average will approach 50% correct
submissions as the number of tries becomes large. Thus, a
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submission-weighted consistency score Csw can be defined:

Csw =
Ns,correct

Ns,tot

− 0.5 (1)

where Ns,correct is the number of correct submissions to the
statement and Ns,tot is the total number of submissions to
the statement. With this definition, Csw = +0.5 is complete
correctness and Csw = −0.5 is complete incorrectness.

A respondent-weighted measure of the consistency of a class
on a particular statement Crw can be defined by analyzing
the first submission of each respondent. As an equation:

Crw =
Ns,i,correct −Ns,i,incorrect

Nr,tot

(2)

where Ns,i,correct is the number of correct initial submis-
sions, Ns,i,incorrect is the number of incorrect initial submis-
sions and Nr,tot is the total number respondents.

The overall consistency score Ctot is then defined:

Ctot = Csw ×Crw × (sign(Csw) + sign(Crw)). (3)

3. ASSESSING RANDOMNESS
The second goal is to uncover statements that produce fre-
quent switching of the response. The total number of pos-
sible switches for a class making Ns,tot submissions to a
statement is Ns,tot − Nr,tot where Nr,tot is the number of
respondents. A switch is “realized” if the current submission
is different from the prior one. A submission-weighted ran-
domness score Rsw can be defined as the fraction of possible
switches that are realized:

Rsw =
Ns,switch

Ns,tot −Nr,tot

(4)

where Ns,switch is the number of submissions that represent
a switch of the answer from the immediate predecessor.

A respondent-weighted measure of randomness Rrw can be
defined by determining what fraction of the students who re-
sponded to the statement ever switched their response from
correct to incorrect. As an equation:

Rrw =
Nr,correct→incorrect

Nr,tot

(5)

where Nr,correct→incorrect is the number of respondents who
ever switched their response from correct to incorrect.

The overall randomness score is defined:

Rtot = Rsw ×Rrw. (6)

4. EVIDENCE FOR VALIDITY
Fig. 2 is a scatter plot of the overall consistency score versus
the overall randomness score for 250 true/false statements
from problems of the type described. The plot allows a re-
examination of the example of Fig. 1. The expectation out-
lined in the Introduction is that the first statement shown in
the problem of Fig. 1 should qualify as a strong misconcep-
tion and that the second statement should exhibit significant
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Figure 2: Rtot (defined in Eq. 6) vs. Ctot (defined in
Eq. 3) for 250 true/false statements.

randomness. The two points outlined with circles in Fig. 2
correspond to these statements. As expected, the first state-
ment has a strongly negative consistency score (-0.33) while
the second statement has a strong randomness score (0.25).

5. CONCLUSIONS
This paper has presented data-mining algorithms for as-
sessing the consistency and the randomness of student re-
sponses to individual true/false statements. These algo-
rithms are directly applicable to problems involving several
linked true/false statements, which have been implemented
in online homework. Investigation of examples indicates
that the consistency score can uncover class-wide miscon-
ceptions and the randomness score can be a useful indicator
of incomplete understanding among the class. Both scores
can also serve to uncover errors in problem construction.
The promise of the approach is that a simple question for-
mat that is suitable for use in online homework or as part
of online courses can uncover the specific concepts that give
a significant portion of the class problems.
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ABSTRACT 

We are using causal modeling to analyze relationships between 
pedagogical intervention, students’ attitudes, affective states, 
perceptions and outcomes, based on the data from a math tutor, 
Wayang Outpost. The causal model generated gives interpretable 
multi level interrelationships within the data variables identifying 
direct and indirect effects among them. We observed that among 
the four affective variables, confidence and frustration are more 
tightly linked with their performance and ability whereas interest 
and excitement are more related to their attitude and appreciation 
of math and tutor. 
 

1. INTRODUCTION 
In recent years, researchers have found that attending to students' 
motivational and affective characteristics are as crucial as 
cognitive aspects for effective learning. Since students’ cognitive, 
affective and behavioral aspects are interconnected, analyzing 
their interrelationships give us clearer understanding of the 
learning process.  

Causal models [1, 2] are graphical models that make the 
additional assumption that the links between nodes represent 
causal influence. By causal, we mean that a link A→B means that 
if we intervene and change the value of A, then B will change. 
Based on the conditional independencies within the data, causal 
modeling makes causal inferences among the variables.  

We used TETRAD, a free causal modeling software package [2] 
to generate causal graphs. We also made use of an extension to 
Tetrad, developed by Doug Selent, a graduate student at WPI, that 
enabled us to restrict links on the basis of the magnitude of the 
relation between the pair of nodes. It measures the magnitude of 
the relation using R2, the amount of the variability accounted for 
by the relationship between the nodes.   

The data comes from students working with Wayang Outpost, an 
adaptive math tutoring system that helps students learn to solve 
standardized-test questions, in particular state-based exams taken 
at the end of high school in the USA.  

We are using data from 94 middle school students, in the 7th and 
8th grade (approximately 12 to 14 years old), who were part of 
mathematics classes in a rural-area public middle school in 
Massachusetts, USA. As part of the activity, students took a 
survey on the first day, which assessed their baseline achievement 
level, as well as affective and motivational factors related to 
mathematics problem solving. The students took identical survey 
at the end of the study. Student responses were collected in 5-
point Likert scale.  

Based on the survey data, we created different variables, which 
we will be explaining in the following paragraphs. 
Attitudes and appreciation of Math: Students were asked 
various questions related to their attitude towards Math before 
they used the tutor.  
Math Self Concept (Sample item: How good would you be at 
learning something new in math?) 
Math Liking (Sample item: How much do you like doing math?) 
Math Value (Sample item: In general, how useful is what you 
learn in math?) 

Affect: Students were asked questions on four affective variables 
while using the tutor: Confident, Frustrated, Interested, Excited 
(Sample Item: How confident do you feel when solving math 
problems?) 
Pedagogical intervention: MathFluencyTraining (training on 
basic math facts, e.g. multiplication tables, and retrieval speed) 
Students were randomly assigned to either receive or not receive 
math fluency training. 
Perception of tutoring system: PerceptionWayang (Students’ 
perception of the tutor) 
Perception_LC (Students’ perception of learning companion, an 
animated learning peer who offers encouragement to the student) 

Pretest Score and learningGain: Students took MCAS (state 
standardized test) test before using the tutoring system. We are 
using this test score as pretest score.  
We calculate the difference in test scores between the MCAS tests 
students took before and after using the tutor and designate that 
value as learningGain. 
Gain and outcomes 
Based on student’s pre and post survey responses, gain outcomes 
were calculated. We are using the base and gain values for the 
constructs and not considering post values (which are redundant 
once we took the first the based and gain values). 

2. CAUSAL MODELING 
We inputted the data in TETRAD and performed a model search 
using the PC search algorithm and generated a graph as shown in 
figure 1. PC search algorithm assumes that there are no hidden 
common causes between observed variables in the input (i.e., 
variables from the data set, or observed variables in the input 
graph) and that the graphical structure sought has no cycles [2]. 
The causal links are color-coded (corresponding to the R2 value: 
red >0.5, orange >0.1, yellow >0.05) and ‘plus’ sign denotes 
positive relationship and ‘minus’ sign denotes negative 
relationships. We also input domain knowledge based on temporal 
precedence. For example: gender is put on higher knowledge tier 
than math self concept so that there could be a causal link directed 
from gender to math self-concept but not the other way round.  

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 344



www.manaraa.com

 

 
Figure 1 Causal model of attitude, affect and outcomes  

We observe very strong relationships between student attitude 
towards math and her affective states within the tutor. Students 
who have higher self-concept in math report being more 
Confident. Students who like math report being more Interested 
and Excited while using the tutor. While Interested, Excited and 
Confident are more tightly coupled with attitude variables, 
Frustrated is relatively separate and connected to that web via the 
variable Confident. 
In the correlation matrix, all three math attitude variables are 
related to Interested, Excited, and Confident and only 
mathSelfConcept and MathLiking are negatively correlated to 
Frustrated (mathValue has no relation to Frustrated). Three math 
attitude variables are also highly correlated among themselves. 
Causal model has teased apart this dense correlation web into 
sparser directed structure.  

From causal model, we see that gender directly affects mathLiking 
and mathValue. Affect variables Excited and Interested are 
indirectly affected by gender mediating through mathLiking. The 
causal structure (genderàmathLikingà Interested) asserts that 
female students like math more, which makes them more 
interested while using Wayang. There is no direct link 
genderàInterested which implies that the female students who 
like math as much as male students do not necessarily have any 
higher Interest level. But, this could be a case of multicollinearity 
since Correlation (mathLiking, Interest)=0.85** [4]. 

Math fluency training has a significant impact in improving 
learning gain of students as shown by the link Math Fluency 
(Training à  learningGain.) This indicates that a group of students 
who got math fluency training achieved higher improvement in 
math tests after using the software. A paper has been published 
about this [3]; however, it is interesting to see the strength of this 
causality compared to other factors. 
Pretest is only indirectly related to affect variables through 
attitude variables as mediators. This suggests that higher 

knowledge has to be internalized as higher math self-concept and 
math liking to be reflected as higher enjoyment of the tutor. 

In terms of affective variables, we can see the following two 
clusters: 

Performance oriented (incoming math ability) student 
descriptors:  
preTest, math self-conceptàconfidence and frustration 

Students who have higher prior knowledge and better self concept 
in math reported higher confidence and lower frustration. 
Liking and Appreciation: 
Math value, math liking, perception of LC, perception of Wayang 
à interest and excitement 

Also, students who reported gain in confidence also had higher 
gain in self-concept in math and those who gained in interest and 
excitement also ended up with higher liking for math and had 
greater value for math. We also observe that gender belongs to 
this cluster (related to mathValue, mathLiking, interest and 
excitement). Basically, among the four affective variables, 
confidence and frustration are more tightly linked with their 
performance and ability whereas interest and excitement are more 
related to their attitude and appreciation of math and tutor.  
 

3. CONCLUSIONS  
Since correlation underdetermines causality, there are multiple 
equivalent causal models that can be generated from the same set 
of data. Moreover, the stronger causal assumptions employed by 
this approach add more analytical power but also introduce higher 
chances of inaccuracy. Researchers have to, therefore, be careful 
about interpreting the causal relations of the model before making 
any causal claims. Most of the times, causal models are only able 
to summarize associations rather than uncover new causal 
mechanisms. It basically depends on whether we are able to 
observe all possible common causes in our data set. We do not 
recommend causal modeling to use as a tool to make strong causal 
conclusions, as we would do with randomized controlled studies. 
A thorough understanding of the domain is required before we 
make causal interpretations of the model. Causal models can only 
be as good as the variables that we are able to include in the 
modeling process. But given the data variables, causal modeling is 
the most superior exploratory tool available compared to the 
existing statistical approaches such as correlation and regression. 
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ABSTRACT
Reviews of technical articles or documents must be thor-
ough in discussing their content. At times a review may
be based on just one section in a document, say the Intro-
duction. Review coverage is the extent to which a review
covers the “important topics” in a document. In this paper
we present an approach to evaluate the coverage of a sub-
mission by a review. We use a novel agglomerative cluster-
ing technique to group the submission’s sentences into topic
clusters. We identify topic sentences from these clusters, and
calculate review coverage in terms of the overlaps between
the review and the submission’s topic sentences. We evalu-
ate our coverage identification approach on peer-review data
from Expertiza, a collaborative, web-based learning applica-
tion. Our approach produces a high correlation of 0.51 with
human-provided coverage values.

Keywords
review quality, review coverage, topic identification, agglom-
erative clustering, lexico-semantic matching

1. INTRODUCTION
The past few years have witnessed a growth in Massive Open
Online Courses (MOOCs) such as Coursera and Udacity, as
a platform for web-based collaborative learning. MOOCs
require a scalable means of assessment, and for material that
cannot be assessed by multiple-choice tests, peer-review fills
the bill. Feedback in the form of text-based reviews help
authors identify mistakes in their work, and learn possible
ways of improving them. Since reviews play a crucial role
in helping authors, it is important to ensure that they are
complete, and their content is useful to authors. At times
reviews may cover just one section in the author’s submission
(the text under review), say the Introduction, and provide
no feedback on any of the other sections in the document.

Kuhne et al. [1] found that authors are content with review-
ers who have made an effort to read and understand the
author’s work. Reviews that cover the important sections

of the author’s work are likely to be more useful, since they
are more complete than reviews discussing a single section.
A complete review also reflects positively on a reviewer’s
understanding of the author’s work.

Existing review assessment approaches use shallow text fea-
tures such as word count to analyze their usefulness. Xiong
et al. use a bag-of-words exact match approach to identify
instances of problems (in the author’s work) caught by peer-
reviews [2]. Cho uses machine classification techniques such
as näıve Bayes, SVM (support vector machines) and deci-
sion trees to classify feedback [3]. At present none of the
automatic review analysis approaches look for the degree of
coverage of a submission by a review. One of the chief con-
tributions of this paper is the focus on the important but
often ignored problem of identifying review coverage.

2. APPROACH
We employ an agglomerative clustering technique to group
submission sentences into clusters or topics, and then iden-
tify the most representative sentences from across the dif-
ferent clusters. Cluster-based approaches have been widely
applied to text and other knowledge mining applications.
Steinbach et al. use bisecting k-means to cluster documents
[7]. Qazvinian et al. [5] use a cluster-based approach to
determine the sentences central to a document. They use
a hierarchical agglomeration algorithm to cluster sentences.
The ClusterRank algorithm, proposed by Garg et al. [6], ap-
plies a clustering technique to identify sentences belonging
to the same topic.

Sentences discussing the same topic, but containing differ-
ent terms may not be effectively grouped by a clustering
approach relying purely on the frequency of words. Stein-
bach et al. found that agglomerative clustering with a word-
frequency based matching made mistakes by grouping near-
est documents belonging to different classes into the same
cluster [7].

We employ a lexico-semantic matching technique, which cap-
tures context information. We use a word order graph to
represent text, since it captures syntax or order of tokens in
a text. Word order graphs are suited for identifying lexical
and voice changes, which are common among paraphrased
text. Similarity should capture the degree of relatedness
between texts. Hence we use a WordNet-based metric [8].
Topic-representative sentences are selected from the most
significant clusters. A review is compared with topic sen-
tences to identify coverage.
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Figure 1: Submission with its topic sentences, and
three reviews with high, medium and no coverage of
the topic sentences

Table 1: Correlation between system-generated and
human-provided coverage values.

Approach correlation Avg. # words

Our system 0.51 108
MEAD summarizer 0.46 100

In order to illustrate our approach we use real-world sub-
mission and review data from assignments completed using
Expertiza [9]. Expertiza is a collaborative, web-based learn-
ing application that helps students submit assignments and
peer review each other’s work. Figure 1 contains a sam-
ple submission with its topic-representative sentences high-
lighted in bold, and three sample reviews with high, medium
and no coverage of the submission’s topic sentences. The
first review covers the submission because it mentions ethi-
cal principles and ethics. However, the review with medium
coverage mentions just ethics, and the review with no cov-
erage does not contain any relevant information.

3. EXPERIMENT
In this section we study the usefulness of our approach in
determining a review’s coverage. We compare our approach
with MEAD, a centroid-based summarization approach [4].
Radev et al.’s approach uses the most common words in a
document to identify the best sentences to be included in a
summary. MEAD is an extractive summarization approach,
and since in our approach too we extract the most represen-
tative sentences from a submission, we find MEAD to be an
ideal system to compare our approach with.

We use peer-review data from computer science classes over
a couple of semesters to evaluate our approach. A dataset
containing 577 reviews and submissions was selected from
Expertiza [9]. Review data is annotated on a scale of 0-
5, where 0 indicates no coverage and 5 indicates maximum
coverage.

We identify the Spearman correlation between system-generated
and human-provided coverage values (Table 1). Our ap-
proach produces a correlation of 0.51, while MEAD’s cover-

age produces a correlation of 0.46. A positive correlation of
0.51 indicates that the system has a good degree of agree-
ment with human-provided coverage values.

Topic sentences generated by our approach have almost the
same number of words as those generated by MEAD. How-
ever, our approach produces higher correlations with human
ratings than the output from the MEAD summarizer. Thus,
our approach is able to effectively identify topic-representative
sentences from a document, and estimate a review’s coverage
of these topic sentences.

4. CONCLUSION
Assessment of reviews is an important problem in the fields
of education, science and human resources, and so it is wor-
thy of serious attention. Our aim is to utilize natural lan-
guage processing techniques to determine review coverage.
Since reviews are central to the process of assessment it is
important to ensure that they cover the main points of a
submission. In this paper we have explained our approach
to solving the problem of automatically determining a re-
view’s coverage of a submission. Ours is a pioneering effort
in applying clustering and topic identification techniques to
calculate review coverage. We have also shown that our re-
view coverage approach produces a good correlation of 0.51
with human-provided coverage values.
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ABSTRACT 
Affective computing in e-learning is playing a vital role, as 
emotions can strongly impact on learner’s results. Detecting 
affective states and managing them can lead to a learning 
performance improvement. For this, different sensors can be used 
to monitor user’s interactions and detect emotional changes. Due 
to the huge varied data volume a multimodal approach based on 
data mining has been proposed. 

Keywords 

Affective Computing, Educational Data Mining, Emotions, 
Adaptive Systems, User Modeling.  

1. RESEARCH APPROACH 
Given  the strong role emotions play on the learning process, by 
combining in a wise way the use of emotional information and 
user interactions in an e-learning platform, an impact on user’s 
performance and cognition can be expected [3]. The ongoing 
research works in the literature aim to progress on managing 
different information, sources such as physiological sensors or 
face tracking systems [1]. To this, data mining is applied to 
provide personalized feedback to learners, which aims at 
supporting them in achieving better results on their tasks [5].  

The approach followed in the MAMIPEC project [4] is focused 
on addressing the problem of emotion detection from a 
multimodal viewpoint by using different data sources. Our goal 
here is to combine those data sources to model the learner’s 
current affective state and improve thus the possible results 
obtained from a single data source [1]. The learner model, which 
is based on standards, is thus enriched with new features that are 
used to provide personalized feedback during the learning 
process. In particular, the research of this ongoing Ph.D work 
focuses on identifying and modeling affective states to support 
adaptive features in educational systems. The top-level hypothesis 
behind the research is that the application of data mining 
techniques to different emotional data sources can improve the 
modeling of the learners’ affective state in terms of standards and 
thus, better provide a personalized support in open educational 
service oriented architectures (i.e. those that take advantage of 
standards-based models). 

2. INITIAL EXPERIMENTS FOR DATA 
GATHERING 
A large-scale experiment was carried out to get data to feed the 
data mining system. More than 90 participants came to our lab 
and were asked to solve a series of mathematical tasks (the 
mathematical domain was chosen as Maths can awaken different 
intense emotions in the learner [2]) in a dotLRN platform while 
being monitored. Physiological, facial and interaction data were 
gathered during the experiment. Physiological signals recorded 
were: i) the participant’s heart rate, ii) the participant’s breath 
frequency, iii) the participant’s galvanic skin response (electrical 
conductance of participant’s skin) and temperature. For detecting 
changes in the signals recorded, baselines for the involved sensors 
were computed. Besides physiological sensor devices, a Microsoft 
Kinect device was used to extract participant’s facial 
characteristic points in order to get their expressions. 
Additionally, a key-logger and a mouse-tracker were developed in 
order to track all the interactions performed by the user with the 
platform during de experiment. A webcam registered the face of 
the participant during all the session as well as the desktop was 
also recorded. Also, some questionnaires were offered to the 
participants, such as Big Five Inventory (BFI) to know the main 
five structural dimensions of individual’s personality, General 
Self-Efficacy Scale (GSE) to get the self-beliefs of the 
participants to cope with a variety of difficult demands in life and 
the Positive and Negative Affect Schedule (PANAS). 

To evaluate the emotions experienced by participants during the 
tasks, participants were asked to fulfill a SAM (Self-Assessment 
Manikin) scale after each exercise. Moreover, after each 
mathematical task, participants were also asked to write a self 
report (as plain text) regarding their feelings when doing the task.  

3. DATA MINING 
With this collected data, the work on this Ph.D focuses on 
detecting the emotions felt by the users by processing the 
different data sources obtained during the experience.  

3.1 Data Preprocessing 
For the keystroke data, some measures were processed such as 
mean time between strokes or between stroke and release.  For the 
sensor data, first of all, the data were split into tasks and the noisy 
values were removed. Once done this, the mean of the 
physiological baseline recorded before the experiment was 
calculated so all the other values are compared to this mean. The 
mean of all these differences is stored for all the tasks solved by 
each participant. For detecting affective facial information the 
Kinect is expected to provide facial patterns or gestures and link 
them to emotional states. To do this a psycho-educational expert 
is currently viewing the webcam captured videos in order to 
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detect relevant facial expressions during the experiment. The 
mouse-tracking data have not been processed either. Although 
some measures can be easily calculated (mean speed, distance 
moved, etc) from the interactions recorded, there is a need to 
research how to identify meaningful individual mouse movements  
(i.e. when the mouse draws differentiated paths). 

3.2 Data Mining Methods 
Currently, two different approaches are being explored: one for 
predicting user’s emotion from the text typed (in the emotional 
report) and another where all the processed information was used 
as input to predict the SAM valence values given by learners. 

3.2.1  Text Mining 
Three of the tasks consisted in typing participants’ emotions (like 
a typed think-aloud), these tasks were used to gather information 
from the keyboard interactions, but also to get emotional 
knowledge from the text. A simple approach was adopted, 
consisting of processing the text typed by the user searching for 
positive and negative terms included in the emotional valence 
labeled MPQA Opinion Corpus affective database to provide an 
emotional score to each text. A psycho-emotional expert also 
assigned an emotional valence score to each text after its reading 
to label the data for its use with supervised learning methods. 
When comparing the text mining scores with the experts’ score 
based on the participants’ reports, if both are binned into 2 
categories (Positive-Negative), a 73.42% of success prediction 
rate was achieved. 

3.2.2 Affective States Detection 
Another data mining approach aims to predict the user’s 
emotional valence while dealing with a given task based on the 
processed records obtained during that task: questionnaires scores, 
text mining scores, keyboard interactions and physiological data. 
To use supervised learning methods, two different labeling 
systems were used as results to be predicted: the SAM scores 
given by the participants and experts’ emotional tagging based on 
users’ emotional report afterwards. 
For the data mining process, prediction trees and naïve bayes 
predictors were used. The biggest effort on this stage was made 
by grouping and binning different data sources in different ways 
to get the best results. Two, three and four-category binning was 
used when binning valence values and text mining scores (using 
equal percentile values so all the bins have the same probability 
and equal spaced intervals over the domain range).  After every 
different combination, naïve bayes and prediction tree (C4.5) 
nodes were executed with leave-one-out sampling. 
The best result were obtained using a naïve bayes algorithm with 
a 79,72% success rate on predicting the valence given by the 
experts ignoring the neutral tagged values. 

4. OPEN ISSUES 
The work reported so far has helped to identify several kinds of 
open issues to deal with i) the infrastructure for the data gathering 
and synchronization, ii) the emotions detection of neutral values, 
iii) the data mining approach itself, and iv) reducing the 

intrusiveness. Results achieved so far suggest that the way sensor 
data have been preprocessed might need to be redesigned, 
focusing not only on using data mining over all the data gathered 
preprocessed, but also on using data mining to preprocess single 
signals data (eg. Keystrokes, mouse movements). Finally, a study 
on which data sources are more valuable for emotions detection 
should be done, focusing on getting emotional information in a 
non-intrusive and cheap way. 

5. ONGOING WORKS 
Several open issues have been identified analyzing the data 
gathered. In particular, there is a need to redefine certain aspects 
from the data gathering in order to provide more meaningful 
information from where to obtain better mining results in future 
experiments. The approach proposed at the end of this stage must 
offer an affective state detection strong enough to provide a 
robust base to the model generated in the next layers. 

Proposed work aims to provide an accurate standards-based user 
model useful to supply personalized assistance taking the 
learner’s affective state into account. The first layer of this work 
is still being addressed, studying the state of the art in order to 
meet multimodal approaches on emotion detection and also being 
able to detect different emotions by using data mining.  
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ABSTRACT
We use a two-parameter family of bounded distribution func-
tions (Kumaraswamy) to fit electronic textbook (etext) us-
age in 20 blended and online courses from Michigan State
University, MIT, and edX. We observe clusters of courses
in the parameter space that correlate with course structural
features such as frequency of exams.

Keywords
Course structure, etexts, MOOCs, usage mining

1. INTRODUCTION
When etexts are integrated into Learning Management Sys-
tems (LMS), one can extract the number, frequency and
duration of page views from the tracking logs. These data
have fed back into etext interface design [2] and personalized
approaches aimed at understanding student reading habits
and comprehension [3], but an incomplete picture remains
in terms of guiding instructors on how to integrate etexts
into courses. This is particularly salient given studies which
point to low use of traditional textbooks and poor correla-
tion of use with performance [4].

We consider the fraction of etext pages accessed by students
in courses of varying structure. Aspects of course struc-
ture include the primary/supplementary role of the etext,
its integration with graded assessment, and the frequency
of exams. Our data come from blended and distance learn-
ing courses from Michigan State University (MSU) and from
open online courses from the RELATE group at the Mas-
sachusetts Institute of Technology (MIT) and edX. The MSU
populations are typical for introductory science at a large
state university. In contrast, the student populations in open
online courses are highly variable in age and preparation [1].

Courses in this study use either LON-CAPA, with e-texts as
modularized html pages, or edX, which uses digital versions
of traditional textbooks within simple navigation. We fit the

distribution of unique page views in each course using a two-
parameter family of distribution functions with support on
the interval [0,1]. The complimentary cumulative distribu-
tion function (CCDF) of the Kumaraswamy distribution is
given by F (x; a, b) = (1−xa)b . The (a, b) parameters which
determine the shape of each distribution may not be famil-
iar. We highlight four relevant regions: bimodal (a, b < 1),
low usage (a < 1, b > 1), high usage (a > 1, b < 1), and uni-
modal (a, b > 1). Note the probability distributions (PDF,
not CCDF) associated with a = b = 0.5 (bimodal) and
a = b = 1.5 (unimodal) have the same “average” use.

2. BLENDED COURSES
We first consider nine blended courses from MSU (same
instructor), all Fall semester Mechanics using LON-CAPA
for weekly homework and readings from the MultiMedia
Physics1 etext. We group the courses by structure differ-
ences as follows: MSU supplemental (N = 898, 911, 808), in
which the etext was available alongside a physical textbook;
MSU primary (N = 159, 190), in which the etext was the
only learning text; and MSU reformed (N = 211, 209, 197, 254),
which used a primary etext along with reading quizzes and
a switch to frequent exams (every two weeks).

Fig. 1(a) shows both the CCDFs (inlay) and the clustering
of a, b values in the fit-parameter space, where we also indi-
cate contours of constant fractional usage. MSU supplemen-
tal courses are in the low-usage region, average view fraction
(avf) < 0.1, while MSU primary courses are in the unimodal
region (avf ≈ 0.55). The change of role from supplementary
to primary assigned textbook appears to have a significant
impact. Proximity to the (a = b = 1) saddle point indi-
cates that the MSU primary view distributions are almost
flat. MSU reformed courses are in the high-usage region (avf
≈ 0.8). Unfortunately we cannot separate the effect of fre-
quent exams from reading questions, as both changes were
implemented together.

3. ONLINE COURSES
Our second analysis involves three types of purely online
courses: MSU distance (N = 155, 231, 165, 187, 163), online
intro physics courses; RELATE reformed (N = 58, 100),
open online intro physics courses from the RELATE group
at MIT; MITx (N = 7158, 4829, 2686, 1935), four MOOCs
from MITx. Student populations for open online courses
represent only certificate earners. MSU courses used the

1http://www.pa.msu.edu/bauer/mmp/
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(a) (b)

Figure 1: Etext usage via Kumaraswamy a, b-parameters for (a) blended courses and (b) online courses.
Contour lines represent the average fraction of the etext viewed. CCDFs (bold) with curve fits (smooth) are
displayed as an inlay.

same etext and LMS as the previously discussed blended
courses. RELATE reformed courses used LON-CAPA with a
Mechanics text developed by the RELATE group [5]. MITx
MOOCs were disseminated through edX.

The online course data in Fig. 1(b) display similar, if slightly
more nuanced, clustering of usage by course structure. MSU
distance courses cluster near the saddle point (a = b = 1),
but end up within three of the four usage regions. Since the
average view fraction remains similar to the blended courses
(0.5−0.6), the points on either side of the saddle point lend
themselves to the following interpretation: while students
in MSU primary (blended) courses typically accessed 55%
of the etext (unimodal), students in distance courses viewed
either more or less than this (bimodal).

The two RELATE courses in Fig. 1(b) both have similar av-
erage view fraction (≈ 0.78), but one (summer) appears in
the unimodal region and the other (spring) in the high-usage
region. The spring instance required students to complete
all 14 weekly units; in summer, the last three units were
optional. Only a small fraction of students completed the
optional assignments, explaining the shift. The three MITx
MOOCs in a tight cluster are computer science offerings (avf
≈ 0.1). A fourth, Solid-State Chemistry, lies just outside
(avf ≈ 0.2). The MOOCs fall in the same region of the pa-
rameter space as the MSU supplemental (blended) courses,
which is consistent with their similar course structure: all
provide their etext as a supplement text.

4. DISCUSSION AND CONCLUSIONS
Course structure appears to have a dominant and predictable
effect on etext usage distributions. Our framework, based

on clustering in the two-parameter space of Kumaraswamy
distributions, is easy to apply and generalizes to any finite
resource type tracked within an LMS (e.g. lecture videos,
homework). Instructors may exploit the dramatic correla-
tion of course structure and etext usage to encourage par-
ticular student usage of their online materials.
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Abstract 

In this paper we propose one possible way to preprocess 

data according to Activity theory. Such an approach is 

particularly interesting in Educational Data Mining.  

Keywords 
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1 INTRODUCTION 
 

This paper relies on the following approach:  

1. Activity theory [1] is frequently used to study human 

activity specially CSCW and CSCL because this theory is 

particularly suitable to understand what the people do when 

they cooperate or collaborate.  

2. One major problem in data-mining consists in the data 

preprocessing. Better those data are preprocessed, more 

information their treatment makes it possible to obtain.  

3. The idea developed here is thus to rely on Activity 

theory to preprocess the data before their treatment. This 

preprocessing should make it possible to get more 

interesting results to study what occurs on a CSCW 

platform.  

In a first time, we present the methodology we have 

adopted and, in a second, the application of this 

methodology to the analysis of the traces left during five 

years by the preservice teachers of the Reunion Island 

teacher training school.  

 

2 METHODOLOGY 
 

Activity theory (AT). As we can see on Figure 1, in the 

activity, the subject pursues a goal that results in an 

outcome. For this, he uses tools and acts within a 

community. His relation to this community is defined by 

rules. To achieve the goal, it may be necessary to establish 

a division of labor within the community. For example, in 

the context of hunting, there will be hunters and beaters.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Triangles of AT according to Engeström [1].  

 

Using Activity Theory to understand what happens on a 

platform is very common in the field of CSCL.  For 

Halverson [2], it is powerful for, at least, three reasons: 1. 

this theory names well its theoretical constructs which are 

useful to manipulate data. 2. In this theory, the individual is 

at the center of everything and this is fundamental when we 

study learning. 3. Activity system diagrams highlight the 

processes and show both descriptive and rhetorical power. 

 

Data mining. In education, the use of groupware and 

learning management system grows increasingly. Most of 

these systems record the traces of the users’ activity. These 

traces constitute huge masses of data and permit to study 

the real activity of the subjects. Very broadly, the objective 

is to analyze what works and what does not in a given 

device to improve it. For Romero & al [3] there are four 

essential steps in data-mining: Collect data, Data 

preprocessing, Apply data mining, Interpret, evaluate and 

deploy the results. Data preprocessing is an important point 

for data mining because data tend to be incomplete, noisy 

and inconsistent.  

 

Using AT to preprocess the data. What we propose is to 

use  AT to preprocess the data and obtain a higher-level, 

representation. If we take the diagrams of Figure 1 we 

identify immediately three types readily available data:  

 the tool: it will be the traces of actions on the platform 

and objects on which these actions operate (e.g., 

document deposit, document reading), 

 the subject : it will be the users registered on the 

platform, 

 the group : every CSCL platform keeps traces of  the 

groups created on it. 

Moreover, the traces of the links between these three types 

of data are also easily accessible.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. AT for data mining. Solid lines indicate data 

which are found among traces left on a CSCL platform and 

dotted lines information that it will be necessary to infer. 

On any platform, it is recorded who are members of a 

particular group (dyad: subject-group) and who did what 

(dyad: subject-tool). From these two dyads, we can 

establish the third one (dyad: group-tool). If the node 

"objective" is rarely the subject of a specific trace, it is 

sometimes possible to find it through the name of the group 

or the name of the main folder that the group shares. The 

node “division of the labor” is rarely explicit and, 

concerning the last node, it is exceptional to have traces of 

the “rules within the group”. 

subject 

tool 

Rule 

 

 

s 

community division of labor 

    outcome object 
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It is easy to see how technically we can preprocess the 

data. In the case mentioned above, instead of studying 

unique data, such as, for example, the "actions" alone 

carried out on the platform, we study couples “subject-

action ", who is doing what on the platform. We can 

continue the process. Thus it is possible and desirable to 

work with 3-tuples "subject-group-action" and when you 

can identify the objective, 4-tuples “group- objective-

subject- action” which correspond to the solid lines of 

figure 2. Once these 4-tuples are built, it is possible to put 

the focus on one of the nodes, the subject, the tool, the goal 

the group, without losing data interdependencies.  

 

3 APPLICATION  
 

The Reunion Island teacher training school trains the 

primary school teachers (PE2s : professeurs des écoles 

2ème année). Since 2005, PE2s use a CSCW platform 

which allowed them to pool and share the work of 

preparation of the class. With their trainers, the platform 

has served various purposes during 5 years: to deposit 

documents (“collective memory”), to improve lesson plans, 

to help online and at distance trainees when they are in 

charge of a class, to validate the C2i2e which confirms that 

the trainee is able to use ICT in education… 

As platform, we chose BSCW essentially because users 

may structure as they wish spaces they have created on it.  

In BSCW, information is organized hierarchically in 

folders and sub-folders and is presented in the form of 

various documents (texts, pictures, URL ...) which are 

created, read, annotated, modified, restructured... So it is 

possible, to connect all the traces to the higher folder 

shared by a group and to reconstitute the 3-tuples (group, 

subject, action). Moreover, as a name is associated with 

each of these folders, name often indicating the purpose, it 

is also possible to build 4-tuples (group, goal, subject, 

action). We can then study the different groups or the 

different objectives or the different subjects or the different 

actions. 

Table 1. comparison of the groups with or without 

trainers 

Groups without or without 

trainer  over 5 years 

all PE2s PE2s + 

trainer 

TI

CE 

Total number of groups 960 668 292 68 

Average number of PE2s for 

one group 

15 13 20 13 

Average number of documents 

for one group 

15 6 34 41 

Average number of 

PE2s’documents for one group  

12 6 25 39 

Average number of PE2 

producers for one group  

3 2 5 11 

Average number of documents 

per producer for one group 

4 3 5 4 

 

Analysis according to the groups. We wanted to see what 

the actions were, depending on whether the group was 

composed only of PE2s or whether a teacher shared the 

group with them (PE2s+trainers). We made this distinction 

because we wanted to know if trainees would use the 

platform without being forced by the trainers.  Here, we 

take into account only one action “document deposit”. 

The 1167 PE2s have constituted more than 960 groups. 668 

were groups of PE2s only and 292 groups included at least 

one trainer. One PE2, of course, could be in several groups. 

We can see that PE2s freely use the platform : the number 

of groups shared only by them is significantly greater than 

the number of groups shared with trainers (668 vs. 292). 

However, we find that the activity is much higher in groups 

shared with trainers than in groups shared only by PE2s in 

productions. There are fewer documents in the groups PE2s 

than in the groups PE2s+trainers (6 vs. 34). We can 

suppose that there is an effect “teachers” that incites 

students to work more. 

Analysis according to the objective.  With the titles of the 

folders, it was easy to isolate the groups named “TICE” 

(ICT for education). The folders associated with these 

groups were used to validate the C2i2e. All those groups 

have a trainer as member. In table 1, we have therefore 

compared those “TICE” groups with all the groups with 

trainers.  As we can see, according to the objective, the 

actions on the platform reveal that activity is not the same. 

The “TICE” groups are smaller (13 members vs. 20), but in 

those groups, almost every PE2 works : 11/13 deposit. As 

there are more PE2s producers (11 vs. 5), there are also 

more documents in the “TICE” groups even if each PE2 

producer deposits fewer documents (4 vs. 5). 

4 CONCLUSION 
 

The wealth of data mining relies on the fact that this is a 

bottom-up approach. The researcher starts from the data 

and expects that the machine will propose a categorization 

of these data of which he will try to find the underlying 

rules or, even better, that the machine itself will give rules 

of the categorization. In this approach, it is assumed that, 

somehow, the researcher has no a priori knowledge about 

the data. This approach is very interesting because it can 

lead to direct research in an unexpectedly way. However, it 

often happens that the proposed categorization is not 

exploitable for the researcher [4]. It is therefore desirable to 

reduce the hypothesis space that the machine is likely to 

return. One possible way to do this is to preprocess the 

data. In the context of CSCL, what we propose is to use 

Activity theory as a priori knowledge to do it. As we can 

see by this way we obtain results easily exploitable.  

 

5 REFERENCES 
 

[1] Engeström Y. 1987. Learning by expanding: An 

Activity-Theoretical Approach to Developmental 
Research. Orienta-Konsultit Oy. 

[2] Halverson, C. A. 2002. Activity Theory and 

Distributed Cognition: Or what does CSCW need to 

do with theories ? Computer Supported Cooperative 
Work (CSCW), 11(1-2), 243-267. 

[3] Romero, C., Ventura, S., García, E. 2007 Data Mining 

in Course Management Systems: MOODLE Case 

Study and Tutorial. Computers and Education, 51. pp. 
368-384. 

[4] Talavera, L., & Gaudioso, E. 2004. Mining student data 

to characterize similar behavior groups in unstructured 

collaboration spaces. In Workshop on artificial 

intelligence in CSCL. 16th European conference on 
artificial intelligence (pp. 17–23) 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 353



www.manaraa.com

  

Discovering the Relationship between Student Effort and 
Ability for Predicting the Performance of Technology-
Assisted Learning in a Mathematics After-School Program

Jun Xie1, Xudong Huang1, Henry Hua1, Jin Wang1, Quan Tang1, Scotty D. Craig2, 
Arthur C. Graesser1, King-Ip Lin1, Xiangen Hu1 

1
University of Memphis 

Memphis, TN, 38152, USA 

{jxie2, xhuang3, hyhua, wjin, quantang, grasser, davidlin, xhu } @memphis.edu  
2
Arizona State University 

Polytechnic, Mesa, AZ, 85212, USA 
scotty.craig@asu.edu 

  

ABSTRACT 

This study explored the relationship between students’ math 

ability and effort in predicting 6th grade students’ performance in 

the Assessment and LEarning in Knowledge Spaces (ALEKS) 

system. The students were clustered into four groups by K-

means: high ability high effort, high ability low effort, low 

ability high effort and low ability low effort. A one-way 

ANOVA indicated that student’s math posttest within the high 

ability, high effort group was significantly higher than other 

groups. An interaction was therefore observed between ability 

and effort. Further analysis revealed that math ability and effort 

had a multiplication impact on students’ math posttest. That is, 

expending effort improves student’s math posttest but how much 

progress in mathematics is achieved depends on the student’s 

math ability. Higher students’ math ability multiplies with effort 

in determining performance.  

Keywords: After-school program, ALEKS, math ability, effort, 

math performance. 

1. INTRODUCTION 
Advanced learning environments [1, 4] are designed to create 

the most effective learning gains for students, but students vary, 

and not all students benefit equally from these systems.  The 

issue then becomes discovering individual factors that maximize 

the usefulness of the program [9]. Studies have found that 

individual factors such as student effort and ability impact 

learning behaviors and outcomes in the computer- based 

learning environment [3, 8, 9]. 

Given the existing findings linking effort and ability with 

learning, this study analyzed two important characteristics on 

which students vary: effort and ability. We investigated the 

extent to which effort and math ability differentially influenced 

learning gains in a Web-based intelligent tutoring system (ITS) 

called ALEKS (the Assessment and LEarning in Knowledge 

Spaces) [5].  

2. METHODS 
Students attended the ALEKS based afterschool program two 

days a week for two hours a day over 25 weeks. But the learning 

period each day was only 1- hour, which was divided into three 

segments by two 20-minute breaks. Therefore the full dosage of 

a student was 50 hours. The 5th grade scores of the Tennessee 

Comprehensive Assessment Program (TCAP) were employed to 

assess students’ pre-program mathematics knowledge ability. 

The 6th grade scores of TCAP served as the posttest scores.  

The data sample included 268 student volunteers from 5 middle 

schools in a west Tennessee (US) school district. They spent 

time in ALEKS between 10 hours and 40 hours.  

3. ANALYSIS 
The independent variables were math ability and effort. Math 

ability was measured by TCAP 5th grade scores. For data mining 

purposes, we measured student effort by the ratio of the total 

number of mastered topics divided by the total number of 

attempted topics. Although it was not a pure measure of effort, 

this ratio was a reliable method for contrasting student learning 

with persistence. The first reason was that by using artificial 

intelligent to map each student’s knowledge, ALEKS offered the 

topics he/she was ready to learn right now [2]. For students, the 

distances were equal between the difficulty of each student’s 

topics and his/her math ability. Once they seriously tried, the 

students would master them. Second, ALEKS required students 

to write down each step when solving every problem, thence 

students had no chance to guess the right answers to the 

problems. Third, this effort measure would not be contaminated 

by students absent –minded learning behaviors such as spent 

time clicking on computer screen randomly. Therefore, this ratio 

reflected students’ true effort in ALEKS. The dependent 

variables are math posttest which is TCAP 6th grade scores. All 

the variables were normalized. 

3.1 Clustering Math Ability and Effort 
The clustering goal was to divide the students into low ability 

high effort (LH); high ability low effort (HL); high ability high 

effort (HH); low ability low effort (LL). We preferred a data-

driven approach that examined the data to determine the right 

groups. To this end, this study applied the K-means clustering 

algorithm with Euclidean distance based on the two attributes. 

The Waikato Environment for Knowledge Analysis (WEKA) 

was conducted to cluster the data. Table 1 showed the mean of 

each attribute and the number of students in each group.  
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Table 1. Clustering results on math ability and effort 

Attributes 
LH  

(N=121) 

HL  

(N=73) 

HH  

(N=21) 

LL  

(N=53) 

Math 

ability 
-.15 .40 1.21 -.78 

Effort .03 -.07 1.13 -.78 

 

The K-means method did not provide a clear index to indicate 

whether it distinguishes students notably based on math ability 

and effort. In order to solve this problem, a one-way ANOVA 

was conducted to further test the distinction between each group 

on ability and effort. Results indicated that math ability was 

significantly different between groups. Effort in each group was 

also significantly different, except between low ability high 

effort group and high ability low effort group. Therefore, the 

groups were distinctive in general. 

3.2 Relationship between Math Ability and 

Effort for Predicting Posttest 
One-Way ANOVA was conducted to test the difference of math 

posttest among four groups. The analysis indicated a significant 

difference of math posttest based on groups F(3, 264) = 28.215, 

p = .000; η2 = .243. The Multiple Comparisons analysis found 

that the math posttest scores in four groups were significantly 

different between each other. In the four groups, the highest and 

lowest posttest scores were respectively within high ability high 

effort group and low ability low effort group. The posttest scores 

within low ability high effort group were lower than the high 

ability low effort group. It appeared that there was an interaction 

between ability and effort. 

Univariate analysis was used to test the interaction between 

ability and effort. It found a significant interaction, F(1, 264) = 

5.682, p = .018; η2 = .021. The results demonstrated that 

students’ math posttest with high effort were significantly higher 

than those expending low effort. However, students with high 

ability achieved significantly higher math performance than 

those with low ability. In other words, math ability and effort 

appeared to have a multiplicative impact on math posttest scores. 

Figure 1 illustrated the interaction of math ability and effort. 

             
Figure 1. The interaction between math ability and effort 

 

4. DISCUSSIONS 
This study applied K-means to cluster students based on the 

levels of math ability and effort in ALEKS. The notable result 

was that in ALEKS learning system, math ability and effort had 

a multiplying interaction on students’ math posttest. Expending 

effort improved students’ math performance, but particularly for 

high ability students. It illustrated that ALEKS could help 

students to improve their math performance when they had 

motivation to learn math.  

This study applied the new effort measure instead of the self-

report method adopted in previous studies [7] because we sought 

a more objective approach to measure effort from educational 

data mining angle. Our method emphasized mental effort in 

ALEKS, which stressed students’ attention and involvement in 

tasks [6], more than physical effort. In the future, we can also 

consider to measure effort from physical aspect, for instances by 

using the mean of time on one topic. Due to be customized for 

ALEKS or similar adaptive system, this effort measure had 

limited external validity to be generalized to other intelligent 

tutoring system. Consequently, it needs to be considered in the 

future study how to measure effort in different intelligent 

tutoring systems.        
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ABSTRACT 
Previous work on knowledge tracing has fit parameters per skill 
(ignoring differences between students), per student (ignoring 
differences between skills), or independently for each <student, 
skill> pair (risking sparse training data and overfitting, and under-
generalizing by ignoring overlap of students or skills across pairs).  
To address these limitations, we first use a higher order Item 
Response Theory (IRT) model that approximates students’ initial 
knowledge as their one-dimensional (or low-dimensional) overall 
proficiency, and combines it with the estimated difficulty and 
discrimination of each skill to estimate the probability knew of 
knowing a skill before practicing it.  We then fit skill-specific 
knowledge tracing probabilities for learn, guess, and slip.  Using 
synthetic data, we show that Markov Chain Monte Carlo (MCMC) 
can recover the parameters of this Higher-Order Knowledge 
Tracing (HO-KT) model.  Using real data, we show that HO-KT 
predicts performance in an algebra tutors significantly better than 
fitting knowledge tracing parameters per student or per skill. 

Keywords 

Knowledge tracing, Item Response Theory, higher order models 

1. Introduction 
Traditional knowledge tracing (KT) [1] estimates the probability 
that a student knows a skill by observing attempted steps that 
require it, and applying a model with four parameters for each 
skill, assumed to be the same for all students:  the probabilities 
knew of knowing the skill before practicing it, learn of acquiring 
the skill from one attempt, guess of succeeding at the attempt 
without knowing the skill, and slip of failing despite knowing the 
skill. Prior work shows that fitting such parameters for individual 
students can improve the model’s accuracy in predicting student 
performance [2] or reduce unnecessary practice [3]. Such per-
student parameters, however, ignore differences between skills. 
Fitting KT parameters separately instead for each <student, skill> 
pair risks sparse training data and overfitting, and under-
generalizes by ignoring overlap of students or skills across pairs.  

    Item Response Theory (IRT) [4, 5] predicts a student’s 
performance on an item based on the difficulty and discrimination 
of the skill(s) the item requires, and a one- (or low-) dimensional 
static estimate of the student’s overall proficiency. Prior work 
adapted IRT to estimate the static probability of knowing a given 
skill [6], or dynamic changes in overall proficiency [7].  Here we 
dynamically estimate individual skills required in observed steps. 

2. Approach 
IRT’s 2-Parameter Logistic model [4] estimates the probability 
knewnj of student n already knowing skill j as a logistic function of 
student proficiency θn, skill discrimination aj, and difficulty bj: 

𝑘𝑛𝑒𝑤𝑛𝑗 =   
1

1 + exp  (−1.7𝑎!(𝜃! − 𝑏!)
 

Deriving knewnj instead of fitting it separately makes it a higher 
order model.  We then fit each skill’s KT parameters learnj, 
guessj, and slipj.  Figure 1 shows this hybrid Higher Order 
Knowledge Tracing (HO-KT) model’s graphical representation.  
The observable state Y(t) tells if a skill is applied correctly at time 
t. The latent state K(t) models knowing it at time t; Pr(K(0)) = knew.  

 
Figure 1. Graphical representation of Higher-Order 

Knowledge Tracing (HO-KT) model 
    For Markov Chain Monte Carlo (MCMC) estimation of HO-
KT’s parameters, we specify their prior distributions as follows:  

                 𝜃!    ~  𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

            𝑏!       ~  𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

        𝑎!       ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2.5) 

 𝑙𝑒𝑎𝑟𝑛!       ~  𝐵𝑒𝑡𝑎(1, 1) 

          𝑔𝑢𝑒𝑠𝑠!       ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

              𝑠𝑙𝑖𝑝!       ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

Given observations Y, MCMC finds vectors θ, a, b, l (learn), g 
(guess), and s (slip) with maximum posterior probability, namely: 

𝑃 𝜽,𝒂,𝒃, 𝒍,𝒈, 𝒔 𝒀 ∝ 𝐿 𝒀 𝒈, 𝒔,𝑲 𝑃 𝑲 ! 𝜽,𝒂,𝒃 × 

            𝑃 𝑲 ! 𝑲 !!! , 𝒍 𝑃 𝜽 𝑃 𝒂 𝑃 𝒃 𝑃 𝒍 𝑃 𝒈 𝑃(𝒔)!
!!!  

HO-KT fits parameters to all data so far, in contrast to using IRT 
to fit θ, a, and b to early data and KT to fit l, g, and s to later data. 
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3. Experiment 
We first generated synthetic data with N=100 students, each of 
whom practices J=4 skills required in a series of T=100 steps. We 
used OpenBUGS [8] to implement MCMC estimation for HO-KT 
in the BUGS language. We simultaneously ran the model in 5 
chains for 10,000 iterations with a burn-in of 3000, each chain 
starting from randomly generated initial values, and considered 
MCMC to converge when all 5 chains overlapped in OpenBUGS’ 
monitor window. Table 1 shows how well the estimated value of 
learn for each simulated skill recovered its true value; estimates of 
other parameters were similarly accurate but omitted here for lack 
of space.  Moreover, MCMC correctly recovered 99.4% of the 
simulated students’ 10,000 hidden binary knowledge states. 

Table 1. Estimation of learn in synthetic data 

Skill j learn Estimate (95% C.I.) s.d. MC_error 
1 0.8 0.81 (0.48, 0.99) 0.13 0.006599 
2 0.6 0.60 (0.52, 0.70) 0.05 0.002132 
3 0.5 0.57 (0.38, 0.84) 0.11 0.005432 
4 0.3 0.29 (0.25, 0.33) 0.02 7.79E-04 

     

    We then evaluated HO-KT on real data from the Algebra 
Cognitive Tutor® [9], containing a total number of 41,762 
observations from 123 students performing 157 problem steps. 
Our model assumed each problem step required a single skill. We 
split the data evenly into training and test sets with no overlapping 
<student, skill> pairs. We limited the observed sequence length of 
each student to T=100, and still ran 5 chains starting from random 
initial values for 10,000 iterations with a burn-in of 3000.  

    For comparison, we also used BNT-SM [10] to fit knowledge 
tracing parameters per skill and per student to the algebra data.  
The data are unbalanced (85.10% are correct steps), so we also 
computed within-class and majority class accuracy.  Table 2 
compares the models’ prediction accuracy and log-likelihood on 
the unseen test data. HO-KT is significantly higher in overall 
accuracy than KT per skill and per student, with p<.0001 in paired 
T-tests comparing HO-KT to the two KT models for each of 123 
students. HO-KT also achieves the best log-likelihood. 

Table 2. Evaluation on real data from algebra tutor 

Model: 
Accuracy Log-

likelihood Overall  Correct Incorrect 
HO-KT 87.13% 97.76% 26.43% -5442.50 
KT per skill 85.92% 96.19% 27.28% -5216.23 
KT per student 85.15% 99.99% 0.92% -5102.15 
Majority class 85.10% 100.00% 0.00% -- 

4. Discussion 
HO-KT uses IRT to estimate students’ initial knowledge of a skill 
based on its difficulty and discrimination and their overall 
proficiency, and KT to model learning over time. It outperforms 
per-student or per-skill KT by combining information about both. 
HO-KT estimates every probability Knew(student, skill) without 
requiring training data for every <student, skill> pair, because it 
can estimate student proficiency based on other skills, and skill 
difficulty and discrimination based on other students. 

    Future work should compare HO-KT to other methods and on 
data from other tutors. We should also test if k-dimensional 
student proficiency captures enough additional variance to justify 
fitting k times as many parameters. Finally, extending HO-KT to 

trace multiple subskills should use considerably fewer parameters 
than prior methods [11, 12], thanks to combining IRT and KT. 
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ABSTRACT
Educational Data Mining researchers use various prediction
metrics for model selection. Often the improvements one
model makes over another, while statistically reliable, seem
small. The field has been lacking a metric that informs us
on how much practical impact a model improvement may
have on student learning efficiency and outcomes. We pro-
pose a metric that indicates how much wasted practice can
be avoided (increasing efficiency) and extra practice would
be added (increasing outcomes) by using a more accurate
model. We show that learning can be improved by 15-22%
when using machine-discovered skill model improvements
across four datasets and by 7-11% by adding individual stu-
dent estimates to Bayesian Knowledge Tracing.

1. INTRODUCTION
In this work we are discussing an approach that translates
differences in statistical metrics between the two models into
the potential differences in the number of practice attempts
students would be prescribed and the time students could
allocate more optimally if a better-fitting student model is
deployed. We consider two types of model comparisons.
First, we compare alternative skill models of the problem
domain while keeping the student modeling algorithm the
same. Second, we compare keeping the skill model the same.
Second, keeping the skill model the same and changing the
student modeling algorithm. We discuss results obtained for
several datasets that cover domains such as middle school
algebra and geometry, English, and numberline games. Our
investigation shows that, despite the improvement in model
accuracy metric being seemingly small, representing the dif-
ferences in terms of missed practice opportunities and time
reveals substantial differences.

2. DATA
We used the datasets from the KDD Cup 2010 EDM Chal-
lenge and from the Pittsburgh Science of Learning Cen-
ter (PSLC) DataShop (www.pslcdatashop.org): Algebra I

dataset, and Bridge to Algebra collected in 2008-09. We
also used 4 PSLC DataShop datasets addressing Geometry
(1996-97 and 2010), Articles (2009), and Numbeline Games
(2011). The KDD Cup 2010 data was donated by Carnegie
Learning Inc. PSLC DataShop datasets were collected by
various researcher partners of PSLC (www.learnlab.org).
The KDD Cup 2010 Algebra I dataset has 8,918,054 practice
attempts of 3,310 students and has 2 skill models: ‘KTraced-
Skills’ (kts) used in cognitive tutor, and an alternative ‘Sub-
Skills’ (ss) model. The KDD Cup 2010 Bridge to Alge-
bra dataset contains data of 6,043 students comprised of
20,012,498 rows and has the two skill models as well. PSLC
DataStop Geometry 1996-97 data covers of 5,388/59 trans-
actions/students, Articles 2009 data - 6,887/120, Geometry
2010 - 140,854/120, Numberline games 2011 data - 4,341/51.

3. MODELS
We will use Bayesian Knowledge Tracing (BKT) [2] to fit
models of student learning. BKT is a method often used in
Intelligent Tutoring Systems (ITS). In addition to standard
BKT, we will use an individualized BKT (iBKT) models
described in [3]. Namely, the model where the p-learn has
a per-skill and per-student component. We implemented
a tool capable of fitting standard and individualized BKT
models on large datasets (such as KDD Cuo 2010 dataset)
in an efficient way. Our tool is implemented in C/C++ and
can fit BKT models from large datasets very quickly. For
more details please refer to [3]).

4. METHOD
First, we fit original and alternative models for all of the
datasets and skill modelswe have. For the two KDD Cup
2010 datasets we fit BKT and iBKT models. For the four
DataShop datasets, we fit BKT model only. Out of sev-
eral skill models available for each DataShop dataset we se-
lect original one and the best skill model discovered using a
human-machine Learning Factors Analysis procedure [1].

We then compute probabilities of skill mastery for all stu-
dent attempts. We used a threshold probability of 0.95 (a
traditionally accepted value) to determine the moment of
mastery. If, according to the model, student did not reach
mastery for a particular skill within the recorded student
data, we calculate the number of under-practice attempts.
If student’s skill reaches mastery earlier than the latest at-
tempt recorded, we compute the number of over-practice at-
tempts. The mastery data is aggregated by student taking
under-practice attempts into consideration.
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Table 1: Comparing models in terms of root mean squared error, percent cases number of prescribed practice opportunities
differs by at least one, average student/skill practice opportunities, and time

(a) Estimated prediction improvements and practical benefits of replacing hand-made by LFA machine-discovered KC models
across four DataShop datasets (RMSE values are given for a student-stratified 10-fold cross-validation).

Time KCs RMSE % diff Orig.-LFA Mean stud. opp/KC Stud. time
Dataset /step Orig. LFA Orig. LFA ≤ −1 (-1,1) ≥ 1 Orig. LFA diff % total diff %
Geometry 1996-97 17.12s 15 18 0.410 0.400 10% 29% 61% 8.8 7.8 1.5 18-20 26m 2m 9

Articles 2009 15.09s 13 26 0.437 0.420 5% 53% 43% 7.9 7.1 1.2 15-17 14m 3m 23†

Geometry 2010 15.10s 46 43 0.240 0.239 95% 5% 0% 8.6 10.5 1.9 18-22 88m 6m 7

Numberline 2011 12.77s 12 22 0.459 0.457 41% 22% 37% 15.1 15.2 2.8 19 18m 32m 182†

†These values could be inflated due to absence of mastery learning in respective tutors and as a result the amount of
student work being less optimal.

(b) Estimated prediction improvements and practical benefits of replacing standard BKT models by individualized BKT
models across two KDD Cup 2010 datasets (RMSE values are given for a student-stratified 10-fold cross-validation).

Time RMSE % diff BKT-iBKT Mean stud. opp/KC Stud. time
Dataset /step KCs BKT iBKT ≤ −1 (-1,1) ≥ 1 BKT iBKT diff % total diff %
Algebra 1(kts) n/a 515 0.363 0.361 24% 72% 4% 12.1 12.9 1.1 9 n/a n/a n/a
Algebra 1(ss) n/a 541 0.342 0.341 34% 63% 3% 12.5 13.6 1.4 10-11 n/a n/a n/a
B.to Algebra(kts) 12.81s 807 0.363 0.359 22% 74% 5% 14.3 14.9 1.0 7 361m 15m 4

B.to Algebra(ss) 12.81s 933 0.359 0.355 27% 68% 5% 18.3 19.2 1.2 7 485m† 22m 5
†Difference in times between its and ss KC models is due to change in the subset of data selected.

Finally, we compute the time it takes a student to solve one
tutor step. This time is used to compute the typical length
of all student sessions in the system. Having the sum of
the number of practice opportunities it takes the student to
master all skills (correcting for under-practice) from the both
models being compared and plugging in the average step
duration, we compute the overall amount of time student
wastes for under-practicing and over-practicing.

5. RESULTS AND DISCUSSION
Table 1 is a summary of model comparisons. Table 1a com-
pares original skill models and best fitting machine-discovered
skill models for the DataShop datasets. Table 1b compares
standard BKT and individualized BKT modeling methods
for the same skill models in KDD Cup 2010 datasets. De-
spite the vast difference in the size of the datasets (inher-
ently the size of curriculum), improvements with respect
to student-stratified cross-validated RMSE are quite small.
Just like the improvements in RMSE, the mean absolute dif-
ference in mean student opportunities are small: from 1.1
to 2.8 practice attempts. However, in terms of percent prac-
tice opportunities, those differences constitute 15-22% in
DataShop datasets, and 7-11% in KDD Cup 2010 datasets.

The practice opportunity differences are shown in Table 1a
and Table 1b under % diff Orig-LFA and % diff BKT-iBKT
respectively. Here the column marked ‘≤ −1’ indicates the
percent of student-KC experiences for which the model built
on the LFA-discovered KC model prescribes at least one
opportunity /less/ on average than the model built on the
Original KC model. Similarly, column ‘≥ 1’ indicates the
percent that the LFA-discovered skill model prescribes at
least one more opportunity..

The overall amount of time students spend with the tu-
tor differs from dataset to dataset: from 14-18 mimutes to

8 hours. The absolute and percent time values for time
differences in Table 1 reflect both over-practice and under-
practice together. The absolute average and percent aver-
age time difference between the models are given next to
the total time students spend o average. The percent of the
time students are wasting is 7-9% on Geometry DahaShop
datasets (able 1a) and 4-5% on Bridge to Algebra KDD Cup
2010 dataset (Table 1b). A higher values of nearly a quarter
of time misused (23%) in the case of Articles 2009 dataset
and almost twice the time (182%) misused on the Number-
line 2011 DataShop dataset, are due to the fact that both
did not implement mastery learning and, contrary to the
cases of tutors used to collect other datasets, problems were
not sequenced in attempt to maximize students’ learning.
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ABSTRACT 

Group formation strategies have the goal of providing the 

participating students with the good initial conditions for 

collaborative learning. Continuing with the existing methods to 

set up the initial conditions to make peer interaction more likely 

happen, we propose a method for dynamically recomposing 

learning groups based on intra-group iteration analysis to 

optimize the learning group formation iteratively.  
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1. INTRODUCTION 
Group formation plays a critical role for the success of 

collaborative learning groups [2]. Through pedagogical 

experiments, both homogeneous and heterogeneous group 

formation strategies can effectively promote collaboration [1]. In 

order to compose heterogeneous or homogeneous learning 

groups, plenty of composition approaches have been suggested 

[2; 3; 6]. These approaches pay most attention to the 

performance of the proposed algorithms, such as solution 

optimization and time cost, while the peer interaction within the 

formed groups is typically not considered for refining the groups. 

In addition, some data mining technologies have recently been 

proposed to analyze the peer interaction, with results indicating 

that there are recurring interactions within groups with strong 

peer interaction [7]. Therefore, if we could find some way of 

group composition which would lead to groups showing these 

interaction patterns, then an effective peer interaction within 

these groups might be triggered with higher probability.  

2. PROPOSED APPROACH 
The proposed method is to dynamically recompose groups based 

on interaction analysis. We expect to distinguish groups with 

strong interaction from weaker ones and learn group 

composition rules from this. In this paper, group composition 

rules denote that which types of group members work together 

could trigger either strong or weak peer interaction. Initially, the 

collaborative groups are composed by existing composition 

approaches (e.g. Graf and Bekele’s method)[2]. Learners in each 

group are then instructed to complete team tasks collaboratively. 

After the completion of the tasks, the peer interaction in the 

learning groups is analyzed. Data mining technologies are used 

to extract interaction patterns (e.g. sequential patterns) from 

group interaction logfile. These patterns together with tutor’s 

assessment could be used to distinguish the effective interaction 

groups from the weak ones. Based on this classification and 

group member compositions, the group composition rules can 

be learned using decision tree induction methods. These 

composition rules are used to re-group the learners into a new 

group formation. At the new group formation, learners are given 

new collaborative learning tasks. After the completion of these 

new tasks, new interaction patterns are extracted again, and new 

group composition rules are learned as well. Then, this new set 

of composition rules is utilized to re-group learners again. This 

grouping process is kept on iteratively. Over time, the group 

formation will change dynamically, with the goal of composing 

the groups with highest chances for effective peer interactions.  

3. PLANS FOR SYSTEM DESIGN 
A software system for the proposed method of dynamically 

recomposing learning groups is designed, which is outlined as 

shown in Figure 1. The following sections describe the primary 

components of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Outline of dynamically recomposing system 
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3.1 Student Interface 
Student interface of the system has twofold functions. First of all, 

it is designed to collect learners’ personal characteristics. In the 

light of the previous research on this topic [2-4; 6], leadership, 

previous knowledge, interest for the subject, group work attitude, 

self-confidence, shyness, gender are surveyed by questionnaires. 

The surveyed result for each student is then stored in a personal 

traits database. In addition, learners can choose one or more 

group members to interact with each other through the student 

interface. 

3.2 Instructor Interface 
Using instructor interface to the system, tutors can post 

collaborative tasks for each group, monitor groups working 

collaboratively, and assess the groups (e.g., for outcome quality). 

3.3 Group Formation Generator 
Group formation generator includes two functions. One is to 

generate the initial group formation and the other is to produce a 

new group formation at each recomposing iteration. Initially, we 

employ the Graf and Bekele’s approach to compose 

heterogeneous learning groups [2]. At each iteration of 

recomposing, we first use an exhaustive method to generate all 

possible group formations. For each group formation, we then 

count up the groups which are predicted to produce strong peer 

interaction according to group composition rules. At the end, the 

group formation with the most “high potential” groups is 

selected as the final group formation for the next iteration.  

3.4 Interaction Analysis 
Interaction analysis is to verify the effective interaction really 

happen in learning groups. The effectiveness of interaction 

should be measured by both the outcome of group work and 

frequency of interactive events. Tutors are able to assess the 

outcome of group work. But it’s hard for them to do assessment 

of the collaborative activities between group members because 

of the difficulties to deduce the actual peer interaction based on 

the interaction logfile. Fortunately, sequential pattern mining 

techniques have been developed to analyze peer interaction [5; 

7]. The result of relevant research shows that the best interaction 

groups have high frequency of certain sequential behaviors [7]. 

Using the frequency of these uncovered sequential patterns 

together with the outcome of group work, the effective 

interaction groups could be distinguished from the negative ones. 

3.5 Learn Group Composition Rules 
Group composition rules indicate that which types of learners 

placed into a group could trigger either strong or weak peer 

interaction.  Each member of the group is represented by a set of 

personal characteristics which are surveyed in Section 3.1. We 

firstly need to cluster all learners based on these personal 

characteristics. Then the resulting clusters are labeled 

respectively as cluster A, cluster B, etc. According to each 

group’s performance, we can conclude the group composition 

and its interaction level in a dataset, as illustrated in Table 1. 

The numbers in the table signify how many students in each 

group belong to the clusters. 

Decision tree learning algorithms (e.g. ID3) are then applied to 

construct a decision tree for classification based on the dataset. 

The interaction types construct the leaf node of the decision tree 

while the clusters of students (constructed based on personal 

characteristics) construct the inner nodes of the tree. When the 

decision tree is constructed, group composition rules are simply 

generated through traversing all paths from the root of the tree 

to every leaf node.  

Table 1. Example of dataset 

 Cluster A Cluster B … Interaction type 

Group1 1 2 … strong 

Group2 2 1 … weak 

 

4. CONCLUSION AND FUTURE WORK 
This paper proposes a dynamic group composition method to 

refine collaborative learning group formation and outlines the 

designed software system. Our future work will be focused on 

implementation and evaluation of the proposed idea in a 

collaborative learning context. 
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ABSTRACT 
This study investigates ways to interpret and utilize the vast 
amount of log data collected from an educational game called 
Refraction to understand student fraction learning. Study 
participants are elementary students enrolled in an online virtual 
school system who played the game over the course of multiple 
weeks. Findings suggest that students use a variety of splitting 
strategies when solving Refraction levels and that these strategies 
are related to learning gains. 

 Keywords 

Educational data mining; hierarchical clustering; learning 
analytics; mathematics education; fractions; educational games. 

1. INTRODUCTION 
Electronic games have become a regular part of childhood and 
adolescence [1]. In recent years, the interest in games for learning 
has grown, and educational games have increased in their 
popularity as means of instruction [3]. These games are 
unstructured environments where students can learn educational 
concepts through engaging interfaces and at their own pace.  

Educational data mining techniques have the potential to 
illuminate learning patterns across a large number of students who 
play these games. By analyzing the data generated through these 
activities and assignments, data scientists can gain insights into 
when students have mastered a concept or skill, what excites 
them, where they are getting stuck, and what works to support 
learning. The ability to discern this for each student and for all 
students is a key contributing factor in improving the quality of 
education in the U.S. 

2.   REFRACTION 
Refraction (http://play.centerforgamescience.org/refraction/site/) 
is an online game based on fraction learning through splitting. It is 
an open-access, interactive, and spatially challenging game that 
allows researchers to discover students’ fraction learning 
pathways. In the game level used for this study, students are 
required to create laser beams of 1/6 and 1/9 using a combination 
of 1/2 and 1/3 splitters. Four 1/2 splitters, four 1/3 splitters, and 
seven benders are provided to achieve this goal. One possible 
solution is shown in Figure 1(b). 
 

(a)  (b)  
Figure 1. Refraction pretest and posttest levels (a) at the start 

of a gameplay and (b) at the completion of the level  

3.   METHOD 
3.1 Procedures 
The game begins with a short series of introductory levels, and 
then students play an in-game pretest level. Following gameplay, 
which can include several levels, they play an in-game posttest 
level. The pretest and posttest levels are identical. For this study, 
we mined only the in-game pretest and in-game posttest levels. 
We chose this problem because it requires students to move 
beyond repeated halving (such as creating 1/4 or 1/8), and it 
requires students to use a combination of 1/2 and 1/3 splitters. 
Players reach the pretest after introductory levels that teach them 
the mechanics of the game, in order to avoid any pre-post 
differences simply being attributable to game’s unfamiliarity. 
 
3.2 Variables 
Every time a splitter is placed on the laser beam in the Refraction 
environment, a new board state is logged. We used this data to 
examine the process of learning by splitting using hierarchical 
cluster analysis and included the following variables: 
a. Initial 1/2: this is the percent of board states in a level that 

have 1/2 splitter as the initial splitter.  
b. Initial 1/3: this is the percent of board states in a level that 

have 1/3 splitter as the initial splitter.  
c. Backtrack: this is a binary variable indicating whether the 

player returned to using 1/2 as the initial splitter after having 
used 1/3 as the initial splitter.  

d. Average distance from goal: Average distance from each 
board state to the goal state.  
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3.3   Hierarchical Clustering 
Cluster analysis is a common technique for classifying a large 
amount of information into meaningful groups [2]. Hierarchical 
cluster analysis was conducted using between-groups linkage, 
within-groups linkage, centroid clustering, median clustering, and 
Ward’s method [4]. The results for cluster solutions with two to 
seven clusters were compared in terms of: (a) change in 
agglomeration coefficients; (b) number of cluster memberships 
(number of students in each clusters solutions; and (c) results of 
univariate F-tests (solutions wherein the clusters did not differ in 
terms of any of the classifying variables were excluded). Based on 
these analyses, we found the solution with four clusters using 
between-group linkage method performed the best. Based on F 
statistics (see Table 1), these four clusters were significantly 
different from each other in terms of each of the four variables 
presented above.  
 

Table 1 Cluster definitions based on Duncan post hoc multiple 
range test. 

  
 

To interpret the clusters, post hoc comparisons of the means of all 
four clustering variables were performed. Duncan’s Multiple 
Range Test was used to compare the means of these four variables 
across four clusters (Hair, Anderson, Tatham, & Grablosky, 
1979). In this test, pairwise comparisons are done across clusters 
and significant differences are identified at the pre-defined 
significance level; in this case, p < 0.1. Furthermore, the test sorts 
the clusters into groups wherein the means of the clusters within a 
group are not significantly different from each other, but differ at 
a statistically significant level from clusters in other groups. For 
example, for the variable backtrack, the test sorted our four 
clusters into three distinct groups, as seen by the designation of L, 
M, and H in Table 1. In this case, the mean of Cluster 1 is 
significantly higher than the means for Clusters 2 and 3, but 
significantly lower than the mean for Cluster 4. 

4. RESULTS 
Clustering results show that there are four distinct ways that 
students solved the pre-post level. The four clusters can be 
described as follows: 
a. Halving strategy: Students using this strategy are primarily 

exploring the 1/2 space of the game. They display a high 
percentage of board states that start with a 1/2 splitter. They 
also have high average distance from the goal and a low 
percentage of board states that start with a 1/3 splitter. When 
they do use the 1/3 splitter, they often backtrack to using the 
1/2 splitter. 

b. Thirds strategy: Students using this strategy spend the 
majority of their time in the 1/3 space of the game. They 
have a high percentage of 1/3 initial board states. They rarely 
backtrack. Their average distance from the goal is low. 

c. Exploring Thirds Strategy: While students using this strategy 
still experiment with initial 1/2 board states, they have a 
higher percentage of 1/3 initial board states. They do not 
backtrack often, but still have a high average distance from 
the goal. 

d. General Exploring Strategy: Students using this strategy are 
exploring the mathematical space of the game more broadly. 
They have high percentage of board states using both the 1/2 
and 1/3 splitters, and they backtrack often. They have 
medium average distance from the goal. 

We conducted one-way ANOVAs on the classifications of 
students’ game play strategy (pre- and postlevel) for both the pre- 
and posttest. We found that there was a significant main effect for 
prelevel strategy type on transfer pretest score, F(3, 2494) = 7.79, 
MSE = 23.10, p < .001. Post hoc tests showed that this effect was 
primarily accounted for by the Thirds group’s significantly greater 
performance than the Halving and Exploring Thirds groups (p < 
.05). The General Exploring group did not perform significantly 
differently than any other group. 
 
5. DISCUSSION 
Overall, we found that how students used splitting on the prelevel 
was associated with test performance at that point, but all students 
developed fraction knowledge by using splitting as they played 
Refraction, regardless of their splitting strategy. 
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ABSTRACT 

We present a fully-automated person-independent approach to 

track mind wandering by monitoring eye gaze during reading. We 

tracked eye gaze of 84 students who engaged in an approximately 

30-minute self-paced reading task on research methods. Mind 

wandering reports were collected by auditorily probing students 

in-between and after reading certain pages. Supervised classifiers 

trained on global and local features extracted from students’ gaze 

fixations 3, 5, 10, and 15 seconds before each probe were used to 

predict mind wandering with a leave-several-subjects-out cross 

validation procedure. The most accurate model tracked both 

global and local eye gaze in a 5-second window before a probe 

and yielded a kappa (accuracy after correcting for chance) of 0.23 

on a downsampled corpus containing 50% yes and 50% no 

responses to probes. Implications of our findings for adaptive 

interventions that restore attention when mind wandering is 

detected are discussed. 

Keywords 

Mind wandering, eye gaze, affective computing, affect detection 

1. INTRODUCTION 
Mind wandering (or zoning out) is a phenomenon in which 

attention drifts away from the primary task to task-unrelated 

thoughts [1]. It is critically important to learning because active 

comprehension of information involves extracting meaning from 

external sources of information (e.g., text, audio, image) and 

aligning this information with existing mental models that are 

ultimately consolidated into long-term memory structures. Mind 

wandering signals a breakdown in this coupling of external 

information and internal representations. Hence, it is no surprise 

that mind wandering has disastrous effects on learning and 

comprehension because it negatively impacts a learner’s ability to 

attend to external events, to encode information into memory, and 

to comprehend learning materials [2, 3]. Therefore, there is a 

crucial need for interventions to track and restore attention when 

mind wandering is detected. 

A system that responds to mind wandering must first detect when 

minds wander. In line with this, Drummond and Litman [4] 

attempted to identify episodes of “zoning out” while students 

were engaged in a spoken dialog with an intelligent tutoring 

system (ITS). Students were periodically interrupted to complete a 

short survey to indicate the extent to which they were focusing on 

the task (low zoning out) or on other thoughts (high zoning out). 

J48 decision trees trained on acoustic-prosodic features extracted 

from the students’ utterances yielded 64% accuracy in 

discriminating high vs. low zone-outs. This study was pioneering 

in that it represents the first attempt to automatically detect zone-

outs. However, it suffers from two notable limitations. First, the 

study used a leave-one-instance-out cross-validation method 

where training and testing sets were not independent; therefore it 

is unclear if the model generalizes to new students. Second, the 

model is only applicable to spoken tutorial sessions instead of 

more general learning tasks. 

Taking a somewhat different approach, we report initial results of 

a study that uses eye gaze data to develop student-independent 

predictive models of mind wandering during reading. Our 

emphasis on reading is motivated by the fact that reading is 

perhaps the most ubiquitous learning activity. Our focus on eye 

gaze to track mind wandering is motivated by decades of scientific 

evidence in support of an eye-mind link, which posits that there is 

a tight coupling between external information (words on the 

screen) and eye movements [5]. For example, previous research 

has found that individuals are less likely to fixate, re-fixate, and 

look backward through previously read text [6] and blink more 

frequently [7] when mind wandering compared to normal reading. 

The present study builds on these findings by developing the first 

gaze-based mind wandering detector. 

2. METHOD 

2.1 Labeled Data Collection 
A Tobii T60 eye tracker was used to record gaze patterns of 84 

students while they read four texts on research methods (e.g., 

random assignment, experimental bias) for approximately 30 

minutes. Students read the texts on a page-by-page basis (roughly 

144 words per page) and used the space bar to navigate forward. 

Mind wandering was measured via auditory probes, which is the 

standard and validated method for collecting online mind 

wandering reports [1]. When a student’s gaze fixated on 

previously determined “probe words”, which were pseudo-

randomly inserted in the texts, the system played an auditory cue 

(i.e., a beep) to prompt the student to indicate whether or not he or 

she was mind wandering by pressing keys marked “Yes” and 

“No.” These probes are referred to as in-between page probes. In 

addition, end of page probes were triggered when students 

pressed the space bar to advance to the next page. There were 

approximately 10 probes per text and reports of mind wandering 

were obtained for 35% of the probes, which is comparable to rates 

obtained in previous studies on reading [2]. 

2.2 Feature Engineering 
Gaze fixations were estimated from the raw gaze data using 

OGAMA, an open source gaze analyzer. The series of gaze 

fixations were segmented into windows of varying length (3 secs, 

5 secs, 10 secs and 15 secs), each culminating with a mind 

wandering probe. The windows ended immediately before the 
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probe was triggered in order to avoid confounds associated with 

motor activities in preparation for the key press. Furthermore, 

windows with less than five fixations were eliminated because 

these windows do not contain sufficient data to meaningfully 

compute gaze features. 

Two sets of gaze features were extracted from gaze fixations in 

each window. Global features were independent of the actual 

words being read and consisted of fixation frequency, fixation 

durations, variability in fixation durations, saccade lengths, etc. 

Local features were sensitive to the words being read and 

included relationships between word length and fixation duration, 

number of words skipped, length of first pass fixations, etc. There 

were 17 global features, 12 local features, and 25 global-local 

features (two features were eliminated due to multicollinearity). 

2.3 Supervised Classification 
A host of 33 supervised machine learning algorithms from Weka 

[8] were used to build models to discriminate mind wandering 

(responding “yes” to the probe) from mindful reading (responding 

“no” to the probe). The 33 classifiers (with default parameters as 

specified in Weka) were run on the 3 feature types (global, local, 

global + local), 4 window sizes (3, 5, 10, and 15 seconds before 

probes), and on 4 configurations of the data (raw data, raw data 

with outliers removed, downsampled data with 50% “yes” and 

“no” responses, and downsampled data with outliers removed), 

yielding 1584 models in all. A leave-several-subjects-out 

validation method was employed in which data from a random 

66% of the subjects were selected for the training set and the 

remaining 34% of subjects were used in the test set. This process 

was repeated for 25 iterations and classification performance was 

averaged across these iterations. The kappa metric was used to 

quantify classifier performance because it controls for random 

guessing. 

3. RESULTS 
The best results were obtained from the downsampled corpus 

without outlier removal. Mean kappas and standard deviations 

(across 25 iterations and shown in parentheses) for the best 

performing models for each feature type are shown in Table 1. 

Table 1. Results for best performing models 

Features Kappa RR. Win N Classifier 

Global (G) .14 

(.10) 

56.2 

(5.55) 

5 37

4 

Multiboost 

Adaboost 

Local (L) .08 

(.06) 

53.7 

(4.21) 

15 40

2 

Naïve Bayes 

Updatable 

Global + 

Local 

.23 

(.08) 

60.0 

(6.35) 

5 37

4 

Locally-weighted 

learning 

Note. Standard deviation is in parentheses. RR. = recognition rate. Win = 

window size. N = number of instances. 

The results support several conclusions on the feasibility of 

automatic detection of mind wandering by tracking eye gaze. 

First, although classification accuracies are moderate, the best 

performing models (Global + Local) detected mind wandering at 

rates significantly greater than chance. Second, the training and 

testing data were completely independent, so we have some 

confidence that the models generalize to new students. Third, the 

global models yielded higher accuracies than the local models. 

Fourth, a combination of global-local features resulted in a 

substantial improvement over the individual feature sets. Finally, 

gaze tracking over shorter window sizes (5 secs) was more 

effective than longer windows. 

4. GENERAL DISCUSSION 
Mind wandering is a ubiquitous phenomenon that has disastrous 

consequences for learning because it a quintessential signal of 

waning attention. We present a proof-of-concept of the possibility 

of automated tracking mind wandering during reading. Although 

we had some success in developing person-independent models to 

detect mind wandering, the accuracy of our models was moderate. 

We are currently in the process of refining our models by both 

increasing the size of the training data while simultaneously 

considering a larger feature space and more sophisticated 

classifiers. When coupled with the falling cost of eye trackers and 

the potential use of web-cams for low-cost gaze tracking, we 

expect that these improvements will yield sufficiently robust and 

scalable detectors of mind wandering. In turn, these detectors can 

be used to trigger interventions to restore engagement by 

reorienting attention to the task at hand. 
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ABSTRACT
Anaphora resolution is a central topic in dialogue and dis-
course processing that deals with finding the referents of
pronouns. There are no studies, to the best of our knowl-
edge, that focus on anaphora resolution in the context of
tutorial dialogues. In this paper, we present the first version
of DARE (Deep Anaphora Resolution Engine), an anaphora
resolution engine for dialogue-based Intelligent Tutoring Sys-
tems. The development of DARE was guided by dialogues
obtained from two dialogue-based computer tutors: Deep-
Tutor and AutoTutor.

Keywords
Anaphora Resolution, Tutoring System, Dialogue Systems

1. INTRODUCTION
Anaphora resolution is the task of resolving what a pronoun
or a referential noun phrase refers to. As an example con-
sider the dialogue segment in Table 1 (a). Here, the pronoun
“it” in the STUDENT turn refers to the first mention of the
word “force” earlier in the turn.

In dialogue based Intelligent Tutoring Systems (ITSs), pro-
nouns are quite frequent in students’ natural language re-
sponses. Examples of student responses that contain anaphoric
pronouns are shown in Table 1. These examples are from
DeepTutor, a conversational ITS1. DeepTutor mimics the di-
alogue between a computer tutor and tutee and is based on
constructivist theories of learning according to which stu-
dents construct their knowledge themselves and only get
help when floundering. The help consists of hints in the
form of questions - see the DeepTutor dialogue turns in Ta-
ble 1. Students responses are assessed for accuracy and
appropriate feedback is provided by DeepTutor. Students
can ask questions themselves as well.

Solving anaphors in student responses in dialogue-based ITSs

1www.deeptutor.org

Table 1: Use of pronouns in students’ responses
(a) Intra-turn :
DEEPTUTOR:What does Newton’s second law say?
STUDENT:for every force, there is another equal force
to counteract it
(b) Inter-turn immediate:
DEEPTUTOR:What can you say about the acceler-
ation of the piano based on Newton’s second law and
the fact that the force of gravity acts on the piano?
STUDENT: It remains constant.
(c) Inter-turn history:
DEEPTUTOR: Since the ball’s velocity is upward
and its acceleration is downward, what is happening
to the ball’s velocity?
STUDENT: increasing
DEEPTUTOR: Can you please elaborate?
STUDENT: it is increasing

is very important as it has a direct impact on assessing the
correctness of student responses.

While anaphora resolution is a well-studied problem in Nat-
ural Language Processing [1, 2], there is no previously re-
ported work, to the best of our knowledge, which addresses
the problem of anaphora resolution in dialogue based ITSs.
As already mentioned, resolution of pronouns in ITSs is a
key step towards understanding students’ responses which
impacts the accuracy of the student model. Failing to resolve
pronouns can make the computer tutor assess incorrectly a
student response and react ineffectively which would lead
to suboptimal learning. Incorrect feedback from the system
could frustrate students sometimes to the point of quitting
interacting with the system.

Given the importance of accurate assessment of student re-
sponses in ITSs, a highly accurate anaphora resolution mech-
anism is needed. To this end, we have been developing
Deep Anaphora Resolution Engine (DARE) for conversa-
tional ITSs. The design of DARE is guided by an analysis
of actual interactions between students and two dialogue
based ITSs : AutoTutor2 and DeepTutor. DeepTutor is a
fully online tutoring systems that has been used by close
to a thousand students who can access DeepTutor anytime,
anywhere. In its first version, DARE distinguishes two cat-
egories of pronouns in dialogue-based ITSs based on the lo-

2www.autotutor.org
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cation of the referents: intra-turn anaphors and inter-turn
anaphors. The intra-turn anaphors refer to an entity lo-
cated in the current student dialogue turn. The inter-turn
anaphors refer to entities in previous dialogue turns (or dia-
logue history) or entities present in the problem description
or other contextual elements, e.g. even world knowledge.
Examples of intra-turn and inter-turn anaphoric pronouns
are shown in Table 1.

2. THE METHODOLOGY
As a starting point for developing DARE, we analyzed pro-
noun use in 24,945 student responses from DeepTutor log
files and 1,978 student responses from AutoTutor logs. The
results are shown in Figure 1. Both the students and com-
puter tutor use first-person pronouns (i.e. “i”,“me”, “we”,
“us”) during the interaction. It should be noted that these
pronouns do not need be resolved for assessment purposes
(for space reasons we do not elaborate). Of the remain-
ing pronouns, the top two most frequent pronouns, one of
which is “it”, account for more than 80% of the anaphors.
Thus, considering a very few, very frequent anaphors may
be a good start for developing DARE. Moreover, it was ob-
served (see Section 3) that most pronouns used in student
responses can be resolved withing the same responses or just
looking at the previous system turn, i.e. the previous hint
from the system. Although these aspects of anaphors in
dialoge-based ITSs simplify the problem of pronoun reso-
lution, the task is still challenging because “it” is often an
pleonastic, i.e. “it” is not always an anaphoric pronoun [1].

Another important aspect of anaphors in tutorial dialogues
is the location of pronouns in students’ responses. In our
data, we observed that most pronouns at the beginning of a
student response refer to an antecedent present in the most
recent system response, i.e. the previous dialogue turn. On
the other hand, pronouns that occur in the middle or last
part of a student response most likely refer to an entity in the
current/same student response. Thus, we added in DARE a
classifier that relies on the position of the anaphors to iden-
tify the text where the antecedent should be searched for.
Given this fact, input to the DARE’s resolution engine is the
concatenation of previous tutor turn and current student re-
sponse if the pronoun to be resolved occurs at the beginning
of the student response and current student response only
if the pronoun occurs in the middle or near the end of the
student response. DARE then uses the coreference resolu-
tion module in the Stanford CoreNLP package in order to
perform anaphora resolution. It should be noted that some-
times a pronoun in the student response may refer to entity
in the problem description, e.g. the current Physics prob-
lems the student is working on. Also, it may be possible that
a pronoun refers to something mentioned much earlier in the
dialogue than the previous system turn. In the current ver-
sion of DARE, we do not handle these latter cases. Another
case we do not directly handle in DARE currently is the use
of eliptic anaphors - see the first student response in (c) in
Table 1 where instead of saying“it is increasing”the student
simply says “increasing” (a typical exaple of ellipsis).

3. EXPERIMENTS AND RESULTS
In order to evaluate the performance of the DARE system,
we extracted student-tutor interactions from the DeepTu-
tor’s log files. We only considered student-tutor interactions

Figure 1: Pronouns used by (left) DeepTutor stu-
dents in 24,945 dialogue turns (right) AutoTutor
students in 1,978 dialogue turns

Antecedents in Count(%)
H0 85 (75.89%)
A 22 (19.64%)
H1 5 (4.46%)
H2 0 (0.00%)

Table 2: Location of antecedents for anaphors

which contain at least one pronoun in the student responses.
Since the pronouns in students’ responses could refer to enti-
ties that were mentioned at any moment during the dialogue,
i.e. the whole dialogue history, or the problem descriptions,
we retain all this information for each instance in the data
set. In total, we extracted 5,589 instances out of which 112
were annotated manually.

The analysis of the annotated instances is shown in Table 2.
Almost 76% of the time, students’ anaphors refer to entities
in the most recent tutor turn (hint/question H0). They also
use pronouns to refer to entities in their response (intra-turn
anaphors) which accounts for almost 19% of the time. Next,
they refer 4% of the time to entities in the hint that immedi-
ately precedes the most recent hint (i.e. H1). Interestingly,
there were no references to entities beyond H1. Currently,
DARE does not look back for referents beyond H0. The
accuracy of the current version of DARE is 46.36 %.

4. CONCLUSION AND FUTURE WORK
The current version of DARE presented here offers a good
baseline which we plan to improve in future iterations of
development. We also intend to evaluate the performance
on a larger data set which we will make publicly available.
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ABSTRACT 
The current study identifies relations among students’ natural 
language input, individual differences in reading commitment, 
and learning gains in an intelligent tutoring system. Students (n = 
84) interacted with iSTART across eight training sessions. 
Linguistic features of students’ generated self-explanations (SEs) 
were analyzed using Coh-Metrix. Results indicated that linguistic 
properties of students’ training SEs were predictive of learning 
gains, and that the strength and nature of these relations differed 
for students of low and high commitment to reading. 

Keywords 

Natural Language Processing, Learning, Intelligent Tutoring 
Systems, Reading Commitment 

1. INTRODUCTION 
Educational learning environments provide students with 
instruction intended to enhance particular knowledge, skills, and 
strategies in various domains. For example, iSTART is an 
intelligent tutoring system (ITS) that teaches students to use self-
explanation (SE) reading strategies to comprehend challenging 
science texts. In this system, strategies are introduced and 
demonstrated to students. Then, students are offered the 
opportunity to practice applying the strategies they have learned 
to new texts. A natural language processing (NLP) algorithm 
assesses the quality of students’ generated SEs and assigns scores 
(ranging from 0-3) and feedback to students during training [1].  

Empirical studies have found that iSTART improves students’ 
comprehension and strategy use over control groups at multiple 
education levels [2-3]. More recent work has investigated the 
impact of individual differences on students’ learning gains in the 
system [4-5]. Jackson, Varner, Boonthum-Denecke, and 
McNamara (under review), for instance, found that iSTART 
helped students with low reading commitment to significantly 
improve their SE performance and ultimately match (or exceed) 
the performance of high commitment readers. 

2. STUDY AND RESULTS 
In the current study, we expand upon previous research to 
determine how individual differences in reading commitment 

impact students’ natural language input and their subsequent 
learning gains. We employ NLP techniques to identify the 
linguistic properties of students’ SEs that are predictive of 
learning gains. We then examine how these relations may differ 
for students with low and high prior reading commitment.  

Participants were 84 high-school students randomly assigned to 
one of two versions of iSTART. Half (n = 43) of the students 
interacted with the original iSTART system and the other half (n 
= 41) interacted with a game-based version called iSTART-ME 
(motivationally enhanced) [6]. Both groups completed the same 
SE tasks and were assessed with the same algorithm; therefore, 
the conditions were collapsed for these analyses. 

Students’ learning gains were assessed using their SE scores 
(provided by the NLP algorithm) at pretest and posttest. To avoid 
biases associated with direct gain scores (low performing students 
have more room for improvement), a relative gain score was 
calculated. Relative gain scores represent students’ improvement 
as a proportion of their possible improvement [(Posttest 
Proportion – Pretest Proportion) / (1 – Pretest Proportion)]. 
Additionally, students’ reading commitment was assessed through 
demographic questions at pretest. Due to the limited scope 
available for this paper, the current analyses focus on a question 
that asked students to report the number of hours they spent 
reading for science courses; however, all reading commitment 
measures provided similar trends and results. 

2.1 COH-METRIX ANALYSIS 
Individual (sentence-level) SEs were combined for each text read 
and self-explained during training. This aggregation method is 
discussed in greater detail in previously published work [7]. Coh-
Metrix [8] indices were calculated for each aggregated SE file. 
For each student, the mean values of 30 Coh-Metrix were 
calculated across texts to provide an average score for each 
linguistic measure. For more details on the linguistic measures 
presented here, please see [8]. 

2.2 ANALYSES 
We investigated how linguistic properties of students’ generated 
SEs predict relative learning gains. A stepwise regression analysis 
using each student’s average Coh-Metrix scores as predictors of 
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their relative gain scores yielded a significant model, F(2, 83) = 
6.90, p = .002; R2 = .15, retaining two predictors: Third Person 
Pronoun Incidence [β = -28, t(1, 82)= -2.81, p = .01] and Average 
Sentence Length [β = .26, t(1, 83)= 2.51, p = .01]. Results of this 
analysis indicate that when students used third person pronouns 
(e.g., he, she, it) and short sentences in their SEs, they were less 
likely to improve after training. At a global level, this analysis 
indicates that the use of objective and less elaborate language led 
to lower gains in the system. 

Analyses further investigated how linguistic properties may be 
predictive of relative gain scores as a function of students’ prior 
commitment to reading. A median split on the pretest reading 
commitment measure (i.e., hours spent reading for sciences 
courses) was used to categorize students as having either low (n = 
47) or high (n = 37) reading commitment. 

A stepwise regression analysis using the average Coh-Metrix 
scores for low reading commitment students as predictors of their 
relative gain scores yielded a significant model with one predictor, 
F(1, 46) = 6.33, p = .02; R2 = .12 (see Table 1). This result 
indicates that students with low reading commitment who 
repeated concepts across SEs tended to gain more from training.  

Table 1. Stepwise Regression Analyses for Low and High 
Commitment Students 

Linguistic Indices     β  ΔR2 
Low Reading Commitment   .12* 
   Noun Overlap .35  
High Reading Commitment  .56** 
   Third Person Pronouns -.45 .19* 
   Incidence of Infinitives .47 .10* 
   Average Polysemy -.45 .09* 
   Casual Ratio .53 .11* 
   Incidence of Negations -.32 .07* 
p<.05 *, p<.001 **   

A stepwise regression using the average Coh-Metrix scores for 
high reading commitment students as predictors of relative gain 
scores yielded a significant model with five predictors, F(5, 36) = 
7.77, p < .001; R2 = .56 (see Table 1). This analysis indicated that 
the linguistic properties of training SEs accounted for over half of 
the variance in high reading commitment students’ learning gains. 
Most significantly, high reading commitment students benefitted 
most when they used less objective language within their SEs. 

3. DISCUSSION 
This study investigated relations among students’ prior 
commitment to reading, linguistic properties of their generated 
SEs, and relative learning gains in the iSTART system. Results 
indicated that the relations between the linguistic features of 
students’ SEs and relative learning gains varied when accounting 
for students’ reading commitment. In particular, one cohesion 
variable accounted for 12% of the variance in low reading 
commitment students’ relative learning gains, whereas five 
predictors combined to account for over 50% of the variance in 
the relative learning gains of highly committed students.1 As 
                                                                    
1 Separate analyses confirmed that these results could not be 

accounted for by individual differences, such as reading ability, 
as these measures were not predictive of relative learning gains. 

mentioned previously, analyses with other reading commitment 
measures produced similar results. 

This work expands upon previous research, relating features of 
natural language input to the level of students’ cognitive 
processing of text [9]. The current analyses leverage this prior 
work to investigate how linguistic differences between groups of 
students shed light on their potential to gain from training. These 
results can help researchers gain a better understanding of the 
learning processes used by different student users, as well as the 
complex interactions between individual students and learning 
systems.  

4. ACKNOWLEDGMENTS 
This research was supported in part by: IES R305G020018-02, 
IES R305G040046, IES R305A080589, and NSF REC0241144, 
NSF IIS-0735682. Opinions, conclusions, or recommendations do 
not necessarily reflect the views of the IES or NSF. 

5. REFERENCES 
[1] McNamara, D., Boonthum, C., Levinstein, I., Millis, K.: 

Evaluating Self-explanations in iSTART: Comparing Word-
based and LSA Algorithms. In T. Landauer, D. McNamara, 
S. Dennis, W. Kintsch (eds.) Handbook of Latent Semantic 
Analysis, pp. 227-241. Mahwah Erlbaum (2007) 

[2] Magliano, J., Todar, S., Millis, K., Wiemer-Hastings, K., 
Kim, H., McNamara, D.: Changes in Reading Strategies as a 
Function of Reading Training: A Comparison of Live and 
Computerized Training. Journal of Educational Computing 
Research 32, 185-208 (2005) 

[3] O'Reilly, T., Best, R., McNamara, D.: Self-explanation 
Reading Training: Effects for Low-knowledge Readers. In: 
Proceedings of the 26th Annual Conference of the Cognitive 
Science Society pp. 1053-1058. Erlbaum Portland, OR 
(2004) 

[4] Jackson, G.T., Boonthum, C., McNamara, D.S.: The Efficacy 
of iSTART Extended Practice: Low Ability Students Catch 
Up. In: The Proceedings of Intelligent Tutoring Systems pp. 
349-351. Springer Berlin/Heidelberg, Pittsburg, PA (2010)  

[5] Jackson, G. T., Varner, L. K., Boonthum-Denecke, C., 
McNamara, D. S.: The Impact of Individual Differences on 
Learning with an Educational Game and a Traditional ITS. 
Manuscript submitted to the International Journal of 
Learning Technology (under review) 

[6] Jackson, G., McNamara, D.: Motivation and Performance in 
a Game- based Intelligent Tutoring System. Journal of 
Educational Psychology, (in press) 

[7] Varner, L. K., Jackson, G. T., Snow, E. L., McNamara, D. S.: 
Does size matter? Investigating user input at a larger 
bandwidth. In: Proceedings of the 26th Annual Florida 
Artificial Intelligence Research Society Conference, AAAI, 
St. Petersburg, FL (in press) 

[8] Graesser, A.C., McNamara, D.S., Louwerse, M., Cai, Z.: 
Coh-Metrix: Analysis of Text on Cohesion and Language. 
Behavior Research Methods 36, 193-202 (2004) 

[9] Jackson, G.T., Guess, R.H., McNamara, D.S.: Assessing 
Cognitively Complex Strategy Use in an Untrained Domain. 
Topics in Cognitive Science 2, 127-137 (2010) 

                                                                                                                 
 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 369



www.manaraa.com

Using Multi-level Models to Assess Data From an 

Intelligent Tutoring System 
Jennifer L. Weston 

Department of Psychology and  
Learning Sciences Institute 

Arizona State University 
Tempe, AZ 

Jen.weston@asu.edu 

Danielle S. McNamara 
Department of Psychology and 

 Learning Sciences Institute 
Arizona State University 

Tempe, AZ  
Danielle.mcnamara@asu.edu

ABSTRACT 

Intelligent tutoring systems yield data with many properties that 

render it potentially ideal to examine using multi-level models 

(MLM). Repeated observations with dependencies may be 

optimally examined using MLM because it can account for 

deviations from normality. This paper examines the applicability 

of MLM to data from the intelligent tutoring system Writing-Pal 

using intraclass correlations. Further analyses were completed to 

assess the impact of individual differences on daily essay scores 

along with the differential impact of daily vs. mean attitudinal 

ratings. 

Keywords 
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1. INTRODUCTION 
With the advent of intelligent tutoring systems (ITSs), the amount 

and complexity of data available to researchers has increased 

exponentially. ITSs provide the opportunity for repeated 

administration of assessments and, in some cases, ease of scoring 

that data. Though most tutoring systems provide multiple 

assessments of student progress (i.e., multiple text responses or 

worked problems), many researchers assess performance using 

pretest-posttest differences or repeated measures analyses, 

potentially missing out on rich data collected between these two 

end points.  

When a student produces multiple responses, dependency arises 

in the data, thus violating central assumptions underlying both 

regression and ANOVA. Dependency, measured using intraclass 

correlations (ICC), is a pervasive problem in educational data, 

ranging from less problematic (a group of students within schools) 

to highly problematic (observations within individuals) [1]. Even 

when 5% of the variation in a data set is due to nested structure, 

(i.e.; dependency) it is advisable to assess differences at the 

highest cluster level. 

The Writing Pal (W-Pal, [2]) is an ITS that provides writing 

strategy instruction to high school and entering college students. 

This system teaches writing strategies that encompass the entire 

writing process from prewriting through revision. Students have 

the opportunity to watch lesson videos, practice individual 

strategies within educational mini-games, and write and receive 

feedback on timed, prompt-based (SAT-style) essays.  

In addition to providing instruction, W-Pal affords students the 

opportunity to practice writing and receive feedback on their 

essays. Students write prompt-based persuasive essays within an 

essay writing module. Essays are scored using an algorithm 

trained on a large corpus of SAT-style essays [3]. In this paper, 

we evaluate the applicability of multi-level modeling (MLM) for 

ITS data. Specifically, we examine the level and impact of 

dependency in the data. We examine a means-as-outcomes model 

assessing the impact of individual differences on daily essay 

scores. In addition, we examine a contextual effects model that 

assesses the differential impact of daily and mean ratings of 

attitudinal measures. 

2. METHODS 
Sixty-five high school students from a large urban southwestern 

city participated for payment in a lab based study to assess the 

effectiveness of W-Pal. All participants were recruited from the 

community. The study compared two versions of the W-Pal 

system: the full W-Pal system, and a version including only Essay 

Practice. In the W-Pal condition, students had access to the entire 

W-Pal system, whereas those in the Essay Practice condition only 

interacted with the essay practice function. These conditions were 

designed to control for time-on-task.  

This study consisted of 10 sessions along with a home survey, 

which participants completed prior to attending their sessions. 

The home survey included basic demographics and measures of 

writing habits. The first session was a pretest session during 

which participants completed a pretest essay and prior knowledge 

assessments.  

Participants in all conditions began sessions 2-9 by filling out a 

survey about their previous session and current mood, and then 

completed a SAT-style practice essay. Based on students’ 

randomly assigned condition, some students interacted with all of 

W-Pal (n= 33), while others interacted with the Essay Practice 

module in W-Pal (n=32). Participants were given a maximum of 

25-minutes to complete their essay. They then received feedback 

and were given an additional 10-minutes to revise their essays. 

Students in the W-Pal condition then completed an assigned 

lesson and game based practice. Students in the Essay condition 

completed a second SAT-style essay, also revising this essay.  

During the final session, students completed a posttest, which was 

the same for all participants regardless of condition. For the 

current paper, only the essay scores, pretest, and attitudinal 

measures will be considered.  

2.1 Measures 

2.1.1 Essays 
Depending on condition, participants wrote either 8 or 16 practice 

essays with feedback, ,and a pretest and posttest essay without 

feedback. The essay prompts were adapted from SAT writing 

assessments and scored on a 1-6 scale using the W-Pal algorithm 

validated by Crossley and colleagues [3]. This algorithm displays 

sufficient accuracy (exact agreement of 55% and adjacent 
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agreement of 92%). The present analyses focus on the eight 

practice essays with common prompts for both conditions (i.e., 

the first essay written in the Essay condition). The pretest essay 

provides a measure of prior writing ability.  

2.1.2 Individual Difference Measures  
A variety of individual difference measures were administered to 

assess the impact of these characteristics on essay quality. In the 

present study, we focus on the measures of self-efficacy, prior 

reading ability, and motivation. Self-efficacy was measured using 

the Writing Attitudes and Strategies Self-Report Inventory 

(WASSI, [4]). Prior reading ability was assessed using the Gates 

MacGinitie Reading Test (GMRT Ed.3; level 10/12, form S). 

Motivation was measured using a daily and posttest survey with 

questions about participants’ moods and previous and anticipated 

interactions with W-Pal. 

3. RESULTS 

3.1 Applicability of Multilevel Models 
A series of unconditional models for all level-1 variables were 

estimated. The variance estimates from these analyses were used 

to compute intraclass correlations (ICCs). The ICC for daily essay 

scores was ICC =.47, suggesting that 47% of the variance in essay 

score can be attributed to the individual. For daily survey items, 

these values ranged from .37 - .98, suggesting that a significant 

portion of the variance for all of the daily survey items can be 

attributed to the individual.  

3.2 Means-as-Outcomes Model  
We estimated a means-as-outcomes model in which we used a 

number of level-2 variables to predict daily essay score. Variables 

were selected based on prior research on writing and included 

prior writing ability, reading ability (GMRT), writing self-

efficacy, and condition. This model assesses the impact of each 

prior ability measure on average daily essay score holding all 

others constant.  

A likelihood-ratio test was completed to assess the explanatory 

power of the level-2 variables. The Likelihood-ratio test was 

significant χ²(4) = 46.21, p < .001, suggesting that the MLM is 

superior to a model not containing these variables. The Bayesian 

Information Criterion (BIC) was also examined. The results from 

the BIC values mirrored the results found using the likelihood 

ratio test [5] Additionally, the inclusion of these five variables 

reduced the between cluster variation by 63%. All predictors had 

a significant impact on daily essay scores (prior writing ability B 

= .211, Prior Reading Ability B = .034, Self-Efficacy B = .023, 

and Condition B = .014)  

3.3 Contextual Effects Model  
An additional model was estimated using the daily survey data to 

predict daily essay scores. To investigate the possibility of 

contextual effects (differential effects at level-1 and level-2), we 

also included the cluster (person) means as level-2 predictors.  

A Wald test of the 10 level-2 coefficients was statistically 

significant, F(10, 23) = 23.943, p =.007, indicating that the set of 

contextual effects improved the fit of the model. Further 

univariate tests indicated that competitiveness (γ1), feelings of 

frustration (γ2), and self-assessments of improvement (γ3) exerted 

significant contextual effects, γ1 = .102, p = .003; γ2 = -.070, p = 

.020; γ3 = -.261, p =.049; the contextual effect for mood (γ4) was 

marginally significant, γ4 = .373, p = .061. The signs and 

magnitude of the level-2 regressions (daily survey means 

predicting daily essay mean) were stronger than the level-1 

predictors; however, the effects of sustained levels of certain 

feelings about the system (e.g., frustration) seemed to be more 

complex, warranting further investigation.  

4. DISCUSSION 
The data examined in this study exhibit high levels of 

dependency, rendering it ideal for multi-level modeling. The ICC 

values for the repeated assessments in W-Pal range from .37 - .98, 

exceeding appropriate values for using regression and analysis of 

variance. By using a means-as-outcomes model, we were able to 

account for 63% of the variance due to the cluster (student). The 

results suggest that there is an advantage for those interacting with 

the complete W-Pal system, additionally, individual differences 

were important predictors of average daily essay score.  

The analysis using the contextual effects model showed that, for 

this data, daily and mean values for attitudinal survey items had 

differential effects on essay scores. For instance, while daily 

enjoyment has a negative relationship with daily essay score, the 

participant’s average level of enjoyment had a positive 

relationship with average essay scores.  

Further work will be completed to combine these models and to 

investigate the utility of using random slopes for the level-1 

variables. Interactions will also be investigated further. Overall, 

the data from W-Pal is ideal for using MLM for assessment.  
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ABSTRACT
This work explores the effects of using automatically gener-
ated hints in problem solving tutor environments. Gener-
ating hints automatically removes a large amount of devel-
opment time for new tutors, and it also useful for already
existing computer-aided instruction systems that lack intel-
ligent feedback. We focus on a series of problems, after
which, previous analysis showed the control group is to be
3.5 times more likely to cease logging onto an online tu-
tor when compared to the group who were given hints. We
found a consistent trend in which students without hints
spent more time on problems when compared to students
that were provided hints.

1. INTRODUCTION
Problem solving is an important skill across many fields, in-
cluding science, technology, engineering, and math (STEM).
Working open-ended problems may encourage learning in
higher ’levels’ of cognitive domains [1]. Intelligent tutors
have been shown to be as effective as human tutors in sup-
porting learning in many domains, in part because of their
individualized, immediate feedback, enabled by expert sys-
tems that diagnose student’s knowledge states [9]. However,
it can be difficult to build intelligent support for students
in open problem-solving environments. Intelligent tutors re-
quire content experts and pedagogical experts to work with
tutor developers to identify the skills students are applying
and the associated feedback to deliver [6].

Barnes and Stamper built an approach called the Hint Fac-
tory to use student data to build a graph of student problem-
solving approaches that serves as a domain model for auto-
matic hint generation [7]. Hint factory has been applied
across domains [5]. Stamper et al. found that the odds
of a student in the control group dropping out of the tu-
tor were 3.5 times more likely when compared to the group
provided with automatically generated hints [8]. The hints
also affected problem completion rates, with the number of
problems completed in L1 being significantly higher for the

hint group by half of a standard deviation, when compared
to the control group.

This work extends these results by exploring potential causes
for these differences. We hypothesized that there would be
differences in the amount of time required to solve problems
between the students who received hints and the students
who did not. We concentrated on the first five problems, be-
fore the dropout differences reported in [8]. We found that
while there are no differences in total time in tutor, there
were some differences in several problems where students
in the control group spent significantly more time attempt-
ing to solve the problems when compared to the group of
students who were provided with hints. This suggests that
while both groups spend similar amount of total time in tu-
tor, the group provided with automatically generated hints
was able to get further in the tutor. Exploration of the in-
teraction networks [4] for these problems revealed that the
control group often spent this extra time pursuing buggy-
strategies that did not lead to solutions.

2. THE DEEP THOUGHT TUTOR
We perform our analysis on data from the Deep Thought
propositional logic tutor [2]. Each problem provides the
student with a set of premises, and a conclusion, and asks
students to prove the conclusion by applying logic axioms to
the premises. Deep Thought allows students to work both
forward and backwards to solve logic problems [3]. Working
backwards allows a student to propose ways the conclusion
could be reached. For example, given the conclusion B, the
student could propose that B was derived using Modus Po-
nens (MP) on two new, unjustified propositions: A→ B,A.
This is like a conditional proof in that, if the student can
justify A → B and A, then the proof is solved. At any
time, the student can work backwards from any unjustified
components, or forwards from any derived statements or the
premises.

2.1 Data
We perform our experiments on the Spring and Fall 2009
Deep Thought logic tutor dataset as analyzed by Stamper,
Eagle, and Barnes in 2011[8]. In this dataset, three differ-
ent professors taught two semesters each of an introduction
to logic course, with each professor teaching one class with
hints available and one without hints in the Deep Thought
tutor. In the spring semester there were 82 students in the
Hint group and 37 students in the Control group; in the fall
semester there were 39 students in the Hint group and 83
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in the Control group. Students for which application log-
data did not exist were dropped from the study; resulting
in 68 and 37 students in the Hint group, and 28 and 70 stu-
dents in the Control group for the first and second semesters
respectively. This results in a total of 105 students in the
Hint group and 98 students in the Control group. Students
from the 6 sections of an introduction to logic course were
assigned 13 logic proofs in the deep thought tutor. The
problems are organized into three constructs: level one (L1)
consisting of the first six problems assigned; level two (L2)
consisting of the next five problems assigned; and level three
(L3) consisting of the last two problems assigned. We refer
to the group that received hints as the Hint group, and the
group that did not receive hints as the Control group.

3. RESULTS
In order to investigate the increased rate of drop-out between
the hint group and the control group. We concentrate on the
first 5 problems from L1 of the Deep Thought Tutor. We
focus here as, while the groups started with similar comple-
tion and attempt rates, after level one the groups diverge on
both completion and problem attempt rates. Since inves-
tigation of the interaction networks for these problems re-
vealed that the control group often pursue buggy-strategies,
which do not result in solving the problem, we hypothesized
that their would be differences in the amount of time spent
in tutor between the groups.

We performed analysis on the student-tutor interaction logs.
For each student we calculated the summation of their elapsed
time per interaction. To control for interactions in which the
student may have idled we filtered any interactions that took
longer than then minutes. The descriptive statistics for this
are located in Table 1, Prob represents the problem number,
H and C represent the Hint group and the Control group.

Table 1: Descriptive Statistics for Time (in seconds)
Spent in Each Problem

N M SD
Prob H C H C H C
1.1 104 93 765.89 1245.24 956.41 1614.30
1.2 88 76 761.65 1114.37 911.24 1526.91
1.3 90 67 664.17 1086.09 733.95 2119.19
1.4 87 71 754.60 1266.39 1217.06 1808.53
1.5 84 67 710.62 1423.22 1192.43 2746.54

The large standard deviations are a sign that perhaps this
data is not normal. Exploring the data with Q-Q plots re-
veals that the data is in fact, not normally distributed. This
prevents us from performing between-group statistical tests,
such as the student’s t-test, as our data violates the assump-
tion of normality. To normalize the data, we use a logarith-
mic transformation (common log) to make the data more
symmetric and homoscedastic. Observation of the Q-Q plot
and histogram of the transformed data reveal that we had
addressed the normality concerns. The results are presented
in Table 2.

To test for differences between the two groups on each prob-
lem, we subjected the common log transformed data to t-
test. The results from this test are presented in Table 3.
There are significant differences for problems one, four, and

Table 2: Descriptive Statistics After Common Log
Transformation

N M SD
Prob H C H C H C
1.1 104 93 2.63 2.79 0.48 0.55
1.2 88 76 2.59 2.73 0.54 0.54
1.3 90 67 2.62 2.72 0.44 0.48
1.4 87 71 2.66 2.89 0.40 0.41
1.5 84 67 2.55 2.75 0.48 0.60

five. The ratio is calculated by taking the difference be-
tween the hint group mean and the control group mean. As
lg(x)− lg(y) = lg(x

y
) the confidence interval from the logged

data estimates the difference between the population means
of log transformed data. Therefore, the anti-logarithms of
the confidence interval provide the confidence interval for the
ratio. We provide the C:H ratios and confidence intervals in
Table 4.

Table 3: Ratio Between Groups (H:C) in the Origi-
nal Scale

95% Confidence Interval
Prob Ratio low high p-value t

1.1 0.69 0.50 0.97 0.03 -2.18
1.2 0.72 0.49 1.06 0.10 -1.68
1.3 0.78 0.56 1.10 0.15 -1.43
1.4 0.58 0.44 0.78 0.00 -3.61
1.5 0.62 0.42 0.93 0.02 -2.31

Table 4: Ratio Between Groups (C:H) in the Origi-
nal Scale

95% CI
Prob Ratio low high

1.1 1.44 1.04 2.01
1.2 1.39 0.94 2.05
1.3 1.27 0.91 1.78
1.4 1.71 1.28 2.30
1.5 1.60 1.07 2.40

In order to explore what these differences mean, we shall
transform the data back to our original scale (seconds.) The
transformed data is provided in Table 5. These are the Geo-
metric Means, which are often closer to the original median,
than they are the mean. The ratios from Tables 3 and 4
are easily interpreted as the log of the ratio of the geomet-
ric means. For example in problem 1.4, in the common log
scale, the mean difference between hint and control group is
-0.23. Therefore, our best estimate of the ratio of the hint
time and control time is 10−.23 = 0.58. Our best estimate of
the effect of Hint is it takes 0.58 times as many seconds as
the control group to complete the problem. The confidence
interval reported above is for this difference ratio.

The geometric mean of the amount of seconds needed to
solve problem four for the hint group is 0.58 (95% CI: 0.44
to 0.78) times as much as that needed for students in the
control group. Stated alternatively, students in the control
group spend 1.71 (95% CI: 1.07 to 2.40) times as long as the
Hint group in problem four.
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Table 5: Geometric Means and Confidence Intervals
in Seconds

95% CI 95% CI
P H low high C low high
1 428.66 347.14 529.31 618.19 478.60 798.51
2 387.07 297.97 502.82 537.80 405.75 712.82
3 413.80 335.89 509.78 527.18 405.05 686.13
4 454.43 374.38 551.61 778.01 624.48 969.29
5 352.90 278.06 447.89 565.61 405.34 789.24

Exploring the total time spent between all five problems also
required a log transformation. The total time spent on the
first 5 problems between the hint group (M = 3.34, SD =
0.4) and the control group (M = 3.44, SD = 0.51) was not
significant, t(198) = 1.41, p = 0.16. This corresponds to a
H:C ratio of 0.81 (95% CI: 0.60 to 1.09), and a C:H ratio of
1.24 (95% CI: 0.92 to 1.66).

4. DISCUSSION
The results of this analysis show that students in the con-
trol group are overall not spending significantly more time
in the tutor during these first five problems. However, the
control does spend significantly more time in some problems
compared to the hint group. Problems one, three and four
provided students with the automatically generated hints.
While problem two and five had no hints for either group.
We would expect there to be differences in time to solve
for the hint group, and this was the case for problem one.
We would also expect that having no hints on problem two
would not display an effect, as the second problem is too
early to expect differences to emerge between the groups.
Problem three is interesting as this problem is the first in
which the groups begin to show preferences towards differ-
ent solution strategies. With the control group preferring
to work backwards, and the hint group preferring to work
forwards (hints are only available for solutions working for-
ward). Problem four and five, both of which showed sig-
nificant differences in time spent, showed a large portion
of control group student interactions to be perusing buggy-
strategies.

This is interesting as the control group is spending at least
as much, and often more, time in tutor and yet meeting with
less overall success. The control students are not becoming
stuck in a single bottleneck location within the problems
and then quitting, which would result in lower control group
times. The control students are actively trying to solve the
problems using strategies that do not work. The hint group
is able to avoid these strategies via the use of the hints. The
hint group students also develop a preference for solving
problems forward, as that is the direction in which they can
ask for hints. It is interesting to see that these preferences
remain, even when hints are not available.

The effect of the automatically generated hints appear to let
the hint group spend around 60% of the time per problem
compared to the control group. Or stated differently, the
control group requires about 1.5 times as much time per
problem when compared to the hint group. These results
show that the hints provided by the Hint Factory, which
are generated automatically, can provide large differences in

how long students need to solve problems.

5. CONCLUSIONS AND FUTURE WORK
This paper has provided evidence that automatically pro-
duced hints can have drastic effects on the amount of time
that students spend solving problems in a tutor. We found
a consistent trend in which students without hints spent
more time on problems when compared to students that were
provided hints. Exploration of the interaction networks for
these problems revealed that the control group often spent
this extra time pursuing buggy-strategies that did not lead
to solutions. Future work will explore other data available
on the interaction level, such as errors, in order to get a bet-
ter understanding of what the control group is doing with
their extra time in tutor. We will also look into the develop-
ment of further interventions that can help students avoid
spending time on strategies that are unlikely to provide so-
lutions.
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ABSTRACT 

In this paper, we describe results of a multimodal learning 

analytics pilot study designed to understand the differences in eye 

tracking patterns found to exist between students with low and 

high performance in three engineering-related computer games, 

all of which require spatial ability, problem-solving skills, and a 

capacity to interpret visual imagery. In the first game, gears and 

chains had to be properly connected so that all gears depicted on 

the screen would spin simultaneously. In the second game, 

students needed to manipulate lines so as to ensure that no two 

intersected. In the final game, students were asked to position 

gears in specific screen locations in order to put in motion on-

screen objects. The literature establishes that such abilities are 

related to math learning and math performance. In this regard, we 

believe that understanding these differences in student’s visual 

processing, problem-solving, and the attention they dedicate to 

spatial stimuli will be helpful in making positive interventions in 

STEM education for diverse populations. 

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation]: User Interfaces. 

K.3.1 [Computers and Education]: Computer Uses in Education. 

Keywords 

Eye tracking, simulations, games, multimodal learning analytics, 

constructionism, spatial ability. 

 

1. INTRODUCTION 

The need to engage and motivate more students to learn science 

and engineering has raise considerable awareness about 

Constructionist [9] and project-based pedagogies in classrooms. 

Understanding students’ behaviors and cognitive evolution in 

these open-ended environments is a challenge that is being tackled 

in the nascent field of Multimodal Learning Analytics [4, 11]. In 

particular, this study uses eye tracking to examine students’ 

capacity to interpret visual imagery in the context of engineering 

problem solving. 

Computer-based learning tools such as games and simulations 

have become pervasive in learning environments. These 

technologies can be used by learners to improve their cognitive 

abilities and to acquire specific skills [6], including those 

involving visuospatial attention and perception [1]. Video and 

computer games habits have been shown to be related to the 

improvement of visuospatial abilities, including mental rotation 

and visual memory. Likewise, the enhancement of performance in 

visual memory recall tasks has been associated with the duration 

of game exposure, even when the gender has been controlled [10]. 

In this paper, our interest is not in the games themselves but in the 

engineering, mathematical, and problem solving skills required to 

solve the puzzles presented in the game. Visuospatial abilities are 

involved in the processes of manipulating spatial forms, and these 

abilities are associated with different kinds of scientific thinking 

[12]. Performance in standardized visuospatial tasks has been 

associated with performance on math evaluation tests as early as 

primary school [5]. A study with low- and typically achieving 

students demonstrated that low achievers have poorer overall 

performance and a higher number of errors in online game-like 

visuospatial working memory tasks. The same study found that 

low achievers also demonstrated more errors and higher reaction 

times for arithmetic tasks [2]. 

Another study showed that difficulty in manipulating internal and 

external visuospatial representations are related to conceptual 

errors in chemistry, even when the problem to be solved is not 

explicitly spatial. These authors suggest that designing and 

developing tools and software to train students’ spatial 

visualization capacities may improve their representational and 

conceptual skills, which should be helpful for learning chemistry. 

The principles involved in this process include: 1) the provision 

of multiple representations of the process; 2) ensuring that 

referential connections between the conceptual elements of the 

lesson are easily grasped through visual representations; 3) the 

presentation of the dynamic and the interactive nature of the 

process; 4) promoting transformations between 2D and 3D 

representation; and 5) reducing students’ cognitive load by 

making the information more explicit and integrated [12]. Another 

researcher suggests that manual rotation is also useful to the 

improvement of the mental rotation skills [11]. 

Considering these five principles, the present effort presents data 

from a pilot study (n=7), where students played three online 

games requiring visuospatial ability in order to explore individual 

gaze characteristics found to be related to performance. 

 

2. EXPERIMENTAL DESIGN 

Seven high school students were invited to play three online 

games in two separate sessions six days apart. During the first 

session, they played “Wheels,” a game that required them to 

connect gears and chains until all gears were spinning (Figure 1), 

as well as “Lines,” a game in which they were required to uncross 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 375



www.manaraa.com

lines until no intersecting lines remained. During the second 

session, they played “Gears,” a second gears game, the object of 

which was to place gears in specific locations on the screen to set 

on-screen objects in motion, and they also played the Lines game 

from the previous session. In each session, they had 5 minutes to 

play Wheels and Gears and 4 minutes to play Lines. 

 

Figure 1: Screenshot of the “Wheels” game. 

 

3. METHODOLOGICAL APPROACH 

Since each game was divided into separate levels of increasing 

complexity, but of brief duration, where only one challenge had to 

be solved, it seemed appropriate to group the collected data by 

level in order to gain insight into the strategy used by the learners 

at each level, as well as the evolution of their strategy during their 

advancement through the game.  

To achieve this degree of differentiation, we wrote a Python script 

to compute from the collected data the variables that describe a 

learner’s eye patterns at each game level. The variables per 

student included the number of mouse clicks per level, the time 

spent on each level, the number and duration per level of unique 

gaze points, or eye fixations, the direction of the saccadic eye 

movements (i.e. subjects are moving their eyes from left to right, 

top to bottom, or any combination thereof), and the type of eye 

pattern for every trigram, or sequence of three gaze points. 

Examples of eye patterns of a trigram include when the subject 

looks right, and then left, and then right again; or when the 

subject looks up, and then down, and then up again. In the 

literature such movements are described as A-B-A patterns [10].   

To identify differences in eye patterns among the students, a k-

means clustering algorithm was performed on the data with 

variable k values. 

 

4. RESULTS 

The sample was composed of 4 males and 3 females, and all of 

them played the games on the same two days. The average level 

reached during the first session was 5.71 (1.11) for Wheels and 

3.71 (0.49) for Lines. The average level during the second session 

was 8.8 (2.1) for Gears and 3.6 (0.84) for Lines. Since the 

students had a limited time to play, they were given the option to 

stop playing at any time for any reason. When they skipped the 

game, they were led to the next game. Only one student stopped 

the games prior to completion, and he did so in all of the games. 

During the first session, he stopped playing “Wheels” at level 4 

and “Lines” at level 3. In the second day, he skipped “Gears” at 

level 9 and “Lines” at level 3. 

After performing clustering on the data, we obtained 3 clusters 

(k=3): the first cluster had 2 students, the second, 3 students, and 

2 students in the third. The first cluster is composed of the 

students with the best performance, based on levels reached. This 

cluster differed significantly from clusters 2 and 3, especially for 

Wheels (z = 1.15, -0.64, -0.19, respectively) and Gears (z = 0.47, 

0.38 and -1.04, respectively). However, the differences were less 

marked for Lines. During the first session of Lines, there was no 

difference in performance between clusters 0 and 2 (z = 0.59), 

although a difference was observed for cluster 1 (z = -0.78). In the 

second session, no difference was found between the clusters for 

the lines game.  

Taking this in account, we performed analysis on the last game 

level all students reached on the Wheels (level 4) and Gears (level 

6) games to determine whether specific patterns of eye movement 

at these levels might correlate with overall performance levels. To 

proceed with the analysis, a new variable defining groups 1, 2 and 

3 (corresponding to clusters 1, 2 and 3), was set on the eye tracker 

software. The goal of this procedure was to identify the visual 

areas of interest for each group. Figure 2 shows the gaze point 

clusters for level 4 of the “Wheels” game, which represent the 

different regions of the screen where the students’ vision focused. 

 

Figure 2: Gaze point clusters for groups 1, 2, and 3 for level 6 of 

the Wheels game. Each color represents one gaze point cluster: 

green cluster 1, yellow cluster 2 and red cluster 3. 

We can observe a spatial difference between the clusters of group 

1, which is the group with the best performance on the task, 

compared with groups 2 and 3, especially with regard to the 

screen positions for the first cluster. The first group looked first to 

the bottom of the screen, where the different gear options were 

available. The time of the first fixation was 0.52s for group 1, 

which is significantly shorter than the 6.53s and 1.26s for groups 

2 and 3, respectively. Group 1 also used fewer clicks (z= -0.82, 

0.17, and 0.57, respectively), more unique fixation points (z= 0.7, 

0.34, and 0.19, respectively) and a longer duration on average for 

each eye fixation (z= 1.05, -0.55, and -0.23, respectively), which 

can be associated with more engagement and cognitive processing 

prior to taking action through a mouse click. 

For the Gears game, the gaze points clusters for level 6 are shown 

in Figure 3. Here, we observe a spatial pattern similar to what was 

found for the Wheels game for the positioning of the first cluster 

for group 1, as, again, distinguished from groups 2 and 3. All 

groups showed the first fixation in less than 0.2s. The unique 

fixation points and the duration of these fixations found for the 

Gears game followed the same patterns observed in the Wheels 

game; there were more unique gaze points for group 1 compared 

with 2 and 3 (z= 0.66, -0.27, and -0.25, respectively) and longer 

durations on average for each eye fixation (z= 1.16, -0.63, and -
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0.23, respectively). The number of mouse clicks for group 1 

remained below the average of all students, but higher for group 3 

(z= -0.34 and 0.86, respectively), while the number of clicks for 

group 2 (z= -0.35) was nearly identical to that of group 1. 

 

Figure 3: Gaze point clusters for groups 1, 2, and 3 at level 6 of 

the Gears game. Each gaze point cluster is represented by a color: 

green for cluster 1, yellow for cluster 2, and red for cluster 3. 

 

5. CONCLUSION AND IMPLICATIONS 

We have presented preliminary results from a study designed to 

determine how children approach engineering-related tasks 

embodied in interactive games. This work is situated within a 

larger research agenda, which is to apply analytics and data-

mining techniques for open-ended, constructionist [8] learning 

activities (“multimodal learning analytics” [4, 10]).  

From this small sample, we have observed that students have 

different eye movement patterns while interacting with the games. 

Shorter durations for first fixations after a stimulus presentation 

have been correlated with higher attentional readiness [9] and in 

this study they were associated with more time spent on the 

cognitive processing of the task prior to taking action through a 

mouse click. This pattern may suggest more engagement and 

reasoning prior to action, which is a valuable skill for students. 

On the other hand, longer times of first fixations after stimulus 

presentation, a higher number of mouse clicks, and shorter 

durations for each fixation point may suggest a “trial and error” 

approach, where the subject looks for different points on the 

screen without focusing on strategy or reasoning about the task. 

These preliminary results need to be tested with a larger sample 

and more systematic tasks, but they may point to novel ways of 

determining students’ expertise levels in engineering-related 

tasks. We believe that those kinds of games can be used as tools 

for training visuospatial abilities, especially if the task can bring 

“hands on” elements into mental rotation exercises, as has been 

done by others researching educational game design [11]. A 

second issue regarding the development of engineering and 

science thinking is the use of Bifocal Models [3], where students 

can undertake computer simulations of tasks through games 

similar to those that we have presented here, and proceed from 

that point to the performance of the activity with tangibles objects. 

Comparisons could then be drawn between the results gathered 

for the virtual and real undertakings. 

We also suggest that further studies take into account ecological 

variables from the environment to be correlated with performance 

and eye patterns, such as school performance. A second approach 

for further studies could be the tracking of eye pattern changes in 

cognitive tasks after an interventions focusing on skill 

development. 

By identifying elements in students’ gaze that were correlated to 

higher performance in open-ended tasks, this paper contributes to 

the identification of markers of expertise [4, 10] that might help 

educators and practitioners learn to detect and assess expertise in 

unscripted tasks.   
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ABSTRACT
The increasing numbers enrolling for college courses, and in-
creased diversity in the classroom, poses a challenge for col-
leges in enabling all students achieve their potential. This
paper reports on a study to model factors, using data min-
ing techniques, that are predictive of college academic per-
formance, and can be measured during first year enrolment.
Data was gathered over three years, and focused on a diverse
student population of first year students from a range of aca-
demic disciplines (n≈1100). Initial models generated on two
years of data (n=713) demonstrate high accuracy. Advice is
sought on additional analysis approaches to consider.

Keywords
Educational data mining, academic performance, personal-
ity, motivation, specific learning difficulties, self-regulation.

1. INTRODUCTION
In tertiary education, learning is typically measured by stu-
dent performance based on a variety of assessments that are
aggregated to generate a single measure of academic perfor-
mance. Factors impacting on academic performance have
been the focus of research for many years [9, 14]. It still
remains an active research topic [5, 12], indicating the inher-
ent difficulty in defining robust deterministic models to pre-
dict academic performance [16]. Typically, methodologies
for quantitative research in this domain focus on statistical
analysis of performance metrics and their correlations with,
or dependencies on, a wide variety of factors including mea-
sures of aptitude, motivation, organisation skills, personality
traits, prior academic achievements and demographic data
[6, 11, 18]. More recently, Educational Data Mining (EDM)
has emerged as an evolving and growing research discipline,
covering the application of data mining techniques in edu-
cational settings [1, 4, 10, 19]. There have been calls for
greater use of data mining by educational institutes to re-
alise the potential of the large amounts of data gathered

by institutes each year [7, 20]. While initial studies show
promising results, a greater body of work is needed to de-
termine if data mining techniques can offer an improvement
over statistical methods [6, 11, 15].

It is increasingly evident that significant numbers of students
in Institutes of Technology1 (IoT) in Ireland do not complete
the courses on which they enrolled [13]. Increased numbers
enrolling in first year, and increased diversity in the student
population, adds to the challenge of both identifying stu-
dents at risk of failing, and planning appropriate supports
to enable students perform optimally [13]. This study aims
to investigate the suitability of classification techniques in
generating a robust student model at enrolment which could
identify students at risk of failing. The study focuses on two
areas of research (1) an investigation of additional measures
to augment the data currently gathered by college adminis-
tration which will assist in the identification of students at
risk, and (2) an investigation of suitable data mining tech-
niques to accurately model this augmented dataset.

Study Hypothesis:. That educational data mining tech-
niques can generate an accurate, deterministic model of aca-
demic performance based on factors measured at enrolment
to tertiary education.

Study Objectives:

1. Identify and investigate factors most likely to deter-
mine academic performance in tertiary education, with
a focus on factors that can be measured at enrolment.

2. Investigate the accuracy and stability of a range of
classification techniques in predicting students at risk
of failing in first year.

3. Compare the suitability of a data mining approach
with a statistical approach for modelling a diverse stu-
dent population.

2. EXPECTED CONTRIBUTION
This study adds to existing knowledge in the following ways:

1The Institute of Technology sector is a major provider of
third and fourth level education in Ireland, focusing on the
skill needs of the community they serve (www.ioti.ie).
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1. Extends existing research in Education Data Mining:
EDM has given much attention to datasets generated
from students’ behaviour on Virtual Learning Environ-
ments (VLE) and Intelligent Tutoring Systems (ITS)
[4]. Less focus has been given to modelling datasets
from outside virtual or online learning environments.
This research focuses on models of college students
that can be applied early in semester one.

2. Focus on third level students outside the university
sector: Students enrolling in IoTs have, on average,
a weaker academic history than university students2,
and there are increasing admissions of non-standard
students [13]. This is an under-studied group com-
pared to university students. A study of computing
students [2] has shown that there is a difference be-
tween factors influencing the academic performance of
university students compared to students in an IoT.
This research extends that work by incorporating a
wider range of factors and a diversity of students from
across several academic disciplines.

3. The novel inclusion of data on specific learning difficul-
ties: This study is based at the Institute of Technol-
ogy Blanchardstown (ITB), who in partnership with
the National Learning Network Assessment Services3

(NLN) located on campus, provide assessment and fol-
low up support for all students in four areas of specific
learning difficulty: reading and spelling, organisation
and co-ordination, social and communication, and at-
tention and concentration. Profiling has shown one in
five students at ITB report difficulties in at least one
of these areas [8]. There is insufficient research includ-
ing measures of specific learning difficulties in student
modelling.

3. RESULTS SO FAR
3.1 Study criteria
Limited profiling of students in terms of specific learning
difficulties and some learning preferences was already un-
derway at ITB. This study extended that initiative, adding
measures relating to four additional factors: aptitude, per-
sonality, motivation and learning strategies. These were
chosen firstly because research highlights these factors as
being directly or indirectly related to academic performance
[21], and secondly because these factors can be measured
early in semester one. An online questionnaire was de-
veloped to profile students and give immediate feedback
(www.howilearn.ie). Data already available to college ad-
ministration on prior academic performance was also used4.
A full list of the factors used is given in Table 1.

2The majority of students in the IoT sector will have at-
tained between 200 and 400 points in the Leaving Certificate
exam, the state exam at the end of secondary school. The
majority of students in the Irish university sector will have
attained over 400 points, including some with the maximum
score of 600 points [13, Appendix A].
3The NLN assessment team includes an educational
psychologist, assistant psychologist and occupational
therapist (http://www.nln.ie/Learning-and-Assessment-
Services.aspx).
4Prior academic performance is based on state examinations
completed by all students at the end of secondary school in
Ireland.

Table 1: Measures included in the study

Prior Academic Performance
English Grade Did Honours English
Maths Grade Did Honours Maths
Highest Mark Humanities Average
Science Average Creative/Practical Average
Aggregate Mark (CAO points)
Personality, Goldbergs IPIP scales (http://ipip.ori.org)
Conscientousness Openness

Motivation, based on MSLQ [17]
Intrinsic Goal Orientation Self Efficacy
Extrinsic Goal Orientation

Learning style, based on R-SPQ-2F [3]
Deep Learner Shallow Learner
Strategic Learner

Self-regulated Learning, based on MSLQ [17]
Self Regulation Study Effort
Study Time

Specific Learning Difficulties, Do-IT profiler
(www.doitprofiler.info)

Reading and Spelling Social and Communication
Organisation and Co-
ordination

Attention and Concentration

Preferred learning channel
Visual, Auditory, Kinaesthetic, or a combination of these
Other preferences, using Learning Styles Questionnaire

from NLN (www.nln.ie)
Organised or Disorganised Morning or Evening
Meticulous or Approximate Group work or solo
Logical or Creative Like background noise

Other factors:
Age Gender

3.2 Study participants
Data was gathered on first year students over three academic
years, 2010, 2011 and 2012. All students in the first year of
study were invited to complete the online questionnaire as
part of first year induction. 1,332 students completed the
questionnaire. End of year results are available for two of
the three years, giving a current sample size of (n=713).
The final sample size is expected to be approximately 1,100
as to date 16% of students either gave an invalid student ID
during profiling, or did not give permission for their data to
be used in the study. Average CAO5 points is 257.9 ± 75.
59% of the students were male. The students are from Com-
puting, Engineering, Business, Social Care, Creative Digital
Media, Sports Management and Horticulture.

3.3 Initial results
Modelling was done on the 2010 and 2011 data, using five di-
mensions, namely: prior academic performance, motivation,
learning orientation, personality and age. A binary class la-
bel was used based on end of year GPA, range [0-4]. The two
classes included poor academic achievers who failed over-
all (GPA<2, n=296), and strong academic achievers who
achieved honours overall (GPA≥2.5, n=340). To focus on
patterns that distinguish poor and strong academic achieve-
ments, students with a GPA of between 2.0 and 2.5 were
excluded from initial models, giving a dataset of (n=636).
Six algorithms were used: Support Vector Machine(SVM),
Neural Network, k-Nearest Neighbour, Näıve Bayes, Deci-
sion tree and Logistic Regression, using RapidMiner V5.2
(rapid-i.com). When modelling all students, model perfor-
mance was comparable across the six learners, with Näıve

5CAO Points are an aggregate measure of prior academic
performance in Ireland, range [0,600]. It represents the com-
bined score achieved in six subjects.
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Bayes achieving the best accuracy at 75.74%. However when
modelling subgroups split by age, model accuracies for al-
gorithms that can learn more complex patterns increased,
with SVMs getting the best accuracy (82.62% for students
under 21, 93.45% for students over 21). Other subgroups
were not consider in the initial analysis.

4. OUTSTANDING QUESTIONS
Feedback and discussion is welcome on all aspects of the
study, and specifically in the following areas:

1. The dataset has 44 attributes, primarily generated from
a questionnaire using Likert scales, and so have a small
range of discrete numeric values. Attributes are based
on factors that have widely published correlations and
interdependencies, although the reported significance
of those dependencies varies. Opinions are sought on
modelling approaches to consider for this type of dataset.

2. There have been calls from the EDM community for
the use of statistical methodologies in data mining re-
search [15]. Feedback on how this study should adhere
to a statistical methodology to validate modelling re-
sults would be of value.

3. Also of interest are opinions on the value and limita-
tions of early student modelling, before data on stu-
dent engagement in course work is available. Is there
value in also considering measures of early engagement
based on activity on a VLE such as Moodle?

5. REFERENCES
[1] S. R. Barahate and M. Shelake, Vijay. A survey and

future vision of data mining in educational field.
Second International Conference on Advanced
Computing and Communication Technologies, 2012.

[2] S. Bergin and R. Reilly. Predicting introductory
programming performance: A multi-institutional
multivariate study. Computer Science Education, 16,
No. 4:303–323, 2006.

[3] J. Biggs, D. Kember, and D. Leung. The revised
two-factor study process questionnaire: R-spq-2f.
British Journal of Education Psychology, 71:133–149,
2001.

[4] T. Calders and M. Pechenizkiy. Introduction to the
special section on educational data mining. SIGKDD,
13(2):3–3, 2011.

[5] S. Cassidy. Exploring individual differences as
determining factors in student academic achievement
in higher education. Studies in Higher Education,
pages 1–18, 2011.

[6] G. Dekker, M. Pechenizkiy, and J. Vleeshouwers.
Predicting students drop out: a case study. In
T. Barnes, M. C. Desmarais, C. Romero, and
S. Ventura, editors, Proceedings of the 2nd
International Conference on Educational Data Mining,
pages 41–50, Cordoba, Spain, 2009.

[7] N. Delavari, M. R. A. Shiraze, and M. R. Beikzadeh. A
new model of using data mining technology in higher
education systems. In Proceedings of 5th International
Conference in Information Technology Based Higher
Education and Training, Istanbul, Turkey, 2004.

[8] D. Duffin and G. Gray. Using ict to enable inclusive
teaching practices in higher education. AAATE,
Florence, Sept 2009.

[9] T. Farsides and R. Woodfield. Individual differences
and undergraduate academic success: the roles of
personality, intelligence, and application. Personality
and Individual Differences, 34:1225–1243, 2003.

[10] Y. Gong, D. Rai, J. E. Beck, and N. T. Heffernan.
Does self-discipline impact students’ knowledge and
learning? Proceedings of the 2nd International
Conference on Educational Data Mining, pages 61–70,
2009.

[11] S. Herzog. Estimating student retention and
degree-completion time: Decision trees and neural
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ABSTRACT 

BOTS is a socially multiplayer online game designed to teach 

students about introductory computer science concepts such as 

loops and functions. Using this game, I plan to explore the use of 

user-generated content (UGC) in game-based tutors, increasing 

replayability and, ideally, player engagement. BOTS has so far 

been used for work towards identifying what makes a level or 

puzzle in the game “good”  and  how I identify that quality in new 

submissions, as well as investigating several mechanisms for 

moderation of submitted content. The use of UGC has the 

potential to revolutionize how game-based tutors are created, 

drastically reducing the burden of content creation on developers 

and educators.   

Keywords 

Game Based Tutors, Moderation, Player Engagement, Self-

Evaluation, Serious Games, Social Games, User Generated  

Content.. 

1. INTRODUCTION 

1.1 Background 
Computer assisted learning, and game-based learning in particular 

has been shown to be able to be nearly as effective as one-on-one 

human tutoring [8, 10], however the developers and educators are 

required to use a great deal of time and expert knowledge [2, 14]. 

Murray estimated approximately it takes 300 hours to create a 

single hour of educational content. If concerns for game design, 

user immersion, and content creation are considered, this time 

cost would only increase. Additionally, problems created by 

educators or developers are often presented in a sequence, and 

once the in-game content is exhausted, the experience is generally 

over. Replayability is a major component of successful games 

[20], and games constructed in this way simply cannot be 

replayable experiences.  

According to Scott Nicholson, allowing users to create game 

content, such as new levels and puzzles, "extends the life of a 

game and allows the designers to see how creative users can be 

with the toolkits provided." Many principles from the use of User-

Generated Content (UGC) can be used to improve Serious Games 

by allowing players to set their own goals [16]. Additionally, 

design patterns for educational games identified by a team at 

Microsoft Research in [18, 19] indicate that allowing users to 

create their own challenges is a very powerful motivator. 

Previous work done with UGC in serious games showed that level 

creation increased player motivation, especially for players 

interested in creativity [6]. By creating games that are solitary, 

non-replayable experiences, serious games developers are failing 

to harness the community experience that modern games provide, 

and may fail to provide ways to refine learned skills outside of 

rigidly structured areas. Even outside of ITS, software like 

Scratch, Alice, and other programs often feature communities that 

highly resemble Steam, Miiverse, and even communities like 

Wikipedia or YouTube [9, 15], in an effort to provide this type of 

experience. 

1.2 User Generated Content in BOTS 
To investigate how best to use UGC in a Serious Game, I present 

BOTS. BOTS is a socially multiplayer online game built using the 

Unity 3D Game Engine where players take on the task of 

programming various robots. Programs take the form of a 

graphical pseudo-code, where players drag and drop icons 

representing various commands to direct the robot. Players also 

can condense a sequence of commands into a single icon by 

creating a function, and can create loops and conditional 

statements to further optimize their solutions.  

In BOTS, players have to manage several resources to succeed. 

The size of the players’ programs is restricted to 25 commands. 

Players also have a limited number of instances of each command 

to work with. Both of these constraints are designed to encourage 

players to minimize the repetition of code, using functions and 

loops where necessary. These are important lessons for novice 

programmers to learn, and in this environment, can be taught 

independent of any specific language's syntax. 

BOTS also has a collaborative/social aspect. Players can create 

new puzzles and share them with the game community.  Our goal 

with this feature is to promote a higher level of engagement so 

that game-based tutors  like  BOTS can be used as more than a 

novel substitute for a homework assignment. BOTS should be a 

full-fledged educational tool that can be used by players 

throughout their introduction to programming The game was 

designed using the “Flow of Inspiration” principles outlined in 

[21]. This creates an environment where players can continually 

challenge their peers to find better solutions for difficult levels. 

Previous work has shown that content creators spend more time 

on their tasks when they have a target in mind [1]. I hypothesize 

that orienting content-creation as a social task may increase the 

quality of levels created. 

While UGC certainly has a lot to offer for a system like ours, there 

are also several downsides to it, which can hinder or disrupt 

game-play. If it is possible to create a system within which users 

can be trusted to create useful, quality content, then developers 
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will be able to spend more time developing the core of the game, 

ensuring that the game mechanics are both fun for players and in 

line with learning objectives. With these advances, we will be able 

to address many of the NSF's goals for Cyberlearning [17], and 

BOTS and systems like it may expand to play a more important 

role in early STEM education. 

2. METHODS 
In [2], the authors used a Machine Learning approach based on 

the tagging habits of users to identify low-quality Wikipedia 

articles. I hope to be able to use similar data-driven methods to 

analyze user-created levels. Lacking a large installed user-base to 

tag submitted levels, I work with player solutions as they are 

submitted, with the first being the author's own solution to the 

submitted level.  

While the quality of a game level is subjective, I developed a set 

of criteria for a level in our game to be "useful", inspired by the 

use of design patterns in level design analysis [11]. To identify 

common design patterns, I examined levels created over the 

course of several game sessions with three groups. 24 levels were 

created by the first group, 13 by the second, and 11 by the third. 

Once I identified these patterns, I detailed how they could impact 

gameplay, why a level creator could be motivated to create them, 

and how developers could affect that motivation through game 

mechanics or incentives.  

2.1 Identifying Low-Quality Submissions 
Through examination of the existing levels, I identified several 

patterns of unwanted UGC. Interestingly, these types of levels fall 

in line with the player behavior types outlined in Bartle's work 

with online communities [4, 5], killers, achievers, explorers, and 

socializers. In the interest of space, I will specifically name only 

four of these low-quality design patterns here.  

 "Sandbox" levels, which feature erratically-placed 

elements. I believe these levels are often created by 

users who are unfamiliar with the creation interface. 

 "Punisher" levels, which feature unusually difficult or 

tedious solution paths, characterized by programs which 

are trivial but time-consuming to write. 

 "Griefer" levels, which feature visual obstacles or 

other abuses of game mechanics, which I believe are 

intended to frustrate the user. These levels may or may 

not have solutions. 

 "Trivial" levels, whose optimal solution is readily 

apparent to players, and which requires no use of the 

game's more advanced or difficult concepts to complete. 

Based on these classes of unwanted UGC, I developed an 

evaluation rubric to score levels based on the features they 

contain. For our purposes, a "high quality" level should: 

 Contain an obvious trivial solution 

 Contain a different, optimized solution 

 Contain structural cues for that optimization 

 Contain few unnecessary structural cues 

 Take less than 5 minutes for an expert to solve 

To explain the last criteria, compare this to a long, completely 

featureless level in a 2D platform game. The task itself is not 

providing difficulty, but achieving what should be a simple goal 

has become unnecessarily obtrusive [12, 13]. I used the above 

criteria to evaluate levels in the next part of our investigation. 

2.2 Moderating User Submissions 
To see how different game mechanics affected the levels created, 

we implemented several different types of moderation which we 

believed could discourage players from submitting low-quality 

UGC. Students at a STEM-related after-school program played 

BOTS for one hour under one of three conditions, and we 

examined the levels they created using the rubric I had previously 

developed. The three types of moderation investigated were as 

follows: 

Condition 1: Unrestricted Level Submission  

There is no filtration process in place and the puzzle must only 

pass the base conditions of each level having a starting point and 

goal. If the level has those conditions, it will be made public and 

immediately available for play as soon as the participant submits 

it.  

Condition 2: Self-Evaluation  

The participant must first submit a solution for the level they just 

created before it would be made accessible to the public. I expect 

that this will reshape the level creation process so that more 

successful creators will build levels while already having a 

solution in mind.  

Condition 3: Moderator Approval  

When a participant submits a level, it will be placed in a queue 

where an admin can examine the level and determine if it is 

appropriate to publish. The admin will then reply to the 

participant either accepting or rejecting that level which was 

submitted for approval.  

2.3 Preliminary Results 
After the session, a researcher who was blind to the conditions 

each level was created under "graded" each level on a simple 

rubric addressing the criteria discussed above.  

 
Figure 1 - Measured quality of submitted levels 

I also analyzed the best solutions to these levels using an expert-

solver, looking at the difference (in terms of number of commands 

used) between a naive solution using neither loops nor functions 

and a master solution using a combination of both techniques.  

 
Figure 2 - Differences between naive and expert solutions 

Though we were able to collect relatively few levels, the collected 

data are encouraging. The quality of the published levels in 
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Condition 2 is similar to that of the levels under Condition 3. 

Interestingly, in both conditions where some form of moderation 

is present, the average quality of all levels, including those left 

incomplete or unpublished. is slightly higher. Though I have a 

very small sample size in this study, I hope to be able to 

investigate these effects with a larger group of players. 

3. FUTURE WORK 
In addition to replicating the above experiment with a larger 

group of students, I have already begun an investigation of how to 

further use student data to moderate and evaluate submitted 

levels. Being able to assess UGC in this way allows us to provide 

meaningful problem orderings even with levels I have not 

analyzed in depth, as well as provides us with a metric which can 

be used to reward players for creating specific types of levels, or 

levels which fill in gaps in content or difficulty. In the future, I 

will experiment with different methods of directed level creation 

using the information gained, to see if level creation can be better 

integrated into the system as a learning activity in and of itself. 
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ABSTRACT
In personalized learning scenarios, students have control over
their learning goals and how they want to learn which is
advantageous since they tend to be more motivated and im-
mersed in what they are learning. However, they need to
regulate their motivation, affect and activities so they can
learn effectively. Our research deals with helping students
identify the long-term effects of their learning behavior and
identify effective actions that span across learning episodes
which are not easily identified without in depth analysis.
In this paper, we discuss how we are trying to identify such
effective learning behavior and how they can be used to gen-
erate feedback that will help students learn in personalized
learning scenarios.

Keywords
personalized learning, self-regulated learning, reinforcement
learning, user modeling

1. INTRODUCTION
Governments and educational institutions have called for re-
forms on how students are taught in school to enable them
to have more control over their learning [1]. Allowing stu-
dents to engage in personalized learning grant them skills
that prepare them for the needs of the current society and
more importantly help shape them into life-long learners.

In personalized learning, students have control over what
they learn and how they learn causing them to be more mo-
tivated and immersed in what they are learning. Teachers
no longer serve as the main sources of information but in-
stead become facilitators of the students’ learning process.
Although teachers can guide students and give them sugges-
tions about what they are learning, teachers can only assess
and provide support for a small number of the challenges

∗also affiliated with: Center for Empathic Human-Computer
Interactions, College of Computer Studies, De La Salle Uni-
versity, Manila, Philippines

that students face. Especially because students learn in sit-
uations where teachers are unavailable, students can easily
get overwhelmed by challenges and not achieve their aspired
learning goals. It is also possible that students would engage
in non-learning related activities which might hinder them
from learning. Thus, in this kind of learning scenario, self-
regulation is essential for students to manage their goals,
time, motivation, affective states and hindrances to learn-
ing.

Self-regulation is not an easy task because it requires much
motivation and effort [5]. There is a high cognitive load
when students perform learning tasks while managing it.
They would need to continuously monitor the effects of their
actions and decide if they should continue doing it or if they
should change it. Furthermore, students also keep track of
effective learning behavior so they can use them in future
learning episodes.

We have been developing a software that helps students
monitor their behavior and reflect on what transpired during
the learning episode with the help of webcam and desktop
snapshots [3]. After each learning episode, students who
used the system were asked to review their learning episode
then annotate their intentions, their activities and their af-
fective states so they could further understand and analyze
their behavior. According to the results, students who used
the system discovered behaviors they were initially unaware
of and were able to identify ways to improve ineffective learn-
ing behavior. We were also able to analyze and process the
students’ annotated data to have a better understanding of
their learning behavior.

Students’ reflections from the experiment however, seemed
to focus only on immediate effects of their actions and did
not consider its long term effects in the learning episode.
Also, their reflections did not incorporate their realizations
from previous learning episodes. Currently, we are investi-
gating how we can help students identify actions that benefit
learning not only in the short-term but also in the long-term.
We also want to help students to identify effective learning
behavior that span over different learning episodes.

2. STUDENT LEARNING BEHAVIOR
The data we used for this research was gathered from four
students engaging in research-related work, which is an ex-
ample of a personalized learning scenario. One male mas-
teral student and one female doctoral student created a re-
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port about their research involving activities such as infor-
mation search, reading papers, reading books and creating
a power point presentation. One male undergraduate stu-
dent and one female doctoral student wrote a conference
paper about their research involving activities such as in-
formation search, reading papers, reading books, running
programs and simulations to retrieve data from their exper-
iments and paper writing. We gathered two hours of data
for five different learning episodes from each student within
a span of one week.

Unlike other research, our work dealt with students who
freely decided on the time, location and type of activities
they did including non-learning related activities. However,
they were required to learn in front of a computer run-
ning the software we developed for recording and annotating
learning behavior.

Although the students worked on different topics and used
different applications, all of them processed and performed
experiments on previously collected data, searched for re-
lated literature and created a report or document about
it. Analyzing the data showed that students performed six
types of actions – information search (e.g., using a search en-
gine), view information source (e.g., reading a book, viewing
a website), write notes, seek help from peers (e.g., talking to
a friend), knowledge application (e.g., paper writing, presen-
tation creation, data processing) and off-task (e.g., playing
a game).

3. BEHAVIOR EFFECTIVENESS
In a learning episode, students perform many different ac-
tions to achieve their goal. Although students can identify
the effectiveness of the current action by monitoring its ef-
fect, it is more difficult to identify how it will affect or how
it has affected their learning in the long run. For example,
students spending a long time learning about a topic would
seem to be performing well, however they may experience
more stress and have a higher chance of making mistakes
and getting confused more easily. It would probably be ad-
vantageous for the student to also take a rest once in a while.
We adapted the concept of returns in reinforcement learn-
ing [4] to account for this situation wherein the effectiveness
of an action was not measured only by its immediate ef-
fects but rather its long term effects on the learning episode.
Moreover, as the student engaged in more learning episodes,
a reinforcement learning algorithm updated the rewards of
each action which incorporated the effects of actions from
previous learning episodes.

Due to the lack of control in the students’ activities while
learning, it was not possible to directly gauge the students’
learning progress which could have been used to define the
rewards of their actions. However, their affective states gave
an idea about the events that transpired during the learning
episode. D’Mello and Graesser’s model of affective dynam-
ics [2] describes the relationship between affective states and
events that occur in a learning scenario. For example, confu-
sion indicates instances wherein students need to exert more
effort to progress in the current activity. Frustration arises
when students are too confused, get stuck and no longer
progress in their learning. Too much frustration results in
boredom or disengagement from the learning activity. En-

Table 1: Action-Affect Reward System
Affect On-task Behavior Off-task Behavior
Engaged 3 -
Confused 2 -
Frustrated 1 -
Bored -1 -
Neutral 0 -2
Delighted 3 -2
Surprised 2 -2
Sad - -3
Angry - -3
Disgusted - -3
Afraid - -3

gagement and delight on the other hand are indicators that
a student is moving towards or has achieved the learning
goal. Although D’Mello and Graesser’s model does not dis-
cuss off-task activities in particular, it is logical to consider
that they will not directly lead to learning progress. Neg-
ative affective states experienced while performing off-task
activities might cause a decrease in motivation so it is prob-
ably best to avoid them while learning. Based on how each
affective state and type of activity affected learning progress,
we constructed a reward system (see Table 1) that would be
used to update the returns of performing an action.

Using the reward system we defined, the long-term effective-
ness of the actions performed in the learning episode can be
discovered using a reinforcement algorithm. Specifically we
used Q-learning [4] to discover actions that maximize return
when performed in a particular state. In our case, we rep-
resented states using the learning context and actions using
the activities performed by the student. Specifically, each
state was represented using – the current affective state, the
amount of time spent in the current state, the previous ac-
tion performed, the previous affective state experienced, the
dominant action previously used and the dominant affective
state experienced. States changed when students chose to
perform a different activity (e.g., shfting from viewing an
information source to seeking help) so this was used to rep-
resent an action.

The collected data was manually processed and then con-
verted into state-action pairs. Q-learning was then applied
to uncover the returns of performing actions in a particu-
lar state. The state-action pairs with their corresponding
expected returns were called the student’s learning policy.

4. RESULTS
The Q-learning algorithm was applied on each of the stu-
dent’s data separately since we assumed that each student
would have a different learning policy. Due to the number
of features we used for state representation , there were a
lot of states and many of them had high return values. Due
to space limitations, we only present some of the notable
state-action pairs from one of the student’s learning policy
in Table 2. Majority of the states with high return values
contained state-action pairs that represented transitions in-
herent to the domain. For example, high returns were given
when students applied knowledge after viewing an informa-
tion source, which happens naturally for example when a
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Table 2: Sample State-Action Returns
State Action Reward

Engaged while viewing
an information source
for <5min, Previously
engaged while applying
knowledge, Mostly felt
engaged while applying
knowledge

Apply knowledge 6469.20

Confused while ap-
plying knowledge for
<5min, Previously
engaged while viewing
information source,
Mostly felt engaged
while applying knowl-
edge

Apply knowledge 982.80

Engaged while apply-
ing knowledge for 5-
10min, Previously off-
task, Mostly felt en-
gaged while applying
knowledge

Off-task 164.30

Neutral while apply-
ing knowledge for
<5min, Previously
engaged while applying
knowledge, Mostly felt
engaged while applying
knowledge

Off-task -228.60

Delighted while doing
off-task behavior for
5-10min, Previously
confused while view-
ing an information
source, Mostly felt
engaged while viewing
an information source

View information
source

521.10

student shifts between reading information sources and cre-
ates a power point presentation. However, some interesting
strategies were discovered such as shifting from an engaged
on-task activity to an off-task activity indicating that off
task activities may actually have positive long term effects.

Students’ answers from surveys and personal interviews re-
garding their thoughts on a recent learning episode corre-
lated with the reward values produced by the algorithm.
For example, students identified the need to continue learn-
ing despite encountering challenges (e.g., confusion) and not
spending too much time in off-task activities.

5. FUTURE DIRECTION
The next step in the research is helping students find ways
to improve their learning behavior. We believe that the be-
havior identified using the reinforcement learning approach
can be used to support students by making them aware of
the behavior’s long term effects and also informing them of
effective learning behavior that have spanned across their
learning episodes.

Students’ behavior in a learning episode can be evaluated
by comparing the actions that a student took in a particu-
lar state with the optimal action according to the student’s
updated learning policy. When a student selects a subopti-
mal action, the system can inform the student that an in-
effective learning strategy might have been used and taking
the optimal action could improve their learning effective-
ness. Effective learning behavior that span across learning
episodes can be identified by keeping track of frequently used
state-action pairs that constantly garner high returns in dif-
ferent learning episodes. Students can be informed of such
behavior so they will be aware of them and can make sure
to apply them in succeeding learning episodes.

We also plan to investigate how students will react to feed-
back using the policy generated by the reinforcement learn-
ing algorithm and observe if it will help students select more
effective learning behavior. It will also be interesting to see
how differently students will react to feedback when different
reward systems are used. Apart from using a students’ learn-
ing policy we also think that they can benefit from learn-
ing about other students’ effective learning behaviors taken
from other students’ learning policies. Moreover, learning
behaviors identified by experts which are not exhibited by
the student can also be suggested.

Another way to identify more accurate reward values would
be to include effectiveness ratings of the actions performed
by the students. It might also be good to explore other fea-
tures for our state representations and see how they affect
the resulting learning policy. Lastly, we are also investigat-
ing other reward mechanisms that are more flexible so it can
handle students’ individual differences.
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ABSTRACT 
When developing an intelligent tutoring system, it is necessary to 
have a significant number of highly varied problems that adapt to 
a student’s individual learning style. In developing an intelligent 
tutor for logic proof construction, selecting problems for 
individual students that effectively aid their progress can be 
difficult, since logic proofs require knowledge of a number of 
concepts and problem solving abilities. The level of variation in 
the problems needed to satisfy all possibilities would require an 
infeasible number of problems to develop. Using a proof 
construction tool called Deep Thought, we have developed a 
system which chooses existing problem sets for students using 
knowledge tracing of students’ accumulated application of logic 
proof solving concepts and are running a pilot study to determine 
the system’s effectiveness. Our ultimate goal is to use what is 
learned from this study to be able to automatically generate logic 
proof problems for students that fit their individual learning style, 
and aid in the mastery of proof construction concepts. 

Keywords 

Logic Proof, Problem Selection, Knowledge Tracing, Intelligent 
Tutor. 

1. INTRODUCTION 
Logic proof construction is an important skill in several fields, 
including computer science, philosophy, and mathematics. 
However, proof construction can be difficult for students to learn, 
since it requires a satisfactory knowledge of logical operations 
and their application, as well as strategies for problem solving. 
These required skills make developing an intelligent tutor for 
logic proof construction challenging, since a number of variables 
must be taken into account when selecting problems for students 
that promote learning of proof concepts that fit their individual 
learning styles. 

We describe the on-going development of an intelligent tutor, and 
an initial experiment to determine the effectiveness of knowledge 
tracing methods used to select sets of problems for students. For 
the study, we have built upon an existing, non-intelligent proof 
construction tool called Deep Thought, which has previously been 
used for proof construction assignments, and from which student 
performance data has been collected. 

Our long-term goal is to provide a system for logic proof 
construction that adapts to a student’s individual learning abilities, 

using that student’s previous performance in logic rule application 
and problem solving in order to automatically generate problems 
that aid in mastery of core proof construction concepts. It is also 
our goal to develop the system in such a manner that it is domain 
independent, and can be applied to other fields that have multiple 
concepts and skills that need to be demonstrated. 

2. THE DEEP THOUGHT TUTOR 
2.1 The Original System 
Deep Thought is a web-based proof tool with a graphical user 
interface that provides a set of problems that display logical 
premises, buttons for logical rules, and a conclusion that a student 
must prove by applying those rules to the premises (Figure 1). 
Deep Thought was originally developed as a practice tool and 
system for proof construction assignments. In its original form, 
Deep Thought provides students with three levels of problems, 
with problems in each level requiring a different set of logical 
rules for completion (Level 1: Inference rules; Level 2: Inference 
rules [more difficult]; Level 3: Inference and Replacement rules). 
Problems are selected from a drop-down menu, and students can 
select and complete problems in any order. As a student works 
through a problem, each step is logged in a data file that records a 
number of attributes, including the current problem, the rule being 
applied, any errors made (such as attempting to use a rule that is 
logically impossible), completion of the problem, time taken per 
step, and elapsed time taken to solve the problem. 

 
Figure 1. The Deep Thought user interface. 

2.2 The New System 
A number of changes were made to Deep Thought in order to 
create an intelligent system. Notable changes important to this 
study are described below. 

2.2.1 Problem Set 
Instead of allowing students to select problems at will, the new 
system provides an ordered set of problems for students to solve. 
Problem selection is determined based on the level of rule 
application and difficulty students are expected to demonstrate. 
Students can skip problems within the current level; however, 
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they must complete all problems within that level to proceed to 
the next. 

The original problem set for Deep Thought was expanded to give 
a wide variety of problems while maintaining the rule applications 
required and difficulty level of the original set. These changes 
were made and tested by domain experts to ensure consistency 
between the old and new system for performance comparison.  
The problem set was changed as follows: 

• Levels 1 & 2: Inference rules 

• Levels 3 & 4: Inference rules [more difficult] 

• Levels 5 & 6: Inference and Replacement rules 

• Level 7: Inference and Replacement rules [more 
difficult, not present in original set] 

Level 1 contains 3 problems common to all users. With no prior 
performance data available, these 3 problems serve the purpose 
of collecting initial performance data to select problems in the 
next level.  
Levels 2 – 6 are split into two difficulty tracks (easy and hard), to 
which students are sent based on their prior performance. Both 
tracks within each level contain problems that require similar rule 
applications and proof concept demonstration. The hard path 
contains 2 problems and the easy path contains 3 problems, each 
with an alternate problem (the alternate problem contains the 
same number of steps and same rules as the original, but with 
different ordering of required rule applications). The difficulty of 
problem sets were determined by domain experts who have many 
years of experience working with the types of proofs presented in 
Deep Thought and with students working through those 
problems. 

Level 7 contains 3 problems common to all users. These problems 
were not present in the original set, but were added to test student 
skills obtained by working through the rest of the tutor. The 
problems in this level were more difficult than any other problems 
in Deep Thought. 

2.2.2 Problem Selection 
Problem selection in Deep Thought is determined using two 
methods. The first is the decision process that occurs between 
levels that sends a student down difficulty paths. The second is 
the process that selects problems within the current level.  

For the difficulty path decision process, data from a student’s 
work in Deep Thought is recorded and used to update a set of 
action scores. The scores for each rule are given an initial value, 
and are then updated based on the actions taken by the user, with 
correct applications of rules increasing the rule score, and 
incorrect actions (errors) decreasing them. The calculations for 
rule updates are made using a Bayesian knowledge-tracing model 
[2].  
At the end of each level, the scores for each action are compared 
to average scores from historical student data collected using the 
old version of Deep Thought. The scores from the old version 
were calculated using the same bayesian knowledge tracing 
model after students had worked through the existing problems 
sets, and were used as a threshold value.  Each rule is given a 
value of 1 if the score is higher than the threshold and given a 
value of -1 if the score is lower than the threshold. For each 
action, these values are weighted based on the rule priority for 
each level (primary or secondary), and then summed. A sum less 
than zero sends the students down the easy path, and a sum 
greater than zero send the students down the hard path.  

Within each level, problems are selected using a decision tree 
process, based on whether or not students skip problems. 
Students who are working within the easy difficulty track are 
given the alternate problem if they choose to skip the original 
problem presented, with the idea that the difference in rule 
application order can allow them to approach the concept in a 
different manner. For students working in the hard difficulty 
track, skipping more than the first problem in the set will send 
them to the easy difficulty track. If students solved one problem 
in the hard difficulty path before being sent to the easy difficulty 
path, they are not required to solve the corresponding problem in 
the easy path, in order to maintain the number of problems 
required to complete the level. 

The reason for the skipped problem decision process is to 
compensate for students who may have shown proficiency in a 
previous level, but have a harder time solving the next set of 
problems. Students who have been sent down the hard difficulty 
track are expected to have satisfactory mastery of concepts 
needed for the next set of problems, without the need for alternate 
problems. If students have difficulties with the harder set, they 
are given the opportunity to work through a greater number of 
easier problems in order to practice those concepts required 
before moving on to the next level.  

3. METHOD & INITIAL RESULTS 
The new system of Deep Thought was used as an assignment in 
two sections of a Computer Science Logic & Algorithms class 
taught by the same instructor. Deep Thought was run as a web 
applet, with students allowed to work through the problem sets at 
their own pace. The more difficult Level 7 problems were made 
optional to students, as they were not presented in the original 
curriculum for the course. Student data was recorded in two 
separate tables in a database stored on a server which 
communicated with the Deep Thought applet. The two tables used 
were: 

• Log Table: This table was used to track information 
specific to individual students, including information 
used for tracking a student’s progress in the system 
(log-in information, current working level / difficulty / 
problem, skipped and completed problems in the current 
level, levels completed and at which difficulty track) as 
well as data used for the knowledge tracing process 
(updated scores for individual rules and concepts). 

• Data Table: This table was used, as in the original 
system, to track each action taken by students while 
solving proofs for analysis (level / difficulty / problem, 
the rule being applied, errors made, screen state, hints 
used, action step time, and total elapsed time for the 
current problem). 

A total of 63 students worked through the new version of Deep 
Thought. Of these students, 32 completed at least through Level 6 
of the problem sets, with the majority of drop-outs occurring after 
Level 4. The number of students who did not complete Deep 
Thought was high (over 50%), however it should be noted that the 
professor for the class used for the experiment had not completely 
covered Replacement rules (used in Level 5 onwards) at the time 
these results were reported. A flow diagram showing the path 
students travelled while using Deep Thought is shown in Figure 2.  
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Figure 2: Flow diagram of student path through Deep 

Thought problem sets. The thickness of the arrows is weighted 
based on the number of students travelling that path. 

Based on the diagram in Figure 2, the following conclusions can 
be drawn regarding the paths commonly taken by the students. 
Most of the class was able to complete the hard paths for levels 1 
and 2, with most of the students being sent down the hard path 
once level 1 was completed and staying through level 2. At level 3 
however, some of the students were sent to the easy path, either at 
the same level or at level 4. From level 4 onwards most of the 
class stayed on the easy path (those who completed Deep 
Thought). From Level 5 onwards, most of the students stayed on 
the easy path until completion. 
Based on the system and our goals for it, these paths are what 
would be expected. The problems at levels 1 and 2 are basic 
inference problems, and are designed to be easier to solve for 
students with the expected requisite knowledge. Level 3 was 
where the problems were designed to increase in difficulty. 
Students should not have been able to complete level 3 without 
showing a higher level of proficiency than had been required up 
until that point if the problem selection was effective. The fact 
that most of the class was transferred to the easy path at level 3 
indicates that this is the case; students were given problems that 
were difficult enough to challenge them on the hard path (to the 
point of being sent to the easy path at the next level) while still 
being manageable on the easy path.  

Since most students did not complete Deep Thought past this 
point, the paths from level 4 on are somewhat skewed. However, 
the fact that the students who did complete Deep Thought through 
level 7 remained on the easy path indicates that the problems in 
levels 4, 5, and 6 were overall appropriately difficult. These 
problems were meant to be challenging regardless of the path the 
student was on, particularly considering that the students did not 
have requisite knowledge of replacement rules at this point. 
Therefore the fact that most students stayed on the easy path 

through level 7 indicates that the problems given were at an 
expected level of difficulty for them. Conversely, if more students 
had been able to stay on, or move to the hard path at these levels, 
it would indicate that either the system is selecting problems that 
are too easy, or the problems themselves were not designed to be 
challenging enough. Since the students were continually put on 
the easy path at these levels, neither of these situations is the case.  

4. FUTURE WORK 
The data from this initial experiment needs further analysis before 
any new features are added to the system. However, initial results 
are promising, and it appears that the system is effective in 
selecting problem sets for students at a general level. Once this 
data has been analyzed further and compared to previous data 
from the old version of Deep Thought, we can make more definite 
assumptions about the effectiveness of our problem selection. 

The next step is to apply the system within levels to test specific 
problem selection based on rule scores and rule ordering, rather 
than just problem sets. If that proves effective, we can apply 
methods in development for automatic generation of problems 
based on individual rule component construction. Overall, we plan 
to continue development of Deep Thought into a more effective 
intelligent tutor in logic proof construction.  
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ABSTRACT
We would like to demonstrate a web application using data
mining and machine learning techniques to monitor stu-
dents’s progress along their e-learning cursus and keep them
from falling behind their peers.

Keywords
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1. AIMS OF THE APPLICATION
We would like to demonstrate a web application developed
during a project supported jointly by computer science re-
searchers and an IT firm specialized in e-learning software.
Another partner firm, a professional training institute, con-
nects our project with real data from its past and current
e-learning courses on various Moodle platforms.

The aim of our application is to use the methods of IT, data
mining and machine learning to give educators better tools
to help their e-learning students. More specifically, we want
to improve the monitoring of students, to automate some of
the educators’ work, to consolidate all of the data generated
by a training, and to examine this data with classical ma-
chine learning algorithms. This application is called GIGA,
which means Gestionnaire d’indice général d’apprentissage
(French for General Learning Index Manager).

The reasons for monitoring students are that we want to
keep them from falling behind their peers and giving up,
which can be noticed earlier and automatically by data min-
ing methods; we also want to see if we are able to predict
their end results at their exams just from their curriculum

data, which would mean we could henceforth advise students
on how they are doing.

However, currently, Moodle offers very few statistics, and
they are hard to examine and analyse. Notably, they are
purely individual, so we cannot have a global vision of a
group or compare students. We can view a list of logs but
hardly anything synthetic, except a few graphs for login
data. Only the date of last login and the number of quizzes
done were actually used by the training manager we talked
to, which seems a waste compared to all the logging done
by Moodle. Hence, the need felt for our application.

2. DESCRIPTION OF THE CURRENT IM-
PLEMENTATION

The web application that we wish to demonstrate is already
in use for student monitoring in our partner training insti-
tute. This application gathers data from a LMS and other
sources and allows to monitor students with raw figures,
statistics and machine learning.

Our implementation uses the language Java with frame-
works Wicket, Hibernate, Spring and Shiro. The data is
stored in a MySQL database.

In our case, the LMS is a Moodle platform where the courses
are located. Moodle registers some events in its logging sys-
tem, which we then import and mine. Hence, we are also
constrained by what Moodle does and does not log. For in-
stance, our partner firm had to create a Moodle plugin to
have better logout estimates, that will be deployed on future
trainings. However, the application could be very simply ex-
tended to other LMSes that have a similar logging system.

2.1 Data consolidation
We have decided to consolidate into a single database most
of the data produced by an e-learning training. Currently,
the data is scattered in two main sources: the students’ ac-
tivity data are stored by the LMS, whereas some other data
(administrative, on-site training, contact and communica-
tion history, final exams grades) are kept by the training
managers, their administrative team and the diverse educa-

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 390



www.manaraa.com

tors, sometimes in ill-adapted solutions such as in a spread-
sheet. This keeps teachers from making meaningful links:
for instance, the student has not logged in this week, but it
is actually normal because they called to say they were ill.

We have already provided forms for importing grades ob-
tained in offline exams, presence at on-site trainings and
commentaries on students. In the future, we will expand
this to an import directly from a spreadsheet, and to other
types of data. From Moodle, we regularly import the rele-
vant data: categories, sections, lessons, resources, activities,
logs and grades.

2.2 Data granularity
All raw data imported from Moodle or from other sources
is directly available for consultation, such as the dates and
times of login and logout of each student, or each grade
obtained in quizzes.

We then provide statistics built from these raw data, such
as the mean number of logins over the selected time period.
This is already a level of granularity not provided by Moodle
except in rare cases.

We also felt a need for a normalized indicator that would
make our statistics easy to understand, like a grade out of
10, to compare students at a glance. We have defined a num-
ber of such indicators, trying to capture most aspects of a
student’s online activity. The features we have selected are:
the login frequency, the date of last login, the time spent
online, the number of lessons read, the number of lessons
downloaded as a PDF to read later, the number of resources
attached to a lesson consulted, the number of quizzes, cross-
words, assignments, etc. done, the average grade obtained
in graded activities, the average last grade obtained, the
average best grade obtained, the number of forum topics
read, the number of forum topics created, and the number
of answers to existing forum topics. For every ”number of x”
feature, we actually used a formula that would reflect both
the distinct and total number of times that this action had
been done.

From these indicators, we built by a weighted mean higher
level ones representing a facet of learning, like online pres-
ence, study, graded activity, social participation and results.
Then, at an even higher level but by the same process, a
single general grade, which we called the General Learning
Index and which gave its name to the application.

2.3 Machine learning
For a more complex output, we use different machine learn-
ing methods to analyse the data more in depth and interpret
it semantically [1]. We use classical clustering and classifica-
tion algorithms, in their implementation by the free library
Weka.

We provide the following algorithms: for clustering, Ex-
pectation Maximisation, Hierarchical Clustering, Simple K-
Means, and X-Means; for classification, Logistic Regression,
LinearRegression, Naive Bayes and Multilayer Perceptron.
They can be used with or without cross-validation, and the
random seed and number of folds can be manually selected.
For clustering algorithms where the number of clusters is not

decided by the algorithm, we allow to select a fixed number
of clusters.

We use our indicators listed in §2.2 as features for learning,
and for the classification algorithms, we use the mean grade
obtained at the final exams as the class feature. As an out-
put, we obtain groups of students. In the case of clustering,
we have to look at their indicators to understand the mean-
ing of these groups. With classification, we can try to see
which indicators can predict the final grade.

3. FUTURE WORK
We have already thought of new features that we would like
to implement.

We want to compare the results obtained by all machine
learning algorithms to see if one seems better suited. Later,
we will also implement another HTM-based machine learn-
ing algorithm, and again compare results. We also want to
add regression to try and predict the final grade.

Another facet that the data we have gathered could reveal is
the quality of the study material: is a quiz too hard, so that
students systematically fail it? Is a lesson less read than the
others - maybe it is boring? Do the students feel the need
to ask many questions in the forums?

We could partly automate the training managers’ work by
creating an intelligence virtual tutor that will directly inter-
act with students and teachers. It could suggest students a
next action based on their last activity and graded results,
or also give them a more global view of where they stand by
using the machine learning results. It could also send them
e-mails to advise them to login more frequently or warn them
that a new activity has opened. It could also warn the train-
ing manager of any important or unusual event.

4. CONCLUSION
This application uses data mining and machine learning
methods to solve the problem of student monitoring in e-
learning. We have detailed how the implementation allows
to meet our goals by a good mix of different levels of gran-
ularity in the viewing of the data (raw data, statistics and
data processed by different clustering and classification ma-
chine learning algorithms). Such a tool is very appreciated
by our first users and is very innovative.

To do this, we have had to define indicators that serve both
for statistics and for machine learning features. These indi-
cators are both relevant to our project and generic enough
to be of use for the community.

We will also present a poster in this conference to describe
some preliminary clustering results obtained using this ap-
plication.
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ABSTRACT 

One of the primary concerns in on-line educational environments 

is the effective and intuitive visualization of the activities 

performed by students. This paper presents a tool that is mainly 

designed for the use of professors in order of assist them in a 

better monitoring of students activity. The tool presents in an 

intuitive and graphical way the activities performed by students. 

The graphical presentation creates a mental model of the 

performed activities from the perspective of former generations of 

students that followed the same activities. The tool integrates k-

means clustering algorithm for grouping students and for 

facilitating the customization of parameters and number of 

clusters that are displayed.   

Keywords 

activity visualization, k-means, e-Learning, PCA. 

1. INTRODUCTION 
One of the main issues of on-line educational environments is the 

effective and intuitive visualization of activities performed by 

students. For an e-Learning platform which has an average of 

more than 100 students per module it may become quite difficult 

for the professor to visualize the on-line activity performed by 

each student at a time or by all students at one time. The paper 

presents a tool that improves the productivity of a professor by 

providing an effective way of visualizing and interacting with the 

students. 

This paper presents a tool that displays in a graphical format the 

activities performed by students. There are several characteristics 

of the tool that make it user friendly and very efficient in 

presenting in synthetic form the results. The main characteristic 

consists of the fact that the display is in 2D (2-dimensional) space 

and for each coordinate a single parameter is used. The display 

presents a specified number of groupings according with the 

settings of the professor. The number of groupings (i.e., clusters) 

represents the main parameter for the clustering algorithm that 

effectively places the students into clusters. For each cluster there 

is clearly presented the centroid. The students from the same 

cluster are presented with the same distinct geometric sign in 

color and shape. Each cluster is divided into three areas: center, 

close area and far area. Each area gathers students that have the 

same behavioral pattern regarding the activities performed within 

the on-line educational environment.  

2. RELATED WORKS 
There are several examples of educational data mining tools. The 

latest research trends place an important emphasis on developing 

tools that successfully integrate and prove the latest findings in 

the domain. In [1] there is presented a section with the more than 

twenty educational data mining tools. Among them, the ones that 

are more closely to the tool presented in this paper is GISMO [2], 

EDM Visualization Tool [3] or SNAPP [4].  

GISMO is a tool whose main purpose is to visualize what is 

happening in distance learning classes. EDM Visualization Tool 

is mainly designed to visualize the process in which students 

solve procedural problems in logic. The SNAPP tool may be used 

to visualize the evolution of participant relationships within 

discussions forums. 

3. SOFTWARE ARCHITECTURE 
The application is divided into packages that contain classes that 

implement related functionalities. The main classes that perform 

the business logic of the tool are ClusteringServlet, 

RunScheduledJobServlet, BuildArffFileScheduledJob, 

BulidClusterersScheduledJob, KMeansClustererStart, 

ClientStervlet and ClustererClientApplet.  

The web server administration interface (index.html) allows 

building a number of clusters and viewing them. This is 

performed by the ClusteringServlet which in turn uses the 

KMeansClustererStart class. KMeansClustererStart class 

generates the clusters (i.e., the model) based on ARFF file using 

KMeans algorithm. It also contains various methods for 

manipulating clusters data. In this class PCA (Principal 

Component Analysis) algorithm is used to reduce the 

dimensionality (number of attributes) of a given dataset. 

The RunScheduledJobsServlet class is a servlet that starts at server 

startup and runs the scheduled job at specified time. The time and 

frequency are specified in a xml configuration file. The scheduled 

jobs are represented by BuildArffFileScheduledJob and 

BuildClustersScheduledJob classes. These, as their name implies, 

deal with building the arff file from database and building clusters 

from arff. The BuildArffFileScheduledJob class uses 

ArffGenerator class for building the arff file containing the 

training dataset.  

On the client side we have a java applet that runs in an Internet 

browser. It connects to server, takes data needed and displays the 

students grouped according to certain features chosen by the 

professor. The interface of the client application allows specifying 

data for a new student and viewing its position on the chart (in the 

cluster to which it belongs). 
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4. SOFTWARE TOOL 
Figure 1 presents the GUI of the visualization tool. In this running 

there are three clusters of students built according to the two 

features of the axes (i.e., testing activity and messaging activity).  

The application allows the professor to select other features by 

which to build the clusters. When you keep the mouse pointer 

over a point on the graph you can see the features values for that 

student. The points representing the students have different colors 

for each cluster. For a better visualization each cluster is divided 

into three areas: center, middle area and far area. Each area is 

colored differently giving thus intuitive information regarding 

how close from the centroids are the points belonging to a cluster. 

The tool uses a total of six features with which we can build 

clusters as presented in figure 1. The last two features are 

composed features resulting by combining two simple features 

using Principal Component Analysis (PCA). The  

MessagingActivity feature is computed as a combination between 

the NumberOfMessages feature and AvgNrOfCharacters feature. 

In the same way, the TestingActivity feature is computed as a 

combination between NumberOfTests and AverageOfResults 

feature. 

If features values are provided for a new student the tool places a 

big X mark with the same color as other instances from the same 

cluster in corresponding position and thus the cluster is 

immediately determined. After viewing clustered students, the 

teacher can select one or more students from the chart and save 

their data in a PDF or send an e-mail to them. 

The tool may be used for two purposes. One regards easy 

visualization of the student’s activity based on different criteria. 

Once the visual information is retrieved, the tool may be used to 

interact (i.e., send messages) with a specific set of students that 

may be easily selected. The tool may be also successfully used for 

outlier detection, which in our case is represented by students that 

hardly can be assigned to a cluster.  

5. CONCLUSIONS 
This paper presents a visualization tool based on a clustering 

algorithm. The tool presents the clusters of students in a very 

intuitive way. The clustered students may be selected and a set of 

specific actions may be performed: sending messages, export to 

pdf, etc. In future, the tool may be extended by integrating other 

features for data representation and by providing other advanced 

functionalities for professors.  
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Figure 1. GUI of the visualization tool & Soft Architecture 
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ABSTRACT 

In this paper, we describe a software package called FlexCCT for 

analyzing numerical ratings data. FlexCCT is implemented in 

MATLAB and incorporates a range of different cultural consensus 

theory (CCT) models. We describe the standalone GUI version of 

FlexCCT. We give an illustrative example, showing how 

FlexCCT can be used to analyze and interpret essay rating data. 

Keywords 

CCT, maximum likelihood, optimization, essay rating 

1. INTRODUCTION 
Cultural consensus theory (CCT) is a methodology used to 

analyze cultural values or “truth”. CCT has several educational 

data analysis/data mining applications. CCT can be used to 

analyze educational essay/question ratings data to i) evaluate rater 

competency, ii) evaluate rater bias, iii) calculate accurate 

competency weighted ratings, and iv) evaluate the 

easiness/difficulty of rating individual answers. The CCT results 

can be used to evaluate a set of essay ratings and then recommend 

actions, for example retraining certain raters or using rater 

competency to determine the number of raters assigned to rating 

tasks. CCT can also be used as part of the rating/grading process; 

for example, the item easiness CCT models can be used to assign 

additional raters to answers that are deemed difficult to rate. 

We present FlexCCT, a software package for implementing 

maximum likelihood CCT. We do not give axiomatic or 

mathematical descriptions of the class of CCT models described 

in this paper. These can be found in [1,3,4]. We give an intuitive 

description of several of the CCT models implemented in the 

FlexCCT software, concentrating on CCT models for continuous 

data. We summarize the model features and describe the software 

implementation of the models. We then describe work that uses 

CCT to analyze essay grading data.  

2. THE CCT MODELS 
Consider a situation where there are n subjects or raters. Each 

rater assigns a score to each of m questions. Each question could 

be a quality rating, an estimation of quantity, or any other type of 

question that may elicit a numerical response. There is no a-priori 

known correct answer to any of the questions, which is why CCT 

has taken the moniker of “test theory without an answer key” [2].  

Let X be an n rater × m item matrix of item ratings or scores. A 

simple method of calculating a 1 × m latent answer vector z would 

be to calculate the average score for each item across all raters. 

However, this ignores the fact that some raters may be more 

competent than other raters and that some raters may be “biased” 

to giving lower or higher scores. The basic CCT models are based 

upon a set of axioms [1,2,3,4]. In this paper, we do not describe 

these axioms formally, but we give some basic intuition. 

User competency is defined as a measure of inverse error 

variance. For each rater i, the rater competence 
id   is defined 

as the inverse error variance, so that 1 2( )i ikd    . The maximum 

likelihood function for the basic CCT model is given in (1). 
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Bias operationalizes the tendency of raters to consistently rate 

either lower or higher than the latent answer key values. Either 

additive bias or multiplicative bias can be incorporated into the 

basic model. For additive bias, the inner likelihood term ILT = (xik 

– zk) is replaced by (xik – bi – zk) and for multiplicative bias it is 

replaced by (xik – bizk). Only one type of bias can be included in 

the model, as including both additive and multiplicative biases 

over parameterizes the model [4]. Three models for “item 

easiness”, described in [4], are incorporated into FlexCCT. The 

first model is an error variance model, where σ2(εik) is split into 

rater components and answer components. The second model 

incorporates a multiplicative easiness scaling factor, so that for 

each combination of rater i and item j, the competency is scaled 

by an easiness parameter βj, so that di is replaced by diβj. The third 

model is similar to the second model, except that the easiness 

parameter is additive, so that di is replaced by di + βj.  

3. SOFTWARE DESCRIPTION 
FlexCCT consists of a set of MATLAB functions and a compiled, 

standalone GUI version of the software. The GUI consists of a 

single input screen, where the user configures the software 

parameters and an output screen, which displays results from the 

CCT model optimization. The output screen has an option to save 

the output parameter values. The input screen is given in Figure 1 

and a description of the associated options is given in Table 1. 

 
Figure 1: Input Screen 
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Table 1. Input Parameters 

Name Options 

Data File 

A csv file containing the values of X. Rows 

correspond to raters and columns correspond to 

items. The data should not contain a header. 

Data 

Combination 

Add Traits: If more than one trait/attribute then 

add the trait values together. 

Correspondence analysis: Calculates a single 

continuous trait from multiple qualitative traits. 

Data 

Standard-

ization 

None: Use raw data. 

Standardize: Subtract column μ and divide by 

column σ. 

Range Scale: Divide by column range. 

Estimation 

Method 

Simple Average: di = 1 for all raters and zk is 

the average value of x·k. 

Factor Analysis: Utilizes a minimum residual 

factor analysis as per classical CCT [5]. 

ML Model: Basic maximum likelihood model 

from (1). 

IE Error Variance: Item easiness error 

variance model. 

IE Multiply: Item easiness where dij = diβj. 

IE Add: Item easiness where dij = di + βj. 

Bias Type  

No Bias: (see section 2). 

Additive Bias: (see section 2). 

Multiplicative Bias: (see section 2). 

Optimization 

Method 

Fixed point: Fixed point estimation. 

Two Stage Fixed Point. The values of z and d 

are estimated first, followed by other parameters. 

Derivative Free: Standard MATLAB routine. 

Gradient: MATLAB Gradient descent 

optimization, utilizing first order derivatives 

Converge 
Converge criteria for optimization, (default = 1e-

6). 

MissingVal Indicator for a missing value, defaults to -1 

Max d 
Upper bound for d. Prevents a single rater 

having dominant competency (default = 10) 

Max IE Upper bound for item easiness β (default = 10). 

When the “Run” button is pressed and the model optimization is 

completed, the user is presented with an output screen, which 

displays a summary of the model output. This summary includes 

the maximum log-likelihood, the algorithm run time, and values 

for all of the output parameters. The output button allows users to 

save the output parameter values to a csv file. In the csv file, each 

set of parameters (e.g. z, d, b, β) is assigned to a column in the 

file. Row vectors are transposed. The file output parameters are 

summarized in Table 2. 

Table 2. Output Parameters 

Name Options 

z An 1 × m latent answer vector.  

d An n ×1 vector of competencies. 

b An n ×1 vector of biases. 

β An 1 × m vector of item easiness parameters 

pll (1-3) 

Three 1 ×m vectors of partial log likelihoods 

corresponding to values calculated with floor(z), 

,z , and floor(z)+1. 

4. EDUCATIONAL EXAMPLE 
In [4], a detailed example is given to show how CCT can be used 

in essay (or more general) rating applications. A subset of 50 

essays was taken from a set of high school essays. The prompt for 

the essays was to describe a situation involving laughter. A 

grading rubric was defined and each essay was graded on 6 

attributes, with each attribute having a range from 1-6. An overall 

continuous score was calculated using two approaches. In the first 

approach, the assumptions of classical test theory were used and 

the scores for each attribute were added together to give a total 

score in the range of 6–36. In the second approach, multiple 

correspondence analysis was used to explicitly scale the multiple 

ordinal attribute scales into one continuous scale. The essays were 

graded by 2 expert graders and 10 student graders. Each student 

grader was given 30 minutes for training and 3 minutes to grade 

each essay. 

Some overall conclusions reached in [4] are that CCT provides 

useful measures of rater competency, rater bias, and item 

easiness/difficulty. CCT can be used to help train and evaluate 

raters and to identify essays where accurate evaluation is difficult. 

The CCT competencies can be used to produce competency 

weighted averages of essay ratings. In the essay rating data 

analyis, incorporating bias gave improved model fit and additive 

bias gave better model fit then multiplicative bias. Likewise, the 

multiplicative item easiness model gave better model fit than the 

additive item easiness model. 

5. CONCLUSIONS AND FUTURE WORK 
The current version of FlexCCT (1.0.0) provides a flexible 

framework for implementing CCT and can be used to analyze a 

wide range of ratings/questionnaire data. FlexCCT is implemented 

as a set of MATLAB functions. There is a standalone GUI version 

of the software, which does not require a MATLAB license and 

provides a wrapper for a set of continuous CCT models. For 

future versions of FlexCCT, we plan to incorporate clusterwise 

CCT, which simultaneously assigns raters to clusters/cultures and 

calculates the CCT model for each culture.  
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ABSTRACT 
The demo will show how the LeMo (LernprozessMonitoring) tool 
supports teachers to explore visually how students interact with 
learning resources and how they perform. The information 
obtained in this visual exploration guides subsequent more 
involved analyses.  

Keywords 

Learning Management System, Visualization, Interaction, 
Performance, Visual Analytics. 

1. INTRODUCTION 
The use of a Learning Management System (LMS) to support 
teaching and learning is widespread. The usage data such systems 
store is not analyzed in a routine basis by different stakeholders to 
retrieve pedagogical information that could support reflection. For 
example, if a teacher notices that some non-compulsory exercise 
she has made available in her course is hardly attempted, she 
might do some further analysis: does it seem to have a positive 
impact on the mark of the final exam for the few students who 
solved it? If not, she might consider deleting it from the course for 
the next semester; if yes, she might change her teaching style so 
that more students attempt it.  

The aim of LeMo is to support different stakeholders in their 
analysis of usage data stored by LMS or learning portals [1]. All 
what is needed is a module that exports the data stored by the 
LMS into the data model of LeMo. Presently 3 export modules 
exist for the LMS Moodle and Clix and for the learning portal 
ChemgaPedia. The current prototype focuses on teachers as 
stakeholders. It aims at supporting them to explore whether and 
how their students interact and succeed with the resources they 
have made available online. In order for teachers to grasp at a 
glance what happens and so to ease the integration of such a tool 
in their practice, exploration is primarily carried out through 
various interactive visualizations that follow the “overview, zoom 
and filter” principle [2]. A few visualizations are presented below. 
Attendees at the conference will have the opportunity to try out 
the tool by themselves. 

2. VISUALIZING INTERACTIONS 
The aim of Figure 1 and 2 is to help answering questions such as: 
do students access them, when, in which order?.  
Figure 1 shows accesses on all resources of a course over time. 
The upper line gives the total number of accesses, while the lower 
line gives the number of distinct students. The diagram is 
interactive. Placing the cursor over the line will produce a tool tip 
that shows the exact number and point in time. To allow both the 
overview of a selected time-period and the focus on detail, the 
user can pick out a certain time slot from the lower diagram to get 
an amplified view in the main diagram above. The user can 
deactivate and activate any line to concentrate on only one if 
needed. Below the diagrams all learning-objects of the course are 
listed in a table. The columns show the type of the learning-
object, title and the number of accesses for it. Each column can be 
sorted by clicking on the title. This enables for example to view 
the most-accessed and least-accessed learning-objects. Filters 
allow for selecting particular subsets of the data. A filter allows 
for choosing another time period. A second one filters students, 
and a third one filters learning objects according to their type. A 
type can be ‘forum’, ‘assignment’, ‘wiki’, ‘file’ a generic term to 
design objects such as slides, and so on.  

 
Figure 1. Access to learning objects. 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 396



www.manaraa.com

Figure 1 shows this filter with the types assignment and file 
selected. All available visualizations have these three filters. 
Figure 2 shows the network of learning objects that results when 
order of access or navigation is taken into account.  Learning 
objects are nodes colored according to their type. The size of a 
node is proportional to the number of accesses. Navigational steps 
between learning-objects are depicted by edges. The edges are 
weighted and color-coded to encode the amount of navigational 
steps. Placing the cursor over a node will bring up a tool-tip that 
includes information concerning the learning-object’s name, the 
type as well as the total number of accesses or requests for it. For 
further exploration, a single click on a specific node will rearrange 
the graph in a way that it focuses on the node of interest, 
displaying neighboring nodes in the immediate proximity, and 
moves other nodes further away.  
 

 
Figure 2. Network of learning objects according to navigation. 

3. VISUALIZING PERFORMANCE 
An assignment is a generic term meaning any work that can be 
graded, such as questions, exercises, tests, exams and so on. Most 
of the LMS allows for calculating easily useful statistics such as 
average and standard deviation for a given assignment. It is more 
difficult to visualize and compare performance of students across 
several or all assignments, a question raised by teachers. The 
visualizations presented here cater for this need. It is not rare that 
different assignments are marked differently. For example 
assignment 1 may be out of 20 points and assignment 2 out of 50. 
Sticking to the original scale given by teachers makes a 
comparison awkward. Therefore in the following visualizations all 
assignments are scaled to 100. The usual filters mentioned earlier 
can be used to select particular assignments or tests, or to select 
particular users. Figure 3 and 4 shows two visualizations to 
explore performance concentrating on the diagrams.  

 
Figure 3. Comparing performance with marks’ distribution. 

 
The histogram Figure 3 gives an overview of the distribution of 
the students according to their marks. We can see that two 

students are in the highest interval [95 -100] for the second part of 
the exam, called Klausur-Teil2, while no student has achieved this 
high performance in the first part of the exam, Klausur-Teil1. 
Again, the visualization is interactive. Cursor over a bar shows the 
exact number. The user can activate or deactivate any test or 
assignment by clicking on the circle near the name. A hollow 
circle visualizes that an assignment has been deselected. 
Appearance or disappearance of bars after activation, respectively 
deactivation, occurs progressively, so that the user can follow the 
change taking place.  
A second visualization shows the box plots for all assignments. In 
Figure 4 the same assignments as in Figure 3 have been selected. 
It is possible to grasp not only that the maximum mark is higher in 
the second part of the exam, but also that over 75% of the students 
have done better, since the whole box including median is higher. 

 
Figure 4. Comparing performance with box plots. 

4. CONCLUSION 
This visual exploration is the first step for analyzing usage data. 
When teachers grasp the overall trends in interactions and 
performance in their course, they should be able to deepen their 
analysis, seeking answers for questions such as: can students be 
grouped according to their performance? Or, dually, can 
assignments be grouped according to how students perform? 
Future work includes implementing means to help answering 
similar more involved questions. A challenge is to select the data 
mining algorithms and their parameters carefully so as to avoid 
misinterpretation of the results by stakeholders. 
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ABSTRACT 

Although educational data mining is a well-established field, it 

has not yet sought to provide serious, actionable intelligence that 

can be used by teachers to address bullying in a reasonable 

amount of time. This paper seeks to propose a system that will 

streamline the processing and storage of bullying data in social 

graph form so that it will be available to be mined by expert 

systems that can help educators in the classroom. In addition, one 

such expert system will be proposed demonstrating how this data 

may be used to automate a common classroom management task 

that may improve students’ classroom experiences. 

Keywords 

Behavior modeling, Implicit social graphs, Classroom behavior 

optimization, Seating chart generation 

1. INTRODUCTION 
Although bullying has long been a significant problem, increased 

awareness has brought the matter to the attention of legislatures. 

States across the country are passing laws aimed at preventing 

bullying. Some pieces of legislation, like New York’s Dignity for 

All Students Act, include provisions for information sharing and 

increased data retention [3], creating an environment ripe for 

innovation in the fight against bullying.   

In this paper, we will propose CASSI (Classroom Assisting Social 

Systems Intelligence), an open-source system aimed at being 

inexpensive and easily integrated into existing educational 

practices that will allow for the collection, modeling, and analysis 

of student behavioral data. Specifically, the collected behavioral 

data will be used to construct a social graph that represents how 

dysfunctional the directed relationship between each pair of 

students is. This social graph can then be used to inform the 

behavior of a variety of expert systems. 

It is hoped that this system, in due time, will be implemented in 

educational institutions to adhere to both the letter and the spirit of 

new pieces of anti-bullying legislation. A single central repository 

for an educational institutions behavioral data would allow for the 

data to be more easily shared amongst educators and formatted 

into reports for administrators. This repository of data would also 

allow for the implementation of expert systems which educators 

can use in day-to-day classroom management tasks that influence 

bullying [1]. One expert system will be described that makes use 

of the data stored in the social graph to improve classroom 

management by allowing teachers to automatically generate 

seating charts likely to reduce negative classroom behavior. Other 

possible expert systems will also briefly be discussed.  

2. BACKGROUND 
Romero and Ventura[7] provide a detailed overview of early 

educational data mining projects. The authors describe a wealth of 

educational data mining projects aimed at improving pedagogy. 

However, there is a lack of data mining projects intended to 

improve students’ educational experiences through means other 

than pedagogy. Romero and Ventura also note that early data 

mining tools do seem to be designed with data mining experts, not 

educators in mind. Their implication seems to be that, if provided 

with the right tools, educators would be able to make better use of 

the information gathered from data mining. 

Dawson[2] recounts a study utilizing social network analysis to 

draw some conclusions about how a student’s position in a social 

network influences the student’s perceptions regarding the sense 

of community they experience. Although this is a narrow 

application of social network analysis in the classroom, it provides 

an excellent justification for using social network analysis as a 

means of evaluating classroom behavior. While this study doesn’t 

describe a system easily used by educators, one can easily 

imagine how such a system could be extended to provide a more 

detailed level of analysis by integrating more observations 

containing the sort of behavioral data that Hung and Lockard [4] 

used to create their Behavioral Matrix software. 

There has been a recent push for software to address cyber-

bullying through the analysis of social networking sites. Nahar, 

Unankard, Li, and Pang [5] describes a method for using 

sentiment analysis to develop a graph-based method for 

identifying cyber bullies and their victims while Sanchez and 

Kumar [1] describes a method for integrating this style of 

sentiment analysis with Twitter. Although cyber-bullying is a 

significant problem, neither of these papers address problems 

associated with completeness. It is easy for students to restrict 

educators’ access to their social media accounts and such 

restrictions may skew the decisions of an expert system which 

integrates social media data with observed classroom data. 

However, both of these methods appear to accurately recognize 

the asymmetric nature of bullying discussed by Allen [1]. 

It also is important to note the distinction between social networks 

and social networking. As noted in Purtell et al. [6], it is possible 

to extract implicit or inferred social topographies [8] from other 

sources other than social media. 

3. DATA MODEL AND VISUALIZATION 
One of the strengths of CASSI is that much of the data that the 

system collects is likely to already be collected as a part of routine 

classroom management practices. At the moment, the only data 
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the system requires educators to record is:  the victim, the bully, 

and a ranking of the bullying incident on a score from 1 to 10. It is 

expected the system will also record additional book-keeping data 

such as a time-stamp, the educator filing the incident report, and a 

detailed description of the even that may be utilized in the future. 

This data, collected via a web-form when an incident occurs and 

stored in a local database, is similar to the directed data described 

by Purtell et al. [6]  as  suitable for  use in the construction 

implicit social graphs of the type described in Roth et al. [8]. 

There are some flaws in this data collection mechanism. The 

incident score necessitates the development of an objective 

standard against which incident seriousness may be compared to 

ensure consistency. Another flaw is that bullying often takes place 

in spaces not observable by educators. This may be addressed in 

the future through mechanisms such as student-driven incident 

reporting tools. However, this flaw may also be addressed by 

educator training aimed at expanding definitions of bulling to 

include include what Allen [1] refers to as “relational bullying.” 

Once the data is collected via web-form, it is processed to form 

the social graph. This amounts to populating a matrix S, indexed 

by student, of ordered pairs (T, V) where T for Si,j represents the 

sum of the seriousness ratings from incidents where student i is 

engaging in bullying behavior targeting student j. V, meanwhile, 

represents the number of incidents added to produce T.  

This two dimensional information can be easily analyzed. For 

example, the student relationships furthest from the origin should 

be red flagged as those most in need of immediate intervention. 

Relationships where T / V is high while V is low may indicate an 

emerging bully. Finally, the case where the Euclidean distance 

between points Si,j and Sj,i is low but the distance from both of 

these points to the origin is high may represent a rivalry in need of 

serious intervention. 

4. CLASSROOM OPTIMIZATION 
One expert system that has been developed to make use of the 

behavioral social graph aims at automating the task of finding 

behaviorally optimal seating charts for rectangular seating 

arrangements of an arbitrary size. This task is accomplished by 

comparing the social graph to a particular arrangement of 

students. If two students are seated adjacent to one another in the 

classroom, their relationship information is extracted from the 

social graph and added to the ranking of the classroom. This 

reduces the task of finding an optimal classroom down to a simple 

minimization problem – the lower the ranking, the better the 

classroom. 

Iterating through all possible arrangements of students guarantees 

that the best seating arrangements is found. However, this is 

extremely computationally expensive at O(N!) for classrooms 

with asymmetric physical properties that may influence behavior, 

such as windows that might provide a distraction.  

Fortunately, it is also relatively easy to develop a heuristic that 

exploits the physical properties of the classroom to find good, but 

not necessarily optimal, arrangements. Specifically, this heuristic 

exploits the number of adjacencies that each seat has. Corner seats 

only have three direct adjacencies in a rectangular classroom, for 

example, making them ideal locations for the students most likely 

to disrupt others. Using these physical classroom properties and 

sorting the student in order of the probability of causing a 

disruption reduces the time to O(N). 

There was some concern that the formation of networks of 

friendships along racial, gender, academic performance, or 

economic class boundaries may cause the seating charts generated 

this way to, unintentionally, segregate classrooms. This was 

addressed by scoring the classroom using a weighted average of 

the social-graph adjacencies within the arrangement of students 

and the number of homogenous demographic adjacencies within 

the arrangement of students. 

5. CONCLUSION AND FUTURE WORK 
Project CASSI is a tool that should allow educators to share 

behavioral information more easily and serve as the foundation on 

which useful classroom-management expert systems may be built. 

However, Project CASSI is in its infancy. Although CASSI has 

been tested extensively on simulated data, it is most immediately 

in need of testing with authentic behavioral data.  

Once the system has been tested on genuine behavioral data, there 

are a number of additional expert system modules that may extend 

its usefulness. In particular, the researchers of Project CASSI 

expect that the system may be extended to support behaviorally 

informed scheduling and time-series forecasting. The former task 

– grouping students into non-disruptive classes – may be 

accomplished a similar selection algorithm to the one proposed 

for seating chart generation but operating on combinations of 

students rather than permutations of students. The later task, time-

series forecasting using the time-stamps of the incident report, 

may be conducted with the ultimate goal of predicting bullying 

trends and predicting bullying events before they actually occur. 
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ABSTRACT 

This paper describes a tool that enables instructors to select, 

visualize and mine students’ usage data in Moodle courses.  The 

tool has been developed in PHP language and integrated in 

Moodle as a block. 
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1. INTRODUCTION 
Nowadays, there are a great number of general free and 

commercial DM tools and frameworks [2], such as: Weka, 

RapidMiner, KNIME, R, SAS Entreprise Miner, Oracle Data 

Mining, etc. These tools can be used for mining datasets from any 

domain or research area. However, none of these tools is 

specifically designed for pedagogical/educational purposes and 

problems. So they are cumbersome for an educator to use since 

they are designed more for power and flexibility than for 

simplicity. Due to this fact, an increasing number of specific 

mining tools have been developed to solve different educational 

problems [5]. Of all of them, only one small subgroup of tools is 

specifically oriented to using Moodle data, such as:  

 GISMO [1] for visualizing graphically what is 

happening in Moodle courses.  

 Meerkat-ED [4] for analyzing student participation in 

Moodle discussion forums using social network analysis 

techniques.  

 MMT tool [3] for carrying out data mining processes of 

Moodle data for newcomers. 

 DRAL [6] for discovering relevant e-Activities for 

Moodle learners. 

However, most of these tools are standalone applications that are 

not integrated into the actual Moodle interface alongside the 

Moodle resources, activities, modules and blocks. Only GISMO 

[1] is integrated into the Moodle system, but it only visualizes 

data and does not perform data mining. In this paper, we describe 

a specific tool that we have developed as a new Moodle block for 

visualizing and mining student usage data. 

 

2. TOOL DESCRIPTION 
Our tool has been developed in PHP language and  integrated into 

Moodle as a new block (an item which may be added to the left or 

right or centre column of any page in Moodle). It consists of two 

main tabs or components:  

 

2.1 Data Selection and Visualization 
This tab allows instructors to select and visualize  usage 

information about the students enrolled on a Moodle course (see 

Figure 1). It provides basic statistics and graphics about the 

students registered on the course and the resources provided in it. 

Instructors can select one item (student or resource) manually or 

the full set of students or resources. There are different types of 

available statistics or information (grading, historical record, 

questionnaires forums, resources and an overall summary). 

 

Figure 1: Main window for selecting and visualizing data. 

The results can be shown in graphic mode in a pop-up window 

(see Figure 2) or in table mode in the current window (see Figure 

3). 

 

Figure 2: Bar diagram about the number of resources accessed. 
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In the new pop-up window (Figure 2), the instructor can select the 

attribute and  type of graphics to visualize.  

 

Figure 3: Summarization table of a course. 

The table information (see Figure 3) shows  data in columns 

together with the total, average and standard deviation. Finally, 

the table can be saved/exported to an Excel file (for mining 

purposes) or to a PDF file (for reporting purposes). 

 

2.2 Data Mining 
This tab enables the instructor to do data mining starting from a 

previously saved Excel data file. Currently, it allows three 

different types of data mining methods/tasks to be performed: 

classification, association and clustering by using C4.5, Apriori 

and K-means algorithms, respectively (see Figure 4).  

 

Figure 4: Main window for mining data. 

The instructor also has to select both the attributes to use from the 

data file and the parameter values of the algorithm. Once the 

algorithm has been executed, the model obtained/discovered is 

shown and can be saved as a PDF or plain text file. 

For example, Figure 5 shows the model or result (the instances 

together with the assigned cluster, and the centroids information) 

obtained after executing the clustering algorithm. 

 

Figure 5: Result window of clustering algorithm. 

 

3. CONCLUSIONS 
In the future, we intend  to add various new data mining 

algorithms in order to provide for more advanced algorithms of 

each type. Also,  we would like to add a specific pre-processing 

step/tab that lets the instructor  modify the selected data before 

running the  data mining. 
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ABSTRACT 

We present in this demo SEMILAR, a SEMantic similarity 

toolkit. SEMILAR includes offers in one software environment 

several broad categories of semantic similarity methods: vectorial 

methods including Latent Semantic Analysis, probabilistic 

methods such as Latent Dirichlet Allocation, greedy lexical 

matching methods, optimal lexico-syntactic matching methods 

based on word-to-word similarities and syntactic dependencies 

with negation handling, kernel based methods, and some others. 

We will demonstrate during this demo presentation the efficacy of 

using SEMILAR to investigate and tune assessment algorithms 

for evaluating students’ natural language input based on data from 

the DeepTutor computer tutor. 

Keywords 

Natural language student inputs, assessment, conversational 

tutors. 

1. INTRODUCTION 
In dialogue-based Intelligent Tutoring Systems (ITS; Rus, 

D’Mello, Hu, & Graesser, in press; Evens & Michael, 2005), it is 

important to understand students’ natural language responses. 

Accurate assessment of students’ responses enables the building 

of accurate student models for both cognition and affect. An 

accurate student model in turn affects the quality of tutor’s 

feedback (Rus & Lintean, 2012). In general, accurate student 

models lead to improved macro- and micro-adaptivity in ITSs 

which is needed for effective tutoring (Rus, D’Mello, Hu, & 

Graesser, in press). 

There are at least two different types of natural language 

assessments in conversational ITSs. First, there is need for 

advanced natural language algorithms to interpret the meaning of 

students’ natural language contributions at each turn in the 

dialogue. The student responses in the middle of the dialogue tend 

to be short, i.e. the length of a sentence or less. There is also a 

need to assess the more comprehensive, essay-type answers that 

students are required to provide immediately after being prompted 

to solve a problem. These essay-type answers can be a paragraph 

long or even longer depending on the task and target domain. 

One approach to assessing students’ responses is to compute how 

similar the responses are to benchmark solutions provided by 

experts (Rus & Graesser, 2006). That is, semantic similarity is the 

underlying principle for computing the meaning of student 

contributions in many of today’s state-of-the-art conversational 

ITSs and in other mainstream natural language processing 

applications such as Question Answering or Paraphrase 

Identification. The alternative approach to natural language 

understanding, called true understanding, is impractical as it 

requires world knowledge which is an intractable problem in 

Artificial Intelligence. 

As already mentioned, in the semantic similarity approach a 

student contribution is assessed in terms of its similarity to an 

expert answer. The expert answer is deemed correct. Therefore, a 

student contribution is deemed correct if it is semantically similar 

to the expert answer (and incorrect otherwise). 

Below, we show an example of a real student response from an 

ITS and the corresponding expert-answer as authored by an 

expert. 

Student Response: An object that has a zero force acting on it 

will have zero acceleration. 

Expert Answer: If an object moves with a constant velocity, the 

net force on the object is zero. 

The student response above is deemed correct as it is semantically 

similar to the expert answer. In general, the student response is 

deemed incorrect if it is not semantically similar enough to the 

expert response. More nuanced assessments can be made (e.g., 

partially correct or partially correct and partially incorrect at the 

same time). 

Researchers have been proposing various methods to assess the 

semantic similarity of texts, in particular sentences (Corley and 

Mihalcea, 2005; Fernando & Stevenson, 2008; Rus, Lintean, 

Graesser, and McNamara 2009). However, there is no software 

library or toolkit that would allow for a fair comparison and 

investigation of the various methods. Furthermore, there is no 

one-stop-shop kind of environment to explore semantic similarity 

methods at various levels of granularity: word-to-word, sentence-

to-sentence, paragraph-to-paragraph, or document-to-document 
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similarity. Furthermore, mixed combinations of similarity could 

be imagined such as examining how similar a summary paragraph 

is to a document (useful in summarization).   

 

Given the importance of assessing students’ natural language 

inputs for building accurate student models, there is an acute need 

for such a software environment that would allow for a systematic 

and fair comparison of the various semantic similarity methods to 

assess students’ natural language inputs. 

The proposed SEMILAR (SEMantic simILARity) toolkit address 

this need by offering a java library as well as a GUI-based Java 

application that integrates a myriad of semantic similarity methods 

for tuning and optimizing the parameters of such methods for the 

student assessment task in conversational ITSs.  

2. SEMILAR: THE SEMANTIC 

SIMILARITY TOOLKIT 
The authors of the SEMILAR toolkit have been involved in 

assessing the semantic similarity of texts for more than a decade.  

During this time, they have conducted a careful requirements 

analysis for an integrated software toolkit to be used for semantic 

similarity assessment. The result of this effort is the prototype 

presented here. 

The SEMILAR toolkit includes the following components: project 

management; data view/browsing/visualization; textual 

preprocessing (e.g., tokenization, lemmatization/stemming, 

collocation identification, part-of-speech tagging, phrase or 

dependency parsing, etc.), semantic similarity methods, 

classification components (naïve Bayes, Decision Trees, Support 

Vector Machines, and Neural Network), kernel-based methods 

(sequence kernels, word sequence kernels, and tree kernels; as of 

this writing, we are still implementing several other tree kernel 

methods); debugging and testing facilities for model selection; 

and annotation components (allows domain expert to manually 

annotate texts with semantic relations using GUI-based facilities). 

For space reasons, we will only detail next the core component 

that includes the text-to-text similarity algorithms available in 

SEMILAR. 

We briefly present core methods available as of this writing:  

 a greedy method based on word-to-word similarity measures 

 an optimal matching solution based on word-to-word 

similarity measures. The optimal lexical matching is based 

on the optimal assignment problem, a fundamental 

combinatorial optimization problem which consists of 

finding a maximum weight matching in a weighted bipartite 

graph; 

 a lexical overlap component combined with syntactic overlap 

and negation handling to compute an unidirectional 

subsumption score between two sentences, T (Text) and H 

(Hypothesis), typically used in textual entailment which as a 

text-to-text semantic relation; 

 a method in which similarities among all pairs of words are 

taken into account for computing the similarity of two texts. 

A similarity matrix operator W that contains word-to-word 

similarities between any two words is used; 

 a weighted-LSA (wLSA) method for semantic similarity 

based on Latent Semantic Analysis. The similarity of two 

texts A and B can be computed using the cosine (normalized 

dot product) of their LSA vectors. Alternatively, the 

individual word vectors can be combined through weighted 

sums. A combination of 3 local weights and 3 global weights 

are available. 

 A set of similarity measures based on the unsupervised 

method Latent Dirichlet Allocation. LDA is a probabilistic 

generative model in which documents are viewed as 

distributions over a set of topics (θd text d’s distribution over 

topics) and topics are distributions over words (φt – topic t’s 

distribution over words). 

 The Quadratic Assignment Problem (QAP) method aims at 

finding an optimal assignment from words in text A to words 

in text B, based on individual word-to-word similarity, while 

simultaneously maximizing the match between the syntactic 

dependencies of the matching words. The Koopmans-

Beckmann formulation of the QAP problem best fits the 

purpose of semantic similarity. The QAP method provides 

best accuracy results (=77.6%) that rival the best reported 

results so far (Madnani, Tetreault & Chodorow, 2012).  
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ABSTRACT 
Collecting and processing data in order to detect and recognize 
emotions has become a research hot topic in educational 
scenarios. We have followed a multimodal approach to collect 
and process data from different sources to support emotion 
detection and recognition. To illustrate the approach, in this 
demo, participants will be shown what emotional data can be 
gathered while solving Math problems. 

Keywords 

Affective Computing, Data Mining, Sensor Data, Emotion 
Detection, Mathematics 

1. INTRODUCTION 
Currently there is a growing interest in offering emotional 
support to learners in e-learning platforms through an expanded 
set of adaptive features. A key issue is to determine learners’ 
affective state, which is related to their cognitive and 
metacognitive process [4], preferable with low cost sensors [2]. 
Affective states in our approach are to be defined from mining 
in a jointly manner subjective, physiological and behavioral data 
gathered from diverse emotional information sources while the 
learner interacts on the given e-learning environment. This 
approach offers possible improvements on emotion detection, 
which as suggested in the literature may come out from the 
combination of different data sources simultaneously [5]. Math 
problem solving scenarios have provided opportunities to 
investigate this new approach, as from them different emotions 
may be elicited [7]. 

2. OUR APPROACH 
As for emotion detection, our approach is based on the use of 
data mining techniques. As shown in Figure 1, we follow a 
multimodal gathering approach based on the combination of the 

following data sources obtained while the learner carries out 
learning interactions to solve Mathematical tasks in the e-
learning platform and stored in the corresponding user model. 
To start with, bio-feedback data provide appropriate measures to 
detect typical physiological reactions that come along with 
emotions. Although they should not be used for categorizing 
discrete emotions on its own, they provide useful indicators of 
the participants’ arousal level associated with the ongoing 
affective state over the learning process. Signals used to this end 
are: heart rate, breath frequency, galvanic skin response and 
skin temperature. To evaluate phasic variations on collected 
signals upon a tonic state, recordings of each learner pre-
baseline are done to provide reference values for subsequent 
analysis. 

Another key source for gathering affective information is the 
non-verbal behavior (e.g. gestures, facial expression, body 
movements). Facial expressions of participants are recorded by 
Windows Kinect face features extraction. Kinect for Windows 
device provides an API able to detect a user’s face model based 
in 100 points. The processing of these data is to identify the 
learner’s head position, inclination and expressions. In addition, 
a webcam (with microphone) is used to record other sources of 
information not necessarily located in the participant’s face 
expression, such as verbal expression and speech tone. 

Some additional user interactions are also gathered. In 
particular, keyboard and mouse data sources are recorded to find 
out behavioral correlates of the emotional intensity. To collect 
all the events triggered by mouse and keyboard, a key logger 
and mouse tracker has been developed in Java (with no GUI, so 
it cannot interfere with the user interactions) using the library 
provided by kSquared.de. A video of participant’s desktop is 
also recorded to keep track of the session. 

As this approach is based on a wide range of information 
sources, synchronization is a key issue. Due to the number of 
devices used, several computers may be needed to collect the 
required information. Thus, the synchronization of the systems 
involved (given that some of the recorded interactions can last 
less than a second) is needed. Through this, synchronization 
data are merged and data mining can be applied. 

Information about learners’ personality is also considered when 
processing the data, given the narrow relation between 
personality traits and affective states with learning styles and 
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strategies [3]. To get this information, some self-reports are 
used. To gather personality traits, learners fill the Big Five 
Inventory (BFI), that reveals the main five structural dimensions 
of personality and the General Self-Efficacy Scale (GSE) that 
assesses participants self-beliefs in coping with a variety of 
demands in life. Moreover, as supervised learning techniques 
are considered due to their well-known benefits for emotions 
detection [8], some labeling is needed. With this aim, 
participants are told to rate proposed activities in the valence 
(from negative to positive) and arousal (from calm to excited) 
dimensions using the Self-Assessment Manikin (SAM) scale. 
Other meaningful sources to gather learners’ subjective 
emotions are obtained by self-described emotional reports 
(participants are asked to write their emotions in natural 
language) and the 20 emotional states of the Positive and 
Negative Affect Schedule (PANAS). The learners’ performance 
regarding the Mathematical tasks is another information source 
that should be taken into account from their learning outcomes. 

 
Figure 1. Data gathering flow 

Once data have been gathered, and before data mining processes 
are carried out, each kind of data is to be pre-processed in a 
particular way depending on their nature. Physiological data are 
being pre-processed to find significant variations on the signals 
with regard to the pre-baseline. Relations between signal 
variation patterns found and the self-reported affective labeling 
given by participants provide valuable information. A similar 
approach is being followed to the interaction data, relating 
interaction changes (in keyboard typing or mouse clicking 
behavior) with the subjective emotional reported values. Text 
mining techniques have been applied to extract valence values 
depending on the terms typed by the user when writing the 
emotional reports. Data recorded with Kinect are being pre-
processed to extract emotional patterns according to gestures 
and movements from detected facial points. The  result of these 
processes is to be used (in the same way as the emotional 
feedback and subjective information collected from the user 
commented above) to emotionally label data gathered from 
sensors in supervised learning systems. The current state of this 
work will be presented in a demo where participants are to carry 
out mathematical exercises while some of the above information 
will be collected and shown, and the data mining process 
followed discuss with the participant. 

3. ONGOING WORKS 
This approach is supported by the MAMIPEC project, where we 
are exploring how to combine different information sources 
from different signals to offer an accessible and personalized 
learning experience to the learner, which accounts for their 
affective state and aims to provide, accordingly, affective based 
recommendations. To progress on this goal, a large-scale 

experiment was carried out  where 72 participants (excluding 10 
additional pilots to test the settings) performed different types of 
individual activities, which consisted in a Math problem solving 
experience implemented in dotLRN e-learning platform. Text 
mining techniques are being applied over the emotional report in 
order to extract valence information. Using the text mining 
scores (filtering out those reports with a difference of less than 3 
words when subtracting positive items from negative items 
when computing the frequency of affective words from the 
MPQA database) and the keyboard interactions, our best results 
were roughly a 70% success rate when predicting positive or 
negative valence compared to the experts’ labeling [6]. New 
experiments using this approach with a problem solving ITS [1] 
have been proposed in cooperation with Valencia University. 

4. ACKNOWLEDGMENTS 
Authors would like to thank the Spanish Government for 
funding MAMIPEC project (TIN2011-29221-C03-01). 

5. REFERENCES 
[1] Arnau, D., Arevalillo-Herráez, M., Puig, L., González-

Calero, J.A. 2013. Fundamentals of the design and the 
operation of an intelligent tutoring system for the learning 
of the arithmetical and algebraic way of solving word 
problems. Computers & Education. 63,119-130. 

[2] Arroyo, I., Cooper, D., Burleson, W., Woolf, B.P., 
Muldner, K., Christopherson, R. 2009. Emotion Sensors 
Go To School. Proceedings of the 14th International 
Conference on Artificial Intelligence in Education: 
Building Learning Systems that Care: From Knowledge 
Representation to Affective Modelling, 17-24. 

[3] Bidjerano, T., Dai, D.Y. 2007. The relationship between 
the big-five model of personality and self-regulated 
learning strategies. Learning and Individual Differences, 17 
(1) 69–81. 

[4] Blanchard, E.G., Volfson, B., Hong, Y.J., Lajoie, S.P. 
2009. Affective Artificial Intelligence in education: From 
detection to adaptation. Proceeding of the 2009 conference 
on Artificial Intelligence in Education: Building Learning 
Systems that Care: From Knowledge Representation to 
Affective Modelling, 81–88.  

[5] D’Mello, S. K., Kory, J. 2012. Consistent but Modest: A 
Meta-Analysis on Unimodal and Multimodal Affect 
Detection Accuracies from 30 Studies. In L. P. Morency et 
al (Eds) Proceedings of the 14th ACM International 
Conference on Multimodal Interaction, 31-38. 

[6] Santos, O.C., Salmeron-Majadas, S., Boticario, J.G. 2013. 
Emotions detection from math exercises by combining 
several data sources. In proceedings of the 16th 
International Conference on Artificial Intelligence in 
Education, 742–745. 

[7] Shen, L., Wang, M. and Shen, R. 2009. Affective e-
learning: Using “emotional” data to improve learning in 
pervasive learning environment. Educational Technology 
& Society. 12 (2), 176–189.  

[8] Zeng, Z., Pantic, M., Roisman, G.I.,Huang, T.S. 2009. A 
survey of affect recognition methods: Audio, visual, and 
spontaneous expressions. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 31 (1), 39–58.  

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 405



www.manaraa.com

A Tool for Speech Act Classification Using Interactive 

Machine Learning  
Borhan Samei 

The University of Memphis 
365 Innovation Dr. 
Memphis, TN, USA 

bsamei@memphis.edu 

Fazel Keshtkar 
The University of Memphis 

365 Innovation Dr. 
Memphis, TN, USA 

fkshtkar@memphis.edu 

Vasile Rus 
The University of Memphis 

365 Innovation Dr. 
Memphis, TN, USA 

vrus@memphis.edu 

Arthur C. Graesser 
The University of Memphis 

365 Innovation Dr. 
Memphis, TN, USA 

a-graesser@memphis.edu 

 
 

 

ABSTRACT 

In this Demo, we introduce a tool that provides a GUI interface to 

a previously designed to Speech Act Classifier. The tool also 

provides features to manually annotate data by human and 

evaluate and improve the automated classifier. We describe the 

interface and evaluate our model with results from two human 

judges and Computer. 

Keywords 

Speech act, interactive machine learning, Speech act classifier  

1. INTRODUCTION 
Speech act classification is the task of classifying a sentence, 

utterance or any other discourse contribution, into a speech act 

category which is selected from a set of predefined categories. 

Each category represents a particular social discourse function. 

“What is your name?” for example, is classified as a Question. 

There are other examples of speech act categories, such as 

Statement, Greeting, etc. 

Our tool is designed to offer annotation facilities in order to 

improve a previously developed automated speech act 

classification (SAC; the SAC is available online at 

www.cs.memphis.edu/~vrus/SAC/) [2]. Furthermore, we provide 

a GUI-based interface to the speech act classifier [2]. We use an 

interactive machine learning model for this task that allows for 

manual classification by human judges which is used to improve 

the accuracy of our machine learning model. The tool is created 

and written in Java. The SAC relies on decision tree (J48) that has 

proved to provide based performance on training data from human 

annotated utterances [2]. 

The decision tree is a machine learning approach that requires  a 

feature set to be designed. The feature set is an important part of 

machine learning algorithms. Moldovan, Rus, and Graesser [2] 

designed a feature set and used it in order to automatically classify 

chat utterances.  

They used eight speech act categories which are shown in Table 1.  

According to analyzes on a variety of corpora, such as chat and 

multiparty games we can converge on a set of speech act 

categories that are both theoretically justified and can be used by 

trained judges [3]. For the feature set we tokenize the chat 

utterances based on basic regular expressions and for each 

utterance five features are extracted: the first three words, the last 

word, and the length of the sentence in words.  Many other feature 

sets have been experimented with but the five features just 

mentioned proved to lead to highest performance in conjunction 

with decision trees and naïve Bayes methods [2]. The model has 

been trained and experimented with on data sets from intelligent 

tutoring systems as well as chat data [2]. Our model is a J48 

model built on the training the data using Weka toolkit. 

The model and training data can be updated and improved 

independently. This tool can be used with several training data 

based on the domain. For example, if we are looking at the 

dialogs in a movie we can use a different training data model 

based on this domain.  

 

Table 1. Set of speech act categories and an example of each 

category. 

Speech act category Example  

ExpressiveEvaluation Your stakeholders will be grateful! 

Greeting Hello! 

MetaStatements oh yeah, last thing. 

Statement a physical representation of data. 

Question What should we do? 

Reaction Thank you 

Request Please check your inbox 

Other ed is tough, no doubt. 

2. THE INTERFACE 
We have designed a Graphical User Interface (GUI) for the tool.   

It can be used on any machine, since it is implemented in Java.  

Figure 1 shows a snapshot of the starting interface of the tool.  

Use is able to “Run” or “Annotate” the input data (see Figure 1). 

 

Figure 1. A snapshot of the starting window of the tool's 

interface. 

S. D'Mello, R. Calvo, & A. Olney (Eds.). Proc Educational Data Mining (EDM) 2013 406



www.manaraa.com

 

By clicking on “Run” the tool will start to classify the input file 

which contains a collection of utterances. After classifying the 

utterances, the output will be saved as an excel file. The users can 

also click on “Annotate” to annotate the data manually. By 

clicking on “Annotate” a new GUI  will appear (Figure 2) which 

contains the utterances. The user will see 10 utterances in each 

step and for each utterance there is a drop down list of categories 

from which the user selects one.  After annotating by user can go 

to next utterances or save the current annotation any time and do 

the rest after getting back. 

 

Figure 2. A snapshot of the manual annotation tool. 

  

3. RESULTS 
A collection of chat utterances are used as the data set to evaluate 

the algorithm. The system is trained by a collection of datasets 

derived from Auto-Mentor frame board dataset. The test data is 

chosen from a collection of new chat data. We have chosen a 

hundred chat utterances from the data and tried to maintain a 

normal distribution on the speech act categories so each category 

has 10 to12 utterances in our test data. The test data is also 

annotated by two human judges.  

The system runs the algorithm on the test data and for each 

utterance we show top three speech-act categories based on their 

probability distribution in the decision tree. Top three categories 

are the ones with the highest probability and we represent these 3 

categories as Comp1, Comp2, and Comp3. Figure 3 represents the 

agreement of Human judges with Comp1, Comp2, and Comp3.   

As our model is based on interactive machine learning we tend to 

compare automated classification to human judges in order to 

improve the model and retrain with new enhanced training data. 

To do this, we have calculated agreement among humans and 

computer.  For each utterance we have five output categories, the 

top three assigned by our model, and the annotations by human 

judges. These five outputs are compared to investigate their 

agreement and evaluate the current model.  We have looked at 

agreement both by Speech-Act categories and overall among the 

dataset.  

Table 2 shows the overall agreement among the classifiers.  Our 

human judges agree on 70.00% of the utterances. Agreement of 

our model and human judges is about 50%. The agreement of 

judges with Comp2 and Comp3 are less than 5% of the human 

agree with the second and third category computed by our model. 

As it was mentioned earlier Comp2 and Comp3 are actually the 

two categories that our model would propose based in their 

probability in the decision tree. This result helps improve our 

model by increasing the probability of the right categories based 

on human judge annotations, in the decision tree. We will also 

look at the agreement by. 

Table 2. Agreement among judges and classifiers. 

Judges Agreement  

Human1 – Human2 70% 

Human1 – Comp1 50% 

Human2 – Comp1  47% 

Human1 – Comp2 4% 

Human2 – Comp2 3% 

Human1 – Comp3 2% 

Human2 – Comp3 3% 

 

 

Figure 3. Overall agreement of human judges with automated 

classifier. 

4. CONCLUSION 
As the results show, our model is working close to human judges.  

The tool can be used to improve the model by taking both human 

and computer annotations and enhance the training data. The main 

goal of this tool is not only to automate the classification task, but 

also provide more features to improve the classifier. Both 

automated and manual annotations are easy to use by the interface 

and this can be used in several applications and domains. The 

training data and J48 models can be externally changed for 

different domains. 
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